

Flood Study for

APN: 841-20-007, 048, 053, 064

For: Erik Martin Gilroy Rodeo PO Box 1148 Gilroy, CA 95021

By: MH Engineering Co.

February 22, 2019

MH engineering Co.

16075 Vineyard Blvd. Morgan Hill, CA 95037 (408) 779-7381

Job: 218058

Flood Plain Study for APN 841-20-007, 048, 053, 064

Introduction

The purpose of this flood study is to present hydraulic and hydrologic information to demonstrate that the proposed development and surrounding properties within the flood plain are reasonably safe from increased flooding. The proposed development is located on 4 adjoining parcels located in a rural portion of Gilroy. See Exhibit A for the Vicinity Map. Currently the project area consists mostly of hayfields with some dirt roads, a pond, and the rodeo arena. Prior to the developments for the Gilroy Rodeo, the project area consisted of a dairy and ponds to capture the dairy runoff prior to entering Jones Creek. Jones Creek runs along the western portion of APN 841-20-064. The dairy was closed and the need for the ponds ceased. The pond areas were re-graded back to original conditions and the surplus of fill was used to create berms for the seating of the Gilroy Rodeo Arena. Flood Insurance Rate Maps (FIRMs) show that a portion of the proposed development lies in Zone A per FIRM 06085C0643H, effective May 18th, 2009. See attached Exhibit B. See Appendix B for the Gilroy Rodeo Work Map.

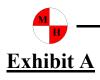
Watershed Study

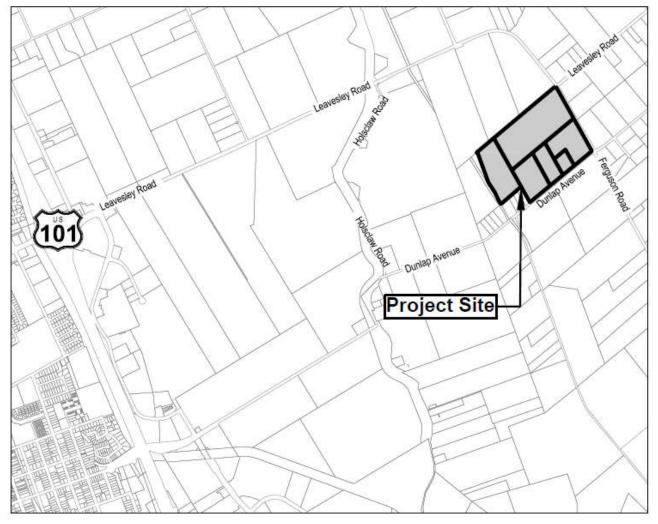
The Flood Study included a watershed analysis for all portions of Jones Creek upstream of the project area. This included the watershed of Alamias Creek. Alamias and Jones Creek merge about 5,500 feet prior to the project area. A request was made to the Santa Clara Water District (SCVWD) for the peak flow of Jones Creek upstream of the project area. Currently the SCVWD has not found any information regarding the peak flow for Jones Creek.

The watershed study was conducted using HEC-HMS to model the flows and 2006 Lidar data from SCVWD to find the watershed limits and flow lengths. The watershed was divided into 3 sub-basins that covers 2.78 square miles. Each basin consists of mixed forest areas and grassland areas. The watershed analysis followed the procedures outlined in Chapter 4 of the Santa Clara County Drainage Manual 2007. The rainfall simulation used was based on the three-day December 1955 rainfall event from Figure D-1 of the County Drainage Manual. The mean annual precipitation (MAP) for the watershed area was determined from the County's property profile page and was found to be 19 inches. The 24-hour rainfall depth was calculated using the SCVWD's TDS equation (3-3) of the County Drainage Manual. The 24-hour rainfall depth was found to be 5.44 inches. The rainfall hyetograph was obtained by multiplying the MAP by the incremental rainfall distribution found in Figure D-1 of the County Drainage Manual. Each sub-basin was assigned a SCS Curve number based on the land cover and hydrologic soil group. The land cover was verified using aerial images and the hydrologic soil group data was obtained through the USGS web soil survey website. The curve numbers were taken from Table E-1 of the County Drainage Manual and then converted to antecedent moisture condition (AMC) II ¹/₂ using table E-2 of the County Drainage Manual. The SCS lag equation was then used to determine the basin lag time of each sub-basin. The watershed analysis data was entered into HEC-HMS to obtain the peak flow of Jones Creek for the 100-year storm event. The peak flow entering the project area from Jones creek was found to be 569.3 cfs. Please see Appendix A for watershed analysis calculations.

