APPENDIX G GEOTECHNICAL EVALUATIONS

APPENDIX G-1WMSA GEOTECHNICAL EVALUATION

West Materials Storage Area Geotechnical Evaluation

Permanente Quarry

April 5, 2019

Prepared for:

Lehigh Southwest Cement Company, Lehigh Hanson, Inc.

Prepared by:

Stantec Consulting Services Inc. American Plaza II 57 W. 200 So., Suite 500 Salt Lake City, UT 84101

Revision	Description	Author		Quality Check		Independen	t Review
3	Client comments	Paul Kos	4/5/19	Toni Jack	4/5/19	Greg Gold	4/5/19
2	Client Draft	Paul Kos	2/1/19	Toni Jack	2/1/19	Greg Gold	2/1/19
1	Client Draft	Paul Kos	12/21/18	Toni Jack	12/14/18	Greg Gold	12/14/18
0	Client Draft	Paul Kos	11/30/18	Toni Jack	11/30/18	Greg Gold	11/30/18
Α	Initial Draft	Paul Kos	11/15/18	Toni Jack	11/15/18	Greg Gold	11/15/18

Sign-off Sheet

This West Materials Storage Area Geotechnical Evaluation was prepared by Stantec Consulting Services Inc. (Stantec) for the account of Lehigh Southwest Cement Company (Lehigh), a subsidiary of Lehigh Hanson, Inc. The material in it reflects Stantec's professional judgment in light of the scope, schedule, and other limitations stated in the document. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. Any use, which a third party makes of this document, is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party because of decisions made or actions taken based on this document.

Prepared by ______

Paul Kos

Reviewed by Reviewed by

(Signature)

(Signature)

Nelson Kawamura

Approved by Jugory Hold

(Signature)

Greg Gold

Table of Contents

EXE(CUTIVE SUMMARY	1
ABB	BREVIATIONS	
GLO	OSSARY	
1.0	INTRODUCTION	1.1
1.1	PURPOSE	1.1
1.2	PROJECT BACKGROUND	1.1
1.3	SCOPE OF WORK	1.2
1.4	LIMITATIONS	1.2
2.0	WEST MATERIALS STORAGE AREA	
2.1	HISTORY	
2.2	PREVIOUS STUDIES	2.1
2.3	2018 INVESTIGATION	
2.4	SURFICIAL DEPOSITS	
2.5	BEDROCK MATERIALS	
2.6	OPERATIONAL PLAN	
2.7	RECLAMATION PLAN	2.6
3.0	GEOTECHNICAL EVALUATION	3.1
4.0	CONCLUSION	4.1
5.0	REFERENCES	5.1
FIGU	JRES	5.1
LIST	OF TABLES	
	e 2.1 WMSA Borehole Summary	
	e 2.2 WMSA Strength Parameters	
Table	e 3.1 Stability Analyses	3.1
	e 3.2 Geotechnical Strength Parameters	
	e 3.3 Geotechnical Stability Analyses Results	
rabie	e 3.4 Seismic Displacement Analyses Results	3.2
LIST	OF PHOTOS	
Photo	to 2.1 Game Trail North of WMSA	2.3
	to 2.2 Drainage Control Structure on WMSA Road	

Table of Contents

Photo 2.3 Area Previously Identified with Cracks: Only Sediment and Erosion Identified2.5

LIST OF FIGURES

- Figure 1.1 Permanente Quarry Regional Location Map
- Figure 1.2 Permanente Quarry Project Overview
- Figure 2.1 Permanente Quarry WMSA Pre-Mine Topography
- Figure 2.2 Permanente Quarry WMSA Current Topography
- Figure 2.3 Permanente Quarry WMSA Build-Out Topography
- Figure 2.4 Permanente Quarry WMSA Reclamation Topography
- Figure 2.5 Permanente Quarry WMSA Cross-Sections

LIST OF APPENDICES

Appendix A Slope Stability Analyses Appendix B Seismic Displacement Analysis Appendix C WMSA Drilling Logs

Executive Summary

Executive Summary

This West Materials Storage Area (WMSA) Geotechnical Evaluation has been prepared to assist Lehigh Southwest Cement Company (Lehigh), a subsidiary of Lehigh Hanson, Inc., with the upcoming Reclamation Plan amendment submission, under California's Surface Mining and Reclamation Act (SMARA). This report provides the proposed modifications to the reclaimed WMSA, documents previous and recent investigations of WMSA, and provides results of stability analyses.

Stantec's geotechnical evaluation of WMSA excludes the lower elevations (southern) of the western portions of WMSA, below the main haul road (the exclusion area). This area, which includes the Permanente Creek Restoration Area, was placed prior to the promulgation of SMARA, and the stability of the surficial materials were previously evaluated by Golder (Golder 2011). This amendment to the Reclamation Plan does not impact the geotechnical stability of these areas as no changes to the slopes have been made.

The geotechnical assessment provided in this report demonstrates that the proposed Reclamation Plan for WMSA meets or exceeds SMARA requirements for factors of safety under static and seismic conditions above the exclusion area.

During operations, areas of instability within the WMSA footprint have been observed from time to time. These areas will be managed operationally and will not impact the final surface of the amended Reclamation Plan.

Previous and recent investigations of WMSA included drilling programs and visual inspections. Stantec determined that the previous drilling provided adequate information for this study and no new boreholes were installed for this report. Stantec's investigation included aerial photograph review to identify features of interest (signs of potential instability, i.e. cracking) followed by a site visit to inspect these features and to review the overall conditions. Features of interest were all identified as game trails or drainage features, and no cracks or other signs of instability were identified. The site investigation also includes multiple measurements of slope gradients to confirm the greenstone overburden material strengths for geotechnical analyses.

The current Reclamation Plan would excavate most WMSA fill materials and relocate those materials to the North Quarry. Under the proposed amendment, Lehigh will reclaim the WMSA by leaving the majority of existing fills in place and making other modifications to improve slope stability and the visual appearance of the area. Lehigh would place additional greenstone overburden material at the western extent of the area to an elevation of approximately 2,060 above mean sea level (AMSL). A total volume of 2.2 million cubic yards (M yd³) is required to complete the WMSA to its final design surface. The greenstone overburden material will be placed in 40-foot high lifts with 60-foot wide benches between the lifts to construct an overall 3H:1V slope. Once placement of the greenstone overburden material is completed, the slope will be graded to a 3H:1V slope with the crest of the slope remaining at an elevation of approximately 2,060 feet (ft) AMSL. The surface of the WMSA will be revegetated in accordance with the details and specifications of the included revegetation plan.

Geotechnical stability analyses were completed on two cross-sections through WMSA. These cross-sections represent the deepest fill depths, greatest fill slope heights, and/or the presence of a native slope below the fill area; all other cross-sections are a subset of these sections. The minimum acceptable factors of safety for the analyses are

E.1

Executive Summary

1.3 for static conditions and 1.0 for pseudo-static conditions based on mining industry standards. All configurations modeled as part of this analysis meet or exceed the minimum acceptable factor of safety. Generally, geotechnical stability is governed by the fill slope gradient.

Abbreviations

Abbreviations

%	percent
AMSL	Above mean sea level
bgs	Below ground surface
cm	centimeter
FoS	factor of safety
ft	feet
g	Gravitational force
Golder	Golder Associates Inc.
in	inches
ky	Yield acceleration
Lehigh	Lehigh Southwest Cement Company
m	meter
М	Million
M yd3	million cubic yards
pcf	Pounds per cubic foot
PGA	peak ground acceleration
psf	Pounds per square foot
RPA	Reclamation Plan Amendment
SMARA	[California's] Surface Mining and Reclamation Act
Stantec	Stantec Consulting Services, Inc.
USGS	United States Geological Survey
WMSA	West Materials Storage Area
yd3	Cubic yard

i

Glossary

Glossary

Cohesion The force which holds molecules or like particles together in a rock or soil.