MH engineering Co.

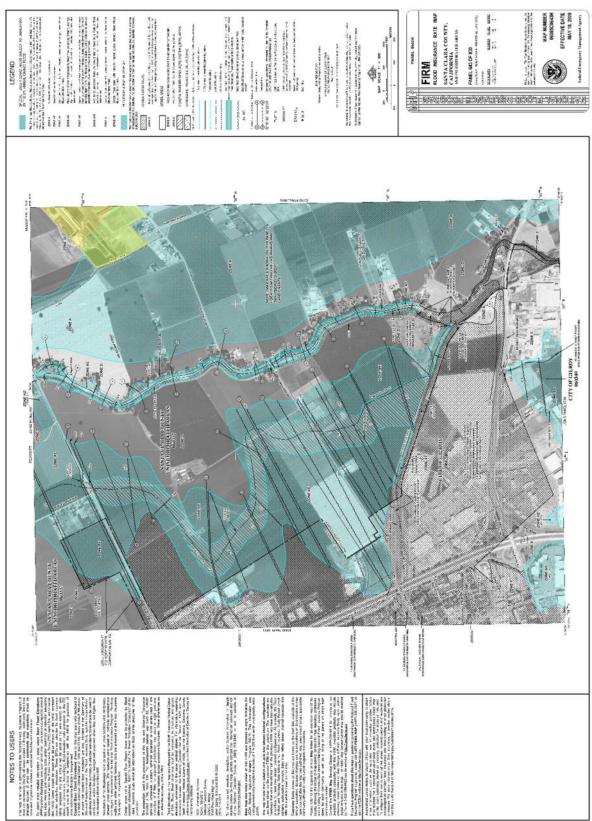
16075 Vineyard Blvd. Morgan Hill, CA 95037 (408) 779-7381


The effects of the proposed grading have been evaluated using HEC-RAS computer modeling software. Jones Creek currently does not have a published flood profile from FEMA or SCVWD. A new model was created using the peak flow from the watershed analysis. Lidar data was obtained from the SCVWD website to model the pre-development cross sections of Jones Creek and field survey data was used to model the post development conditions. All the elevation information is based on the NAVD '88 Datum.

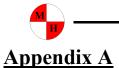

Prior to entering the project area, Jones Creek flows alongside of a large agricultural field with a 5-foot tall, 25-foot-wide berm along the west side of the creek. Once the Creek enters the project area, the flowline is now between two berms. The berm on the western side is now approximately 6 feet high and 20 feet wide. The berm along the project side is approximately 7 feet high and 20 feet wide. Once the creek leaves the project area the western berm continues until just before Dunlap Avenue with a height of 3 feet. The berm on the project side of the creek wraps around to the east and continues along the southern property line of APN 841-20-064.

The HEC-RAS model was used to determine if there was a change to the flood plain elevations after the proposed grading was completed. The model begins about 4,000 feet before the project area with creek cross sections every 500 feet. The approximately 1250 feet of creek that runs along the project area has cross sections every 50 feet. The model continues downstream approximately 4,000 feet with cross sections every 500 feet. Both the pre and post development models use the same plan model and the same flow data. The only difference between the models is the different geometry data in the project area.

Conclusion


The attached summary table, see Exhibit C, shows the results of the pre and post development models. The model shows that the elimination of the agricultural ponds and the addition of the berm for the arena seating has very little to no effect on the base flood plain elevation. The max elevation increase was 0.03 feet and the max elevation decrease was 0.01 feet.