Factor of safety The ratio of resisting force to driving force in a slope stability problem. A

factor of safety of one represents the minimum factor of safety under which

the slope is stable.

Greenstone Common term applied to metabasalts within the Franciscan Complex, due to

unweathered, dark green color (Foruria 2004).

Greenstone overburden Material unsuitable for use as aggregate material. Typically, it is weathered

greenstone, but it may include other rock types such as low-grade limestone,

graywacke, and chert.

North Highwall Reserve Limestone and aggregate resources in the north highwall of the North

Quarry.

Phi' (φ') The frictional shear resistance of soil or rock.

Pseudo-static slope stability

analysis

A limit equilibrium method of analysis, which represents the effects of earthquake shaking by accelerations that create inertial forces. This is the simplest way to analyze the dynamic effects of earthquake loading of a soil

or slope. The output is a single factor of safety.

Rock Plant Reserve Limestone and aggregate resources in an approximately 30.5-acre area at

the southern extent of the Permanente Property.

Seismic deformation analysis

An empirical calculation which estimates the extent of lateral displacement

during the design earthquake. The output is the median displacement.

Soil Native, unconsolidated material present at the surface before mining

operations began. Soil is assumed to be present beneath WMSA.

Static slope stability analysis A limit equilibrium method of analysis that satisfies moment and force

equilibrium to solve a slope stability problem. The output is a single factor of

safety.

Introduction

1.0 INTRODUCTION

1.1 PURPOSE

Lehigh Southwest Cement Company (Lehigh), a subsidiary of Lehigh Hanson, Inc., engaged Stantec Consulting Services Inc. (Stantec) to provide professional engineering services related to the development of the Reclamation Plan for the West Materials Storage Area (WMSA) at the Permanente Quarry. The Reclamation Plan for the WMSA involves placing additional greenstone overburden material in the storage area and regrading the area to promote vegetation growth and surface water management. To support the reclamation plan, static and pseudo-static slope stability analyses of the WMSA have been completed.

The WMSA Geotechnical Evaluation was prepared to assist Lehigh with the upcoming Reclamation Plan amendment submission under California's Surface Mining and Reclamation Act (SMARA). This report presents the Reclamation Plan, documents the results of stability analyses, and provides specifications to guide Lehigh in regrading the WMSA.

1.2 PROJECT BACKGROUND

The Permanente Quarry (Quarry) is a limestone and aggregate mining operation, active since the late 1930's, in the unincorporated foothills of western Santa Clara County, approximately two miles west of the city of Cupertino, California. The Quarry occupies a portion of a 3,510-acre property (Permanente Property) owned by Hanson Permanente Cement, Inc., and operated by Lehigh.

The Permanente Property is situated in the rugged foothills along the eastern side of the Santa Cruz Mountains segment of the California Coast Ranges. This area of the Coast Ranges is characterized by moderately to steeply sloping hillsides ranging from approximately 500 to 2,000 feet (ft) above mean sea level (AMSL). The eastern side of the range is incised with eastern flowing drainages, including the Permanente Creek Drainage Basin, which flows through the central part of the Permanente Property, and drains into the southern part of the San Francisco Bay, near Palo Alto and Mountain View, California. The regional location map is included as Figure 1.1.

Operational areas at the Quarry comprise surface mining excavations, overburden stockpiling, crushing and processing facilities, access roads, administrative offices, and equipment storage facilities. Other predominantly undisturbed areas are held in reserve for future mining or to buffer operational areas from adjacent land uses. The WMSA is where storage of low-quality limestone, greenstone, and overburden materials from the North Quarry has historically occurred. Figure 1.2 shows a plan view of the site.

Mining operations take place subject to SMARA, which mandates that surface mining operations have an approved reclamation plan that describes how mined lands will be prepared for alternative post-mining uses, and how residual hazards will be addressed. Golder Associates Inc. (Golder) completed geotechnical investigations and slope stability evaluations in 2011 to support an amended Reclamation Plan for the operational areas disturbed by mining activities. The current Reclamation Plan was approved in 2012. Changes to the current approved Reclamation Plan are being considered, which necessitate an update of the Reclamation Plan for the Permanente Quarry under SMARA.

Introduction

This report provides specifications and guidelines to support the amended Reclamation Plan with respect to the WMSA and is accompanied by three other similar reports (Rock Plant Reserve Geotechnical Evaluation, North Highwall Reserve Geotechnical Evaluation, and North Quarry Backfill Geotechnical Evaluation), which provide specifications and guidelines related to the proposed amendments to the Reclamation Plan for other areas in the Quarry.

1.3 SCOPE OF WORK

Lehigh retained Stantec to prepare this report to support the amended Reclamation Plan in connection with the WMSA. Stantec's scope of work included:

- Review previous geologic and geotechnical studies.
- Evaluate historic and new data to determine strength parameters for stability analyses.
- Inspect the current conditions at WMSA
- Design WMSA filling to maximize capacity.
- Design reclaimed WMSA surface to comply with SMARA requirements.
- Evaluate geotechnical stability of proposed WMSA final topography under static and seismic conditions.
- Prepare a geotechnical report to document analysis and findings in support of the Reclamation Plan amendment.

1.4 LIMITATIONS

Stantec's scope of work in WMSA is limited in two aspects.

- The lower elevations (southern) of the western portions of WMSA, below the main haul road, were placed prior to
 the promulgation of SMARA, and the 2011 Reclamation Plan demonstrated that this area is stable. The
 placement of fill on top of pre-SMARA areas could affect the global stability of WMSA, and this was evaluated as
 part of this report.
- Recent movement in the eastern portion of WMSA suggests a potential instability. The stability of this area is currently being evaluated, and reclamation plans for this area will be assessed in a separate report.

West Materials Storage Area

2.0 WEST MATERIALS STORAGE AREA

2.1 HISTORY

The WMSA is located on the southern slope of the hillside to the west of the North Quarry. Stantec reviewed United States Geological Survey (USGS) topographic maps from 1953, as these maps were developed before any material was placed at WMSA. The native topography shows steeply dipping slopes with valleys oriented generally from west to east, as shown in Figure 2.1. The current topography surrounding the WMSA ranges in elevation from approximately 1,500 ft AMSL near the east toe to approximately 1,960 ft AMSL at the top of the area in the northwest. The WMSA measures approximately 157 acres in plan area. The maximum thickness of greenstone overburden at WMSA is approximately 350 ft. The existing topography is shown on Figure 2.2. WMSA is founded on native soils. WMSA primarily consists of greenstone overburden materials, but it may also contain greenstone and low-grade limestone. Greenstone overburden was placed by end dumping the material in lifts, which resulted in the pile slopes being placed at the material's angle of repose with benches between lifts. The lower, south-facing slopes were placed prior to SMARA. Following the passage of SMARA, overburden material continued to be placed on the upper portions of WMSA. Approximately 38 acres of the footprint, below 750 ft AMSL, was placed before the SMARA legislation was enacted. This area is located along the southern boundary of the WMSA. The pre-SMARA areas, existing conditions, end of mine conditions, and reclamation conditions are shown on Figures 2.2, 2.3, and 2.4, respectively.