Vicinity Map


Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Delta	E.G. Elev	E.G. Slope	Vel Chnl	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	
Jones Creek	30	100 year AMC 2.5	Pre	604.6	221	225.47		225.7	0.003317	4.87	0.53
Jones Creek	30	100 year AMC 2.5	Post	604.6	221	225.47	0	225.70	0.003317	4.87	0.53
Jones Creek	29	100 year AMC 2.5	Pre	604.6	218	220.83		222.3	0.018322	9.85	1.23
Jones Creek	29	100 year AMC 2.5	Post	604.6	218	220.83	0	222.30	0.018322	9.85	1.23
Jones		100 year	Dec	004.0	014	047.00		040.00	0.007570	7.00	0.00
Creek Jones	28	AMC 2.5 100 year	Pre	604.6	214	217.39		218.08	0.007579	7.32	0.82
Creek	28	AMC 2.5	Post	604.6	214	217.39	0	218.08	0.007579	7.32	0.82
Jones Creek	27	100 year AMC 2.5	Pre	604.6	211	211.41		211.54	0.01277	2.9	0.8
Jones Creek	27	100 year AMC 2.5	Post	604.6	211	211.41	0	211.54	0.01277	2.9	0.8
Jones Creek	26	100 year AMC 2.5	Pre	604.6	209	209.78		209.81	0.001547	1.54	0.31
Jones Creek	26	100 year AMC 2.5	Post	604.6	209	209.78	0	209.81	0.001547	1.54	0.31
Jones Creek	25	100 year AMC 2.5	Pre	604.6	207	207.66		207.93	0.019207	4.19	1
Jones		100 year							0.018307		1
Creek	25	AMC 2.5	Post	604.6	207	207.66	0	207.93	0.018307	4.19	1
Jones Creek	24	100 year AMC 2.5	Pre	604.6	205	207.22		207.23	0.000184	0.94	0.12
Jones Creek	24	100 year AMC 2.5	Post	604.6	205	207.22	0	207.23	0.000184	0.94	0.12
lanac		100									
Jones Creek	23	100 year AMC 2.5	Pre	604.6	203	207.19		207.2	0.000028	0.59	0.05
Jones Creek	23	100 year AMC 2.5	Post	604.6	203	207.19	0	207.20	0.000028	0.59	0.05
Jones		100 year									
Creek	22	AMC 2.5	Pre	569.3	201	207.19		207.19	0.000015	0.57	0.04
Jones Creek	22	100 year AMC 2.5	Post	569.3	201	207.18	-0.01	207.19	0.000019	0.64	0.05
Jones Creek	21	100 year AMC 2.5	Pre	569.3	201	206.68		207.14	0.00308	5.44	0.53