2.2 PREVIOUS STUDIES

The WMSA area has previously been studied by others, and Stantec reviewed these reports to provide background information on the greenstone overburden pile, primarily foundation conditions, material strength properties, pile geometry, and groundwater levels. Stantec primarily relied upon the most recent stability assessment performed by Golder (Golder 2011), as this document includes a summary of the previous assessments performed by a variety of consulting firms. Previous geotechnical evaluations and groundwater monitoring have resulted in drilling 21 borings in the WMSA project area. Stantec evaluated available data for each of the borings including drill logs, lithologies, laboratory testing, and water levels. Information on these borings is summarized in Table 2.1. These data provide the basis for the foundation materials and groundwater levels used for the stability analyses. These data are included on the cross-sections included as Figure 2.5. Groundwater levels roughly follow the pre-mine topography, with water levels beneath the base of the rock pile in the foundation colluvial material or greenstone bedrock. Drill logs are included in Appendix C.

West Materials Storage Area

Table 2.1 WMSA Borehole Summary

Boring/Well Designation	Coord x	inates y	Top of Casing Elevation (ft AMSL)	Boring TD (ft bgs)	Screen Interval (ft bgs)	PVC Casing (inch)	June 2018 Water Elevation (ft AMSL)
WMSA-DMW-1S	6087205	1945222	1,849.61	137	127-137	2	1,725.46
WMSA-DMW-1D	6087180	1945200	1,849.79	167	157-167	2	1,728.47
WMSA-DMW-2	6088646	1943650	1,762.79	312	292-312	2	1,479.5
WMSA-DMW-3S	6089302	1942661	1,372.09	30	10-30	2	1,351.9
WMSA-DMW-3D	6089292	1942653	1,372.21	65	55-65	2	1,351.98
WMSA-DMW-4	6090729	1944482	1,856.76	117	97-117	2	1,748.57
WMSA-DMW-5	6089312	1943712	1,821.13	327	307-327	2	1,522.01
WMSA-DMW-6	6087520	1944790	1,977.82	347	327-347	2	1,643.56
WMSA-DMW-7	6087467	1943381	1,614.98	95	72-92	2	1,561.8
WMSA-DMW-8S	6090029	1941671	1,287.93	30	10-30	2	1,277.2
WMSA-DMW-8D	6090031	1941657	1,287.92	65	55-65	2	1,275.95
WMSA-DMW-9	6087419	1944202	1,888.18	117	97-117	2	1,792.08
WMSA-DMW-10	6088222	1943519	1,645.02	145	100-120	2	1,536.3
WMSA-DMW-11	6090899	1942400	1,489.49	122	102-122	2	NA
WMSA-DMW-11A	~6090990	~1942260	~1,410	63	40-55	2	NA
WMSA-P6A	6087039	1944543	1,920.88	97	77-97	2	NA
WMSA-2	~6087930	~1945050	~1,960	158	NA	NA	NA
WMSA-3	~6088960	~1943210	~1,640	133	NA	NA	NA
WMSA-4	~6090480	~1942550	~1,590	78	NA	NA	NA
WMSA-5	~6090820	~1943290	~1,640	86	NA	NA	NA
WMSA-6	~6090800	~1943980	~1,610	68	NA	NA	NA

Notes: NA = Not available

No water was encountered in the WMSA-2 through -6 borings.

Borings WMSA-2 through -6 were abandoned after drilling.

Survey data not available for wells with approximate locations and elevations.

The material strength properties previously used for WMSA stability evaluations are based on laboratory testing, back analyses, and publications and are listed in Table 2.2 (Golder 2011). Stantec evaluated each of the parameters and agrees that these strengths are representative of the materials in the WMSA area. These same material strengths were used for the updated stability assessments discussed in this report. The greenstone strengths vary greatly depending on the amount of weathering or shearing that has occurred. To be conservative, strength values for weathered greenstone, which comprises the bulk of the waste material in the WMSA, are typically used for stability analyses, unless location-specific strength values are available. Also, the WMSA fill consists of "greenstone overburden", which is primarily weathered greenstone, but is also comprised of other rock types, such as low-grade limestone, graywacke, chert, and other rock types unsuitable for use as aggregate.

West Materials Storage Area

Table 2.2 WMSA Strength Parameters

Material	Unit Weight (pcf)	Cohesion (psf)	Internal Friction (φ')	Rationale
Greenstone Overburden	125	0	35°	WMSA slopes are 35° or steeper.
Soil	120	200	30°	Typical strength for clayey sand with some gravel. Laboratory testing.
Weathered Greenstone	165	1,800	27°	Typical strengths for weathered greenstone at Lehigh quarry.

2.3 2018 INVESTIGATION

Stantec investigated the WMSA area during a site visit in October 2018. A primary goal of the site visit was to visually assess the pile conditions and look for signs of instability. Prior to the site visit, Stantec engineers reviewed aerial photographs, and several linear features were identified on the aerial photographs. In addition, Stantec engineers reviewed previous reports to identify features requiring on-site inspection, and two areas with potential cracks were identified in the review (Golder 2011). The on-site inspection consisted of traversing each bench on the WMSA, measuring slope angles, and looking for signs of instability including slumping, bulging, over steepened slopes, cracks, seeps, ponding, erosion, etc. Each area with linear features was investigated during the site visit, and these features were determined to be game trails, drainage control structures, or erosion control structures. The game trails occur on the grassed areas west and north of the pile. One of these game trails can be seen in Photo 2.1.

Photo 2.1 Game Trail North of WMSA

West Materials Storage Area

Drainage control structures occur on the access road, and erosion control structures occur on the graded slopes on southern extent of WMSA. These drainage control structures can be seen in Photo 2.2. None of these features indicates an instability in the project area.

Photo 2.2 Drainage Control Structure on WMSA Road

During operations, areas of instability within the WMSA footprint have been observed from time to time, typically near the crests of angle of response slopes. These areas will be managed operationally and will not impact the final surface of the amended Reclamation Plan.

Two areas of potential cracking on the 1800 and 1900 benches of the WMSA were identified in the previous WMSA assessment performed by Golder (Golder 2011). Golder presented the crack locations on their maps, and the text states that "these cracks occurred along interim, angle-of-repose slopes for individual lifts" Golder 2011). A Stantec engineer and engineering geologist visited each area of the potential cracking during the October inspection and found erosional features in the locations were cracks had been identified. No evidence of instability in these areas was observed. The erosional features observed are shown in Photo 2.3.

West Materials Storage Area

Stantec reviewed available geologic maps and aerial photographs to identify faults and shear zone. Fault mapping and site inspections do not indicate the presence of shear zones that have contributed to previous slope instabilities at the Permanente Property. Small shear zones are likely present in the bedrock material; however, these are not expected to have a significant impact on WMSA stability.

Stantec evaluated the existing slope angles during the site visit. The greenstone overburden material was placed by end-dump methods, and the resulting angle of repose slopes provide information on the material strength properties. Several slope angle measurements were performed using a handheld inclinometer, and all the slopes were measured at angles between 35° and 39°. Measured slope heights ranged from less than 10 ft to over 100 ft, with most of the measured slopes being between benches with 30-foot to 70-foot high slopes. All slopes with gradients less than 35° were either benches, roads, or had been graded and reclaimed. Several road cuts were also observed to be nearly vertical at the top of slope. These observations confirm, albeit conservatively, that the material strengths exceed the previously used strength parameters of a cohesionless material with an internal friction angle of 35°. In summary, Stantec engineers traversed each road and bench in the WMSA to identify site features and look for signs of instability. Stantec noted areas with some erosion and areas with evidence of ponding water, but no signs of instability were observed in the project area.