		1		<u>г</u>				1	1		
Jones	01	100 year	Deet	500.0	004	000.00	0	007.44	0.000000	F 44	0.50
Creek	21	AMC 2.5	Post	569.3	201	206.68	0	207.14	0.003086	5.44	0.53
lanaa		100									
Jones Creek	20	100 year AMC 2.5	Pre	560.2	200	206.44		206.0	0.003038	5 4 5	0.52
Jones	20	100 year	FIE	569.3	200	200.44		206.9	0.003036	5.45	0.52
Creek	20	AMC 2.5	Post	569.3	200	206.44	0	206.90	0.003045	5.45	0.52
Oreek	20		1 031	505.5	200	200.77	0	200.30	0.003043	0.40	0.52
Jones		100 year									
Creek	19	AMC 2.5	Pre	569.3	200	206.25		206.63	0.002138	4.95	0.44
Jones	10	100 year	110	000.0	200	200.20		200.00	0.002100	1.00	0.11
Creek	19	AMC 2.5	Post	569.3	200	206.24	-0.01	206.62	0.002144	4.96	0.44
Jones		100 year									
Creek	18	AMC 2.5	Pre	569.3	200	205.73		206.26	0.003602	5.83	0.57
Jones		100 year									
Creek	18	AMC 2.5	Post	569.3	200	205.72	-0.01	206.25	0.003622	5.84	0.57
Jones		100 year									
Creek	17	AMC 2.5	Pre	569.3	199	205.51		206.02	0.003112	5.74	0.52
Jones		100 year									
Creek	17	AMC 2.5	Post	569.3	199	205.5	-0.01	206.02	0.003132	5.75	0.52
Jones		100 year									
Creek	16	AMC 2.5	Pre	569.3	199	205.24		205.71	0.002933	5.53	0.5
Jones		100 year									
Creek	16	AMC 2.5	Post	569.3	199	205.27	0.03	205.70	0.002753	5.37	0.49
Jones		100 year									
Creek	15	AMC 2.5	Pre	569.3	199	204.56		205.31	0.005097	6.95	0.66
Jones	45	100 year	Deat	500.0	100	004 50	0	005.04	0.005007	0.05	0.00
Creek	15	AMC 2.5	Post	569.3	199	204.56	0	205.31	0.005097	6.95	0.66
10000		100									
Jones Creek	14	100 year AMC 2.5	Dro	569.3	198	204.27		204.85	0.003437	6.06	0.54
Jones	14	100 year	Pre	009.0	190	204.27		204.05	0.003437	0.00	0.54
Creek	14		Post	569.3	198	204.27	0	204.85	0.003437	6.06	0.54
Oreek	17	7 10 2.0	1 000	000.0	100	204.21	0	204.00	0.000-07	0.00	0.04
Jones		100 year									
Creek	13	AMC 2.5	Pre	569.3	198	203.57		204.39	0.005624	7.28	0.68
Jones	10	100 year	110	000.0	100	200.07		204.00	0.000024	7.20	0.00
Creek	13	AMC 2.5	Post	569.3	198	203.57	0	204.39	0.005624	7.28	0.68
		7 4110 210		000.0		200.01		201100	0.000021		0.00
Jones		100 year									
Creek	12	AMC 2.5	Pre	569.3	198	203.58		203.97	0.001775	5.18	0.43
Jones		100 year									
Creek	12	AMC 2.5	Post	569.3	198	203.58	0	203.97	0.001775	5.18	0.43
Jones		100 year									
Creek	11	AMC 2.5	Pre	569.3	198	202.85		203.63	0.006137	7.1	0.73
Jones		100 year								T	
Creek	11	AMC 2.5	Post	569.3	198	202.85	0	203.63	0.006137	7.1	0.73

				•		-					
Jones Creek	10	100 year AMC 2.5	Pre	569.3	198	201.62		202.76	0.012482	8.55	1.01
Jones		100 year									
Creek	10	AMC 2.5	Post	569.3	198	201.62	0	202.76	0.012482	8.55	1.01
Jones	0	100 year	Dre	500.0	100	000		004 74	0.00054.4	10.40	1.00
Creek Jones	9	AMC 2.5 100 year	Pre	569.3	198	200		201.71	0.036514	10.49	1.62
Creek	9	AMC 2.5	Post	569.3	198	200	0	201.71	0.036514	10.49	1.62
Orook		7 1110 2.0	1 000	000.0	100	200	Ū	201.71	0.000011	10.10	1.02
Jones		100 year									
Creek	8	AMC 2.5	Pre	569.3	197	199.73		199.78	0.00179	2.8	0.37
Jones		100 year									
Creek	8	AMC 2.5	Post	569.3	197	199.73	0	199.52	0.001313	2.19	0.31
Jones		100 year									
Creek	7	AMC 2.5	Pre	569.3	194	197.88		198.32	0.005409	6.35	0.68
Jones		100 year									
Creek	7	AMC 2.5	Post	569.3	194	197.88	0	198.32	0.005409	6.35	0.68
lanaa		100									
Jones Creek	6	100 year AMC 2.5	Pre	569.3	193	195.89		195.92	0.00122	2.6	0.31
Jones	0	100 year	110	505.5	190	199.09		190.92	0.00122	2.0	0.01
Creek	6	AMC 2.5	Post	569.3	193	195.89	0	195.92	0.00122	2.6	0.31
Jones		100 year									
Creek	5	AMC 2.5	Pre	569.3	192	195.41		195.44	0.000785	2.2	0.26
Jones	F	100 year	Deet	560.2	102	105 41	0	105 11	0 000795	2.2	0.26
Creek	5	AMC 2.5	Post	569.3	192	195.41	0	195.44	0.000785	2.2	0.26
Jones		100 year									
Creek	4	AMC 2.5	Pre	569.3	191	195.12		195.14	0.000484	2.07	0.2
Jones		100 year			-						-
Creek	4	AMC 2.5	Post	569.3	191	195.12	0	195.14	0.000484	2.07	0.2
Jones	2	100 year AMC 2.5	Dre	500.0	101	104.00		101 51	0.000444	F 7	0.70
Creek Jones	3	100 year	Pre	569.3	191	194.02		194.51	0.006441	5.7	0.73
Creek	3	AMC 2.5	Post	569.3	191	194.02	0	194.51	0.006441	5.7	0.73
							-				
Jones		100 year									
Creek	2	AMC 2.5	Pre	569.3	189	192.66		192.83	0.001946	4	0.42
Jones	_	100 year				105.55		100.00			
Creek	2	AMC 2.5	Post	569.3	189	192.66	0	192.83	0.001946	4	0.42
lonos		100 year									
Jones Creek	1	100 year AMC 2.5	Pre	569.3	188	191.22		191.37	0.005139	3.64	0.6
Jones	1	100 year		503.5	100	101.22		101.07	0.000100	J.U T	0.0
			Post	569.3	188	191.22	0	191.37	0.005139	3.64	0.6

Rainfall Depth Calculation

MAP = 19 in

	T (hr)	A _{T,D}	B _{T,D}	(
100 Year	24	0.814046	0.243391	$X_{T,D} = A_{T,D} + (B_{T,D}MAP)$

X_{100 year} = 5.4385 in

Sub Basin 1

				AMC II
CN Calculation			AMC II	1/2
Hydrologic Soil Group	Area (sf)	Area (ac)	CN	CN
Soil Type C	10073153	231.248	51	61
Soil Type D	43456962	997.635	76	83
Total	53530115	1228.882		
	Average C	CN value =	71.30	78.86

Basin Lag Calculation

Basin Lag Calculation			t = (0.5)	862) 24 <i>N</i>	$\frac{LL_e}{2}$
N =	0.08		THE C.	(\sqrt{S}
L =	1.738	mi			
Lc =	0.9615	mi	t _{lag} =	0.6570	hr
S =	361.152	ft/mi	t _{lag} =	39.42	min

Initial Absorption

IA = 0.2*S		S=1000/CN -10
S =	2.68	
IA =	0.54	in

Sub Basin 2

CN Calculation			AMC II	AMC II 1/2
Hydrologic Soil Group	Area (sf)	Area (ac)	CN	CN
Soil Type C	3640046	83.564	51	61
Soil Type D	16210664	372.146	70	78
Total	19850710	455.710		
	Average 0	CN value =	66.52	74.88

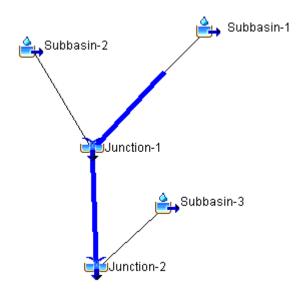
Basin Lag Calculation

$t_{_{\rm lag}} = (0.862) \ 24 N$	$\left(\frac{LL_e}{\sqrt{S}}\right)^{0.38}$
	(VS)

N = L =	0.08 1.4272	mi	$I_{lag} = (0.0)$	502) 2414	\sqrt{s}
L = Lc =	0.707		• . –	0.6504	hr
•					
S =	138.871	ft/mi	t _{lag} =	39.03	min