2.4 SURFICIAL DEPOSITS

Soil and/or colluvium/alluvium were identified in each of the borings suggesting the foundation of the WMSA was not prepared prior to the placement of material. Therefore, it has been assumed that soil and colluvium are present in all areas of the WMSA footprint. Golder sampled drill cuttings and identified the material as a clayey sand with gravel to a gravelly clay (Golder 2011). The stability analyses include this layer of surficial material.

West Materials Storage Area

2.5 BEDROCK MATERIALS

The drill logs indicate the presence of some limestone beneath WMSA; however, all foundations were assumed greenstone for the stability evaluations to be conservative with the analysis.

2.6 OPERATIONAL PLAN

The crest of WMSA is relatively flat, and additional material is planned for storage at the uppermost portions of the rock pile. The western portion of WMSA can store an additional 2.2 million cubic yards (M yd³), as shown on Figure 2.3. This material will be placed in a similar manner as previous material, end dumped in 40-foot high lifts, to an elevation of approximately 2,060 ft.

2.7 RECLAMATION PLAN

Stantec completed static and pseudo-static slope stability analyses to evaluate the stability of the existing slopes as well as the slopes of the regraded (post reclamation) WMSA. Once the pile is at maximum capacity, Lehigh will reclaim the WMSA by regrading the slopes to 3h:1v slopes or less to improve geotechnical stability and surface water management. Topsoil and other amendments will be placed on the slopes, and vegetation planted in a manner consistent with the revegetation plan component of the proposed Reclamation Plan amendment. The pre-SMARA slopes will be reclaimed in accordance with the currently approved Reclamation Plan. The amendment to the Reclamation Plan only addresses surfaces where modifications to the Reclamation Plan were made. As such, this amendment has no impact on the pre-SMARA slopes. The reclamation topography is shown on Figure 2.4.

Geotechnical Evaluation

3.0 GEOTECHNICAL EVALUATION

Two cross-sections of the WMSA were modeled to ensure that an appropriate factor of safety against slope failure is achieved. These sections include the greatest fill depths and the native ridge beneath WMSA. These cross-sections represent the worst-case scenarios for WMSA, and all other cross-sections are a subset of these sections. The steep portions of the sections present the pre-SMARA areas of WMSA. Figures 2.1 through 2.4 show the locations of the two cross-sections which were analyzed, and the cross-sections are included as Figure 2.5.

The slope stability analyses were modeled using the software Slope-W® 2018 R2 version 9.1 by GeoStudio, released in 2018. The software used limit equilibrium on slices of potential failure surface to calculate factor of safety (FoS). The models are evaluated under static and pseudo-static conditions, with horizontal ground acceleration, for the closure configurations of the stockpiles using the Spencer method. The two types of analysis have been summarized in Table 3.1. The minimum acceptable factors of safety for the analyses are 1.3 for static conditions, and 1.0 for pseudo-static conditions based on mining industry standards. For the pseudo-static model conditions, a horizontal seismic coefficient of 0.15g was applied to the static condition models to be consistent with previous studies (Golder 2011) and to follow recommendations for earthquakes with magnitudes up to 8-1/4 (Seed 1982). To evaluate the slope stabilities, cross-sections were analyzed for the reclamation surfaces.

Table 3.1 Stability Analyses

Analysis Type	Analysis Type Description	
Static Analysis	A limit equilibrium method of analysis that satisfies moment and force equilibrium to solve a slope stability problem. The output is a single FoS for the potential failure surface with the lowest FoS.	1.3
Pseudo-static Analysis	A limit equilibrium method of analysis that represents the effects of earthquake shaking by accelerations that create inertial forces. This is the simplest way to analyze the dynamic effects of earthquake loading of a soil or slope. The output is a single FoS for the potential failure surface with the lowest FoS.	1.0

Site-specific geotechnical information, on the backfill materials, is available for the greenstone overburden, bedrock, and native soils. Strength parameters for the material have been established in previous geotechnical analyses of the Lehigh property and are based on laboratory testing, back-calculation, and published values for material properties (Golder 2011). These strength parameters are listed in Table 3.2.

Table 3.2 Geotechnical Strength Parameters

Material	Unit Weight (pcf)	Cohesion (psf)	Phi' (Degrees)
Soil	120	200	30
Greenstone Overburden	125	0	35
Weathered Greenstone	165	1,800	27
Greenstone Bedrock	165	12,500	30

Geotechnical Evaluation

All configurations modeled as part of this analysis meet or exceed the minimum acceptable factor of safety, as defined in Table 3.1. Results from the stability analyses are shown in Table 3.3. Appendix A contains printouts of the slope stability sections analyzed for both cross-sections.

Table 3.3 Geotechnical Stability Analyses Results

Section	Analysis Type	Factor of Safety
Section A-A' South	Static	2.41
Section A-A South	Pseudo-static	1.52
O ti A A A A A I ti-	Static	2.27
Section A-A' North	Pseudo-static	1.46
Continue D. D. Courth	Static	1.81
Section B-B' South	Pseudo-static	1.23
Continue D. D.' Nowth	Static	1.67
Section B-B' North	Pseudo-static	1.16

Seismic displacements were calculated using an empirical equation developed by Bray and Travasarou (Bray 2007). This method estimates the displacement of a rigid block on a slope and is consistent with previous displacement analyses. The peak ground acceleration (PGA) value of 0.6 times the force of gravity (g) was used for the calculations, which is also consistent with previous analyses. This PGA corresponds to an earthquake with a mean return time of 475 years (Petersen 2008). The yield acceleration (ky) was calculated using the Slope/W model by adjusting the seismic coefficient until the model provided a FoS = 1.0, and these values were used for the displacement calculation. The ky values and displacement results are listed in Table 3.4. The displacement calculations are included in Appendix B. Cross-sections with pseudo-static FoS greater than 1.15 will have minimal displacement during a seismic event (Seed 1982), and displacements for these cross-sections are assumed less than two inches. The actual displacements were not calculated for these sections. Literature on seismic slope displacements suggest that median displacements of less than 6-in (15 centimeter [cm]) are "minor" and displacements of greater than 3 ft (1 meter [m]) are "major" (Bray 2007). All displacements for WMSA are "minor" and unlikely to influence the reclaimed slope.

Table 3.4 Seismic Displacement Analyses Results

	While Associated the	Seismic Displacement (in)				
Section	Yield Acceleration ky (g)	Median	16% Exceedance	84% Exceedance		
Section A-A' South	na	<2	<2	<2		
Section A-A' North	na	<2	<2	<2		
Section B-B' South	na	<2	<2	<2		
Section B-B' North	na	<2	<2	<2		

Conclusion

4.0 CONCLUSION

This report provides the analysis and supporting information needed to demonstrate that Lehigh Southwest Cement Company's plan for reclamation operations at the West Materials Storage Area meets SMARA and associated design and performance requirements. The geotechnical assessment provided in this report demonstrates that the proposed Reclamation Plan meets or exceeds SMARA requirements for factors of safety under static and seismic conditions.

This report has been prepared for Lehigh Southwest Cement Company to provide them with a geotechnical evaluation in support of placing greenstone overburden material and reclaiming the West Materials Storage Area. As mutual protection to Lehigh, the public, and Stantec, this report and its figures are submitted for exclusive use by Lehigh Cement Company. Our report and recommendations should not be reproduced in whole or in part without our express written permission, other than as required in relation to agency review and submittals. The drawings included with the report are for regulatory review and are not intended as detailed construction drawings. The authors who have signed below have prepared all information and design results contained herein and Nelson Kawamura, California PE, has certified attached drawings. Personnel from Lehigh Southwest Cement Company reviewed a draft of this report.