Initial Absorption

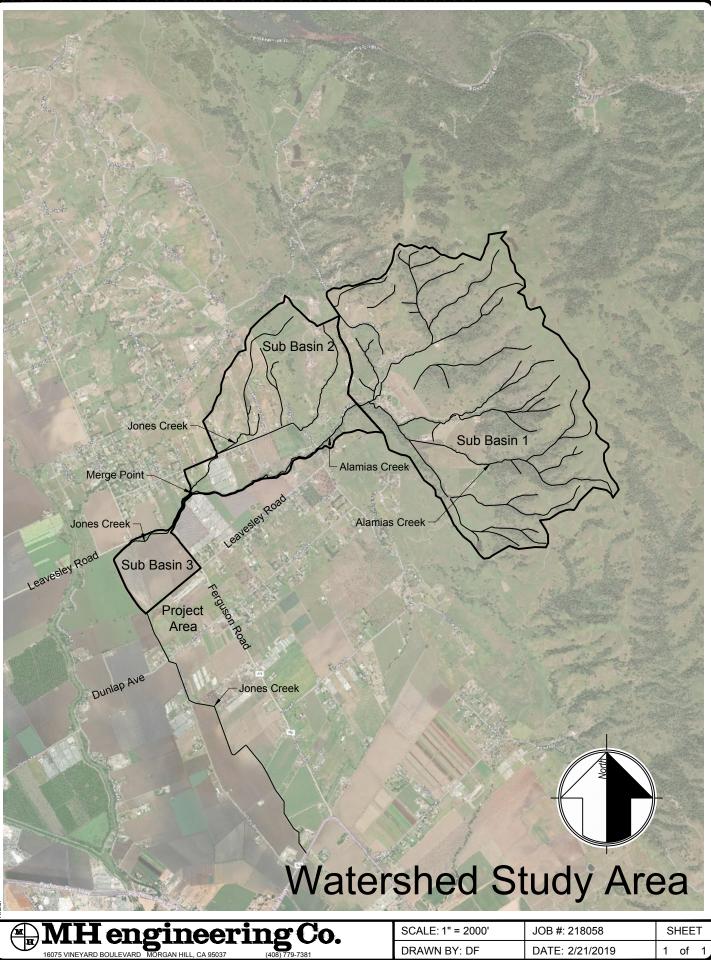
IA = 0.2*S	-	S=1000/CN -10
S =	3.35	
IA =	0.67	in