Stantec Consulting Ltd.

Paul Kos P.E., P.Eng. Senior Geological Engineer, Denver

Phone: 720-889-6122 paul.kos@stantec.com

Nelson Kawamura G.E.

Principal, Civil Engineer, Waterpower & Dams

nelson Kawamina

Phone: 503-220-5424

nelson.kawamura@stantec.com

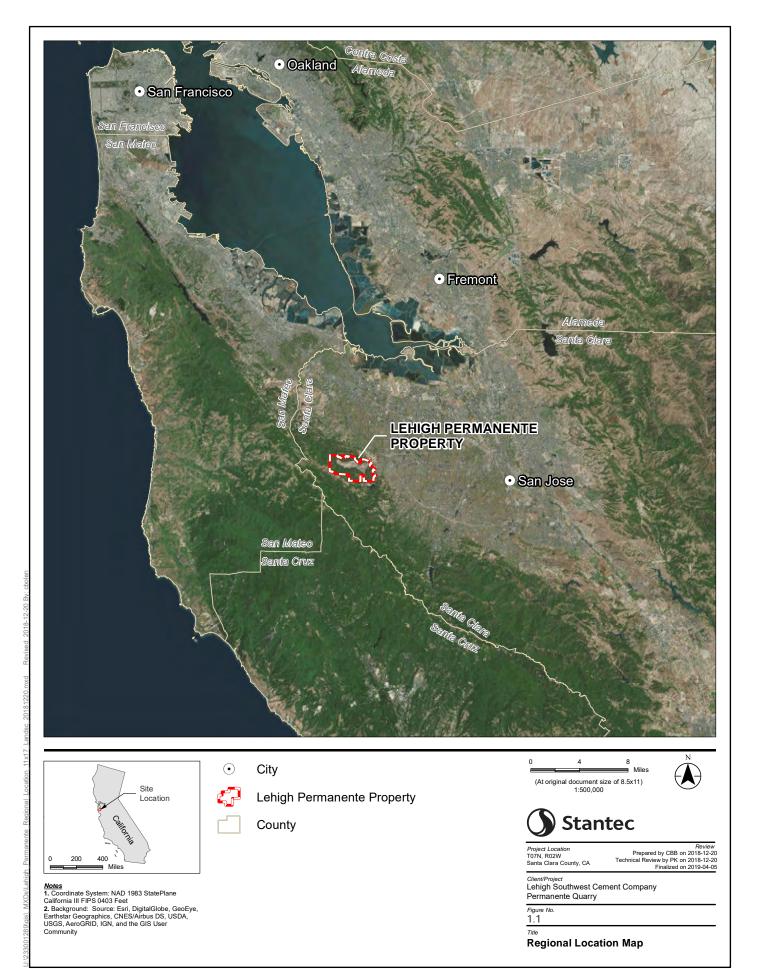
April 5, 2019

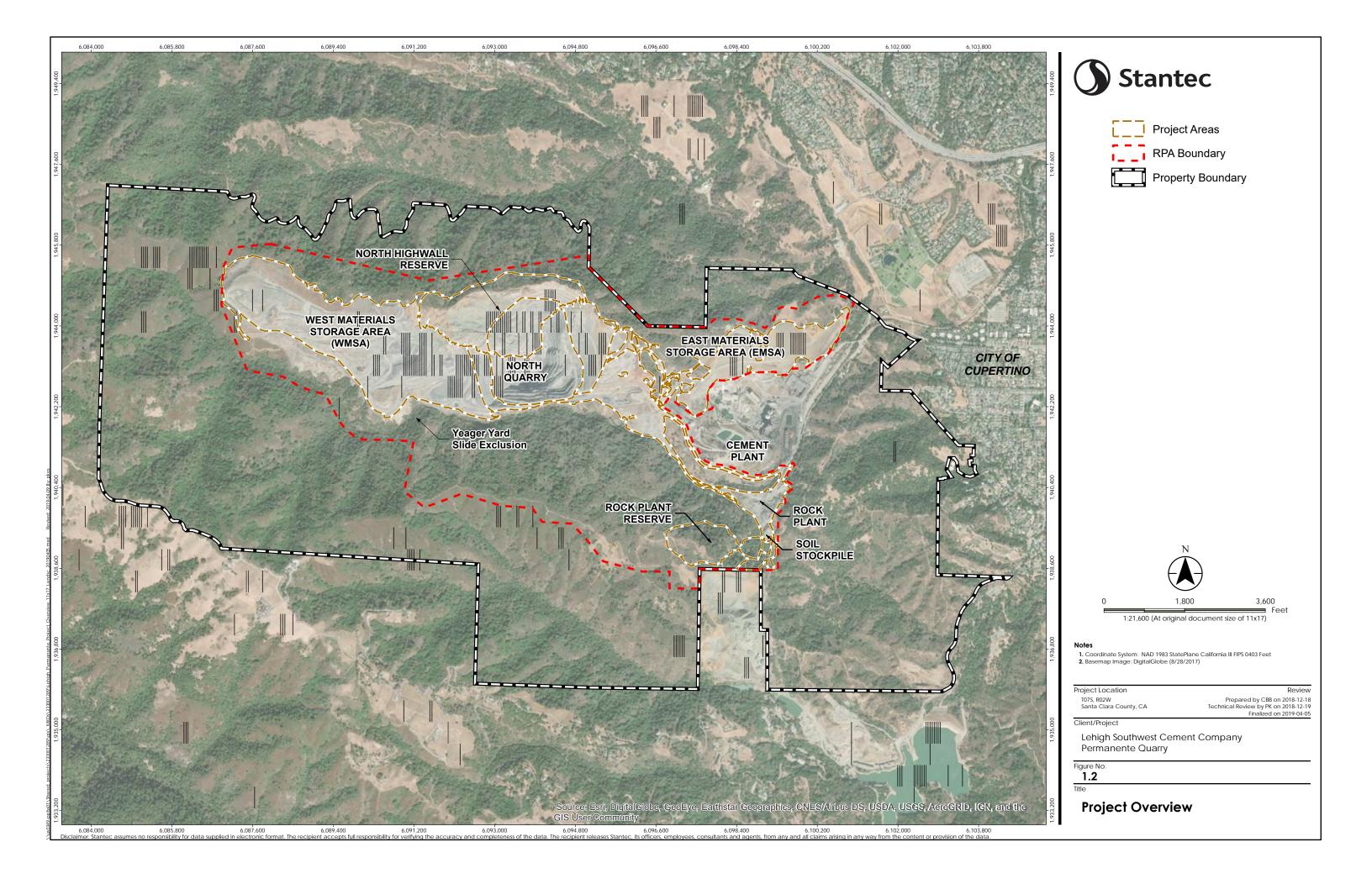
References

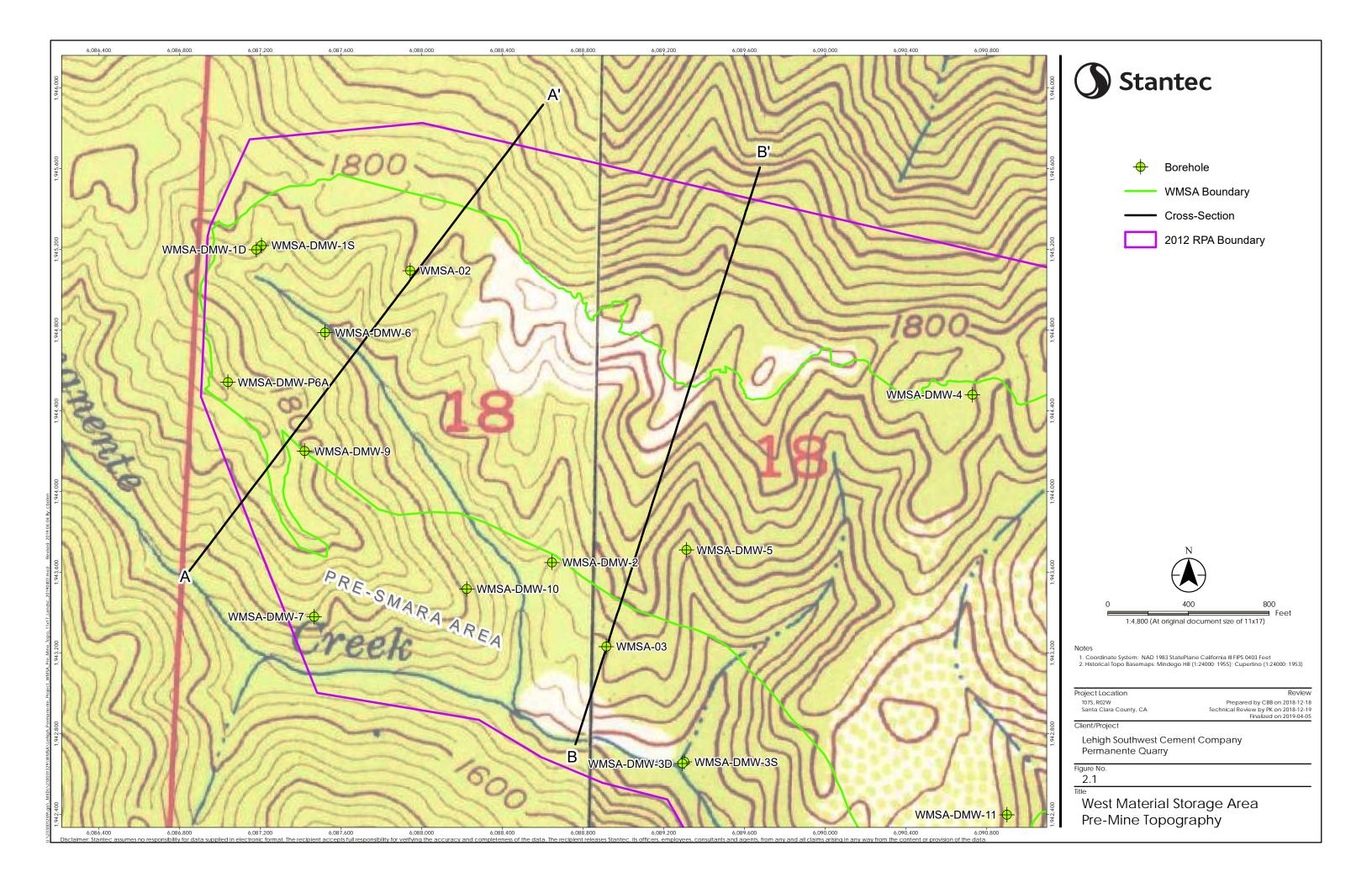
5.0 REFERENCES