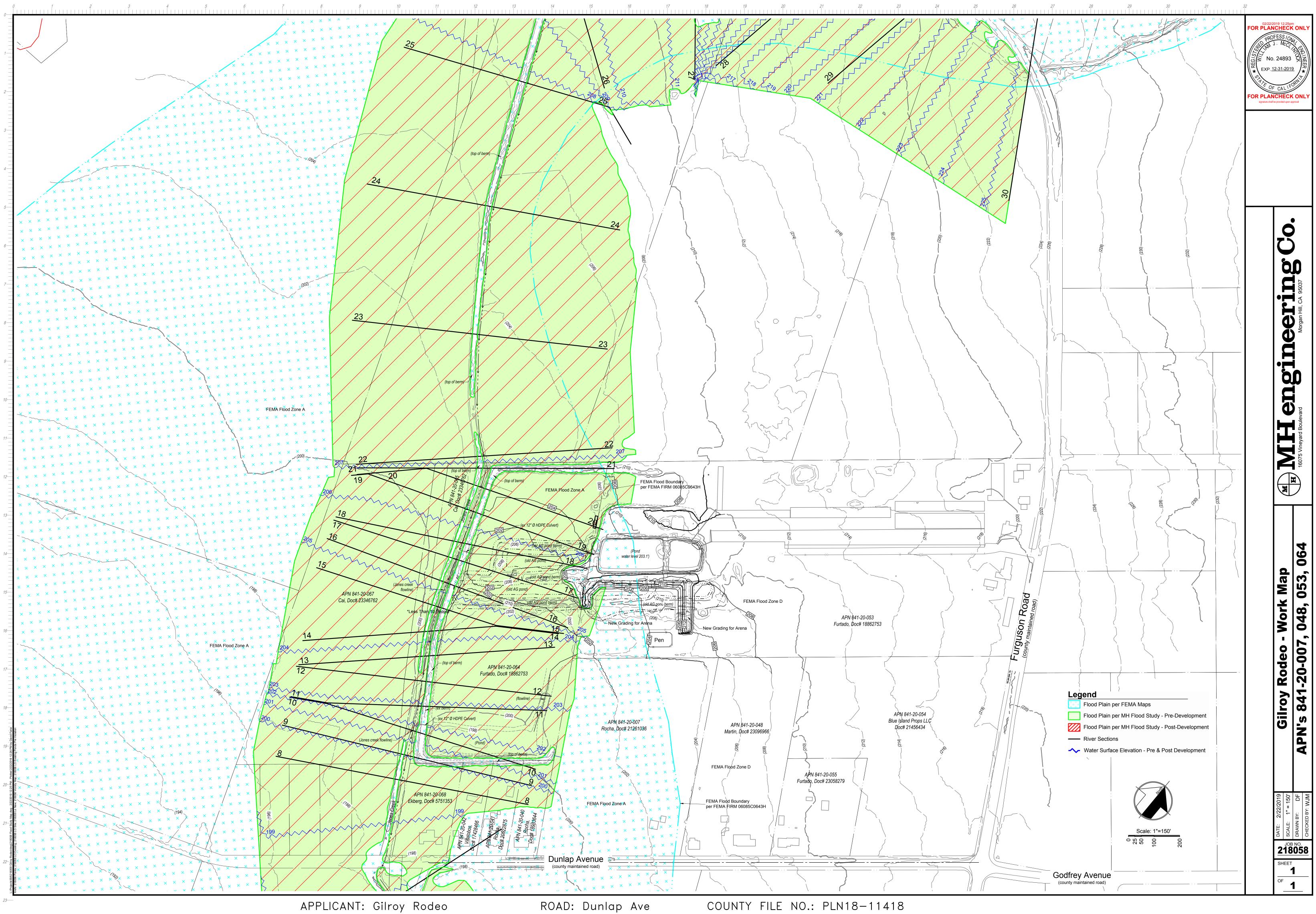

Sub Basin 3

						AMC II
CN Calc	ulation				AMC II	1/2
Hydr	ologic Soil (Group	Area (sf)	Area (ac)	CN	CN
	Soil Type C	;	4223067	96.948	77	83
		Total	4223067	96.948		
			(CN value =	77.00	83.00
Basin La N = L =	ag Calculat 0.08 1.0234	ion mi	$t_{ing} = (0$.862) 24 <i>N</i>	$\left(\frac{LL_c}{\sqrt{S}}\right)^{0.35}$	
L _C =	0.5782	mi	t _{lag} =	0.7101	hr	
S =	30.099	ft/mi	t _{lag} =	42.60	min	

Initial Absorption

IA = 0.2*S	-	S=1000/CN -10
S =	2.05	
IA =	0.41	in





Project: 218058 AMC 2.5 Simulation Run: Run 1

Start of Run: 01Jan2000, 00:00 End of Run: 02Jan2000, 00:00 Compute Time: DATA CHANGED, RECOMPUTE Basin Model: Existing Meteorologic Model: Met 1 Control Specifications: Control 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Junction-1	2.63217	604.6	01Jan2000, 07:00	2.73
Junction-2	2.78365	569.3	01Jan2000, 07:30	2.70
Reach-1	1.92013	460.1	01Jan2000, 07:10	2.80
Reach-2	2.63217	540.3	01Jan2000, 07:35	2.67
Subbasin-1	1.92013	584.6	01Jan2000, 06:45	2.87
Subbasin-2	0.71204	179.6	01Jan2000, 06:45	2.54
Subbasin-3	0.15148	53.3	01Jan2000, 06:50	3.25