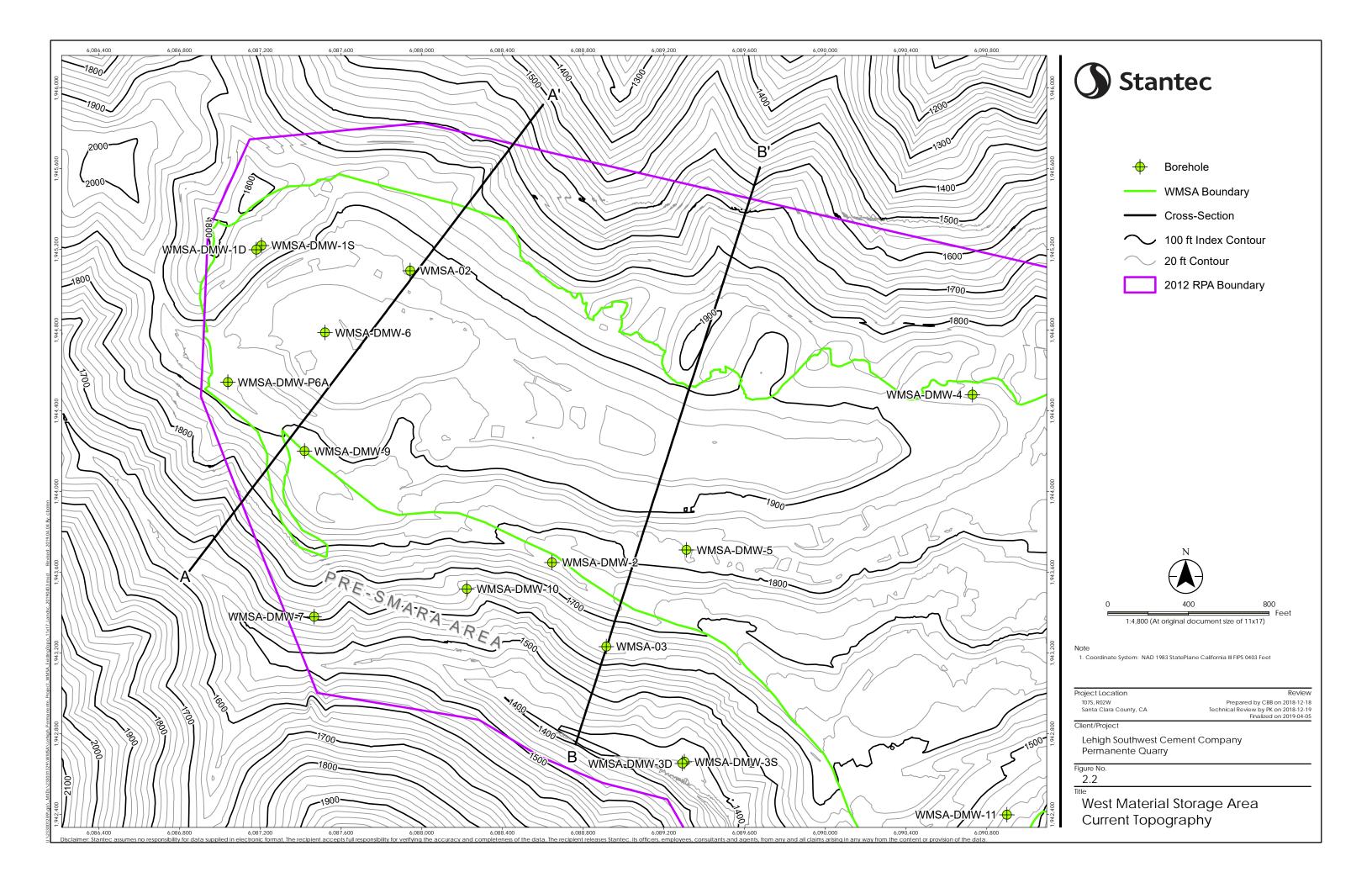
- Bray, J. D., and Travasarou, T., 2007. "Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements", Journal of the Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 4, pp. 381-392.
- Foruria, J. September 2004. Geology of the Permanente Limestone & Aggregate Quarry, Santa Clara County, California. 2004.
- Golder Associates, November 2011. Geotechnical Evaluations and Design Recommendations (Revised).

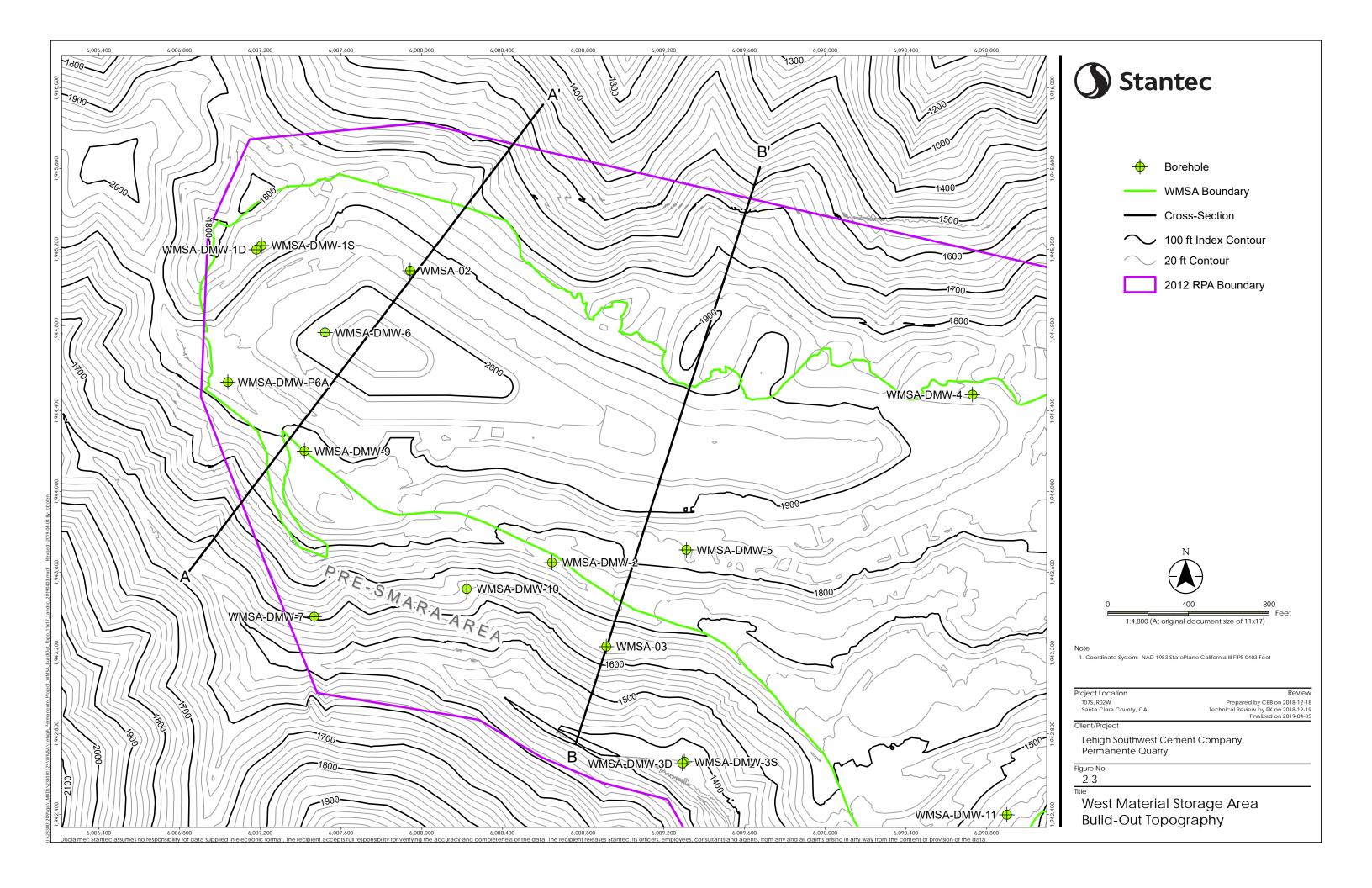
 Permanente Quarry Reclamation Plan Update, Santa Clara County, California. 2011.
- Petersen, Mark D., Frankel, Arthur D., Harmsen, Stephen C., Mueller, Charles S., Haller, Kathleen M., Wheeler, Russell L., Wesson, Robert L., Zeng, Yuehua, Boyd, Oliver S., Perkins, David M., Luco, Nicolas, Field, Edward H., Wills, Chris J., and Rukstales, Kenneth S., 2008. Documentation for the 2008 Update of the United States National Seismic Hazard Maps: U.S. Geological Survey Open-File Report 2008–1128, 61 p.
- Seed, H. B., 1979. "Considerations in the Earthquake-Resistant Design of Earth and Rockfill Dams," Geotechnique, vol. 29, No. 3, pp. 215-263.

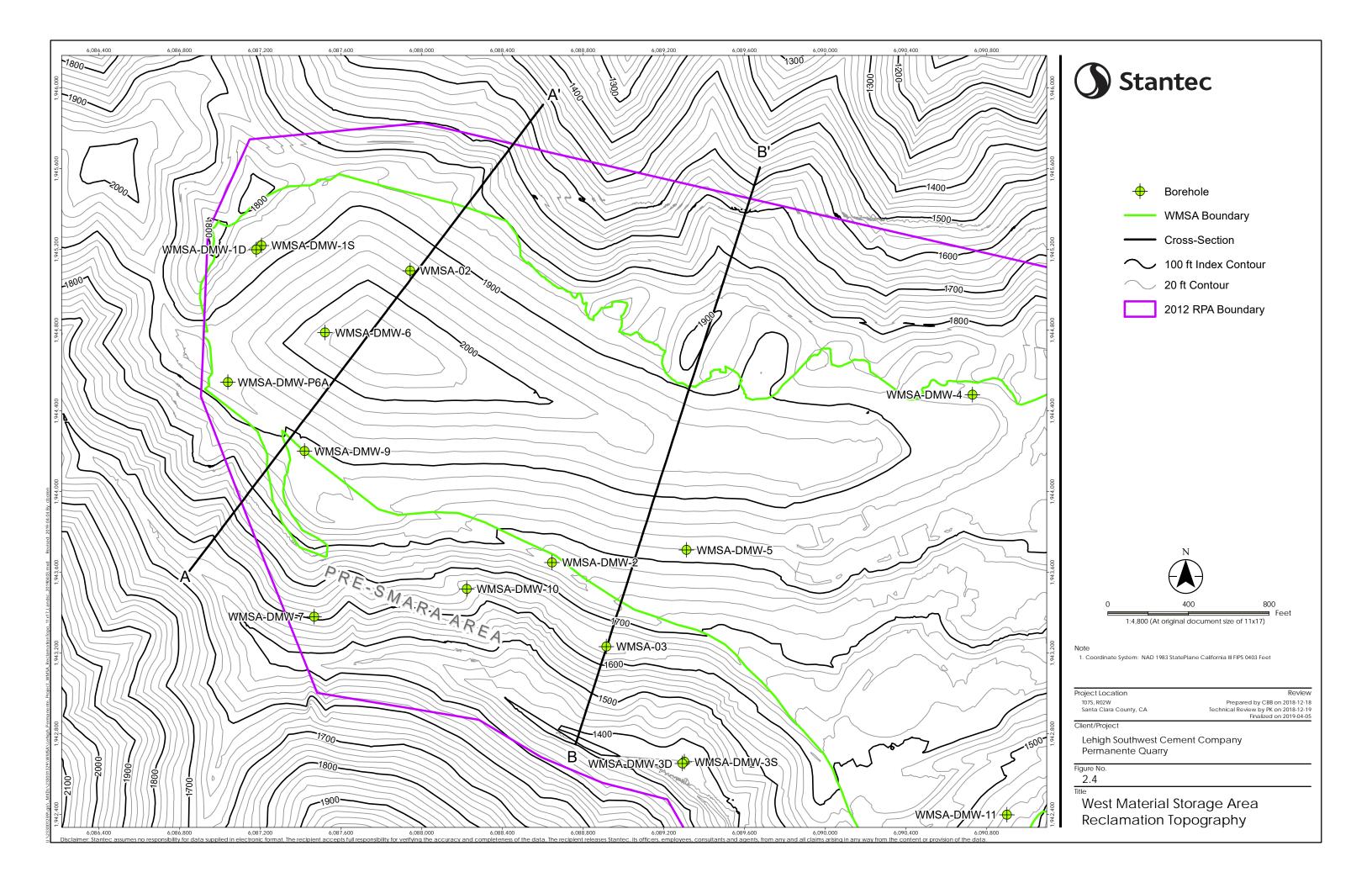


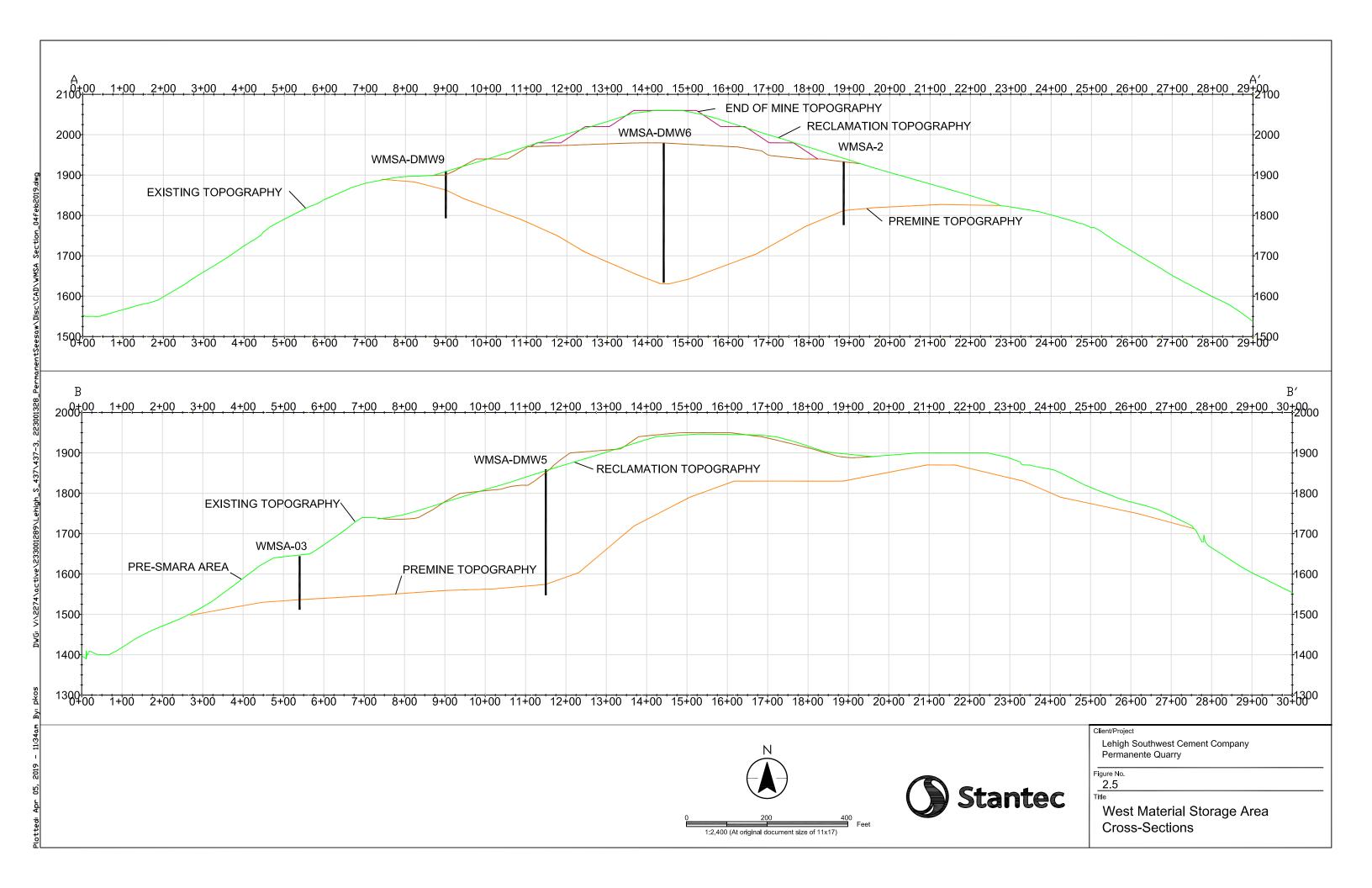

FIGURES


FIGURES


- **Figure 1.1 Permanente Quarry Regional Location Map**
- **Figure 1.2 Permanente Quarry Project Overview**
- Figure 2.1 Permanente Quarry WMSA Pre-Mine Topography
- Figure 2.2 Permanente Quarry WMSA Current Topography
- Figure 2.3 Permanente Quarry WMSA Build-Out Topography
- Figure 2.4 Permanente Quarry WMSA Reclamation Topography
- Figure 2.5 Permanente Quarry WMSA Cross-Sections

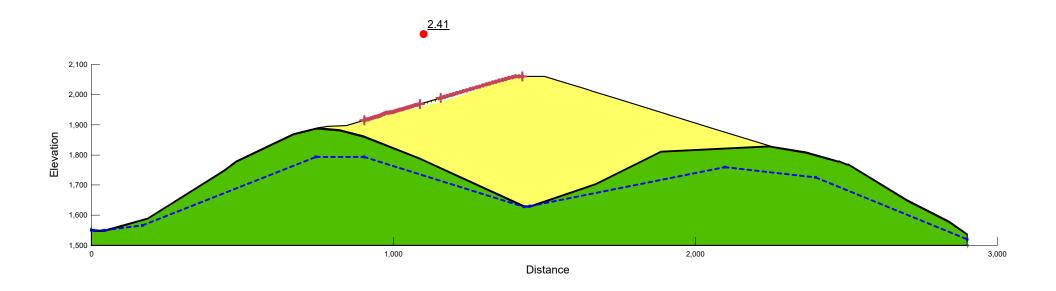






Appendix A

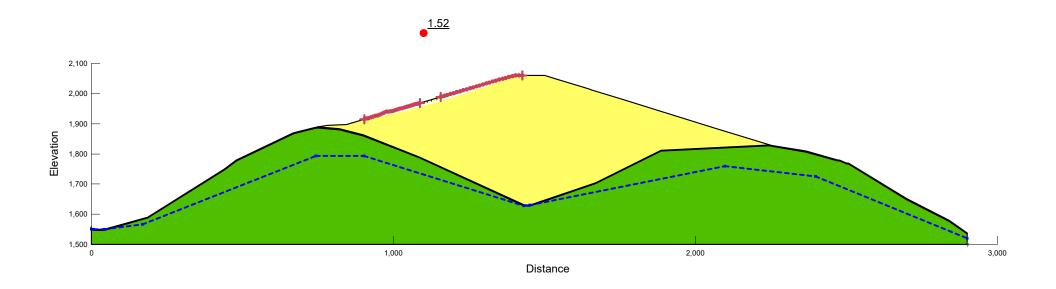
APPENDIX A


Slope Stability Analyses

Parent: 01. South Slope - Static Name: 01b. Reclamation Surface

Method: Spencer Factor of Safety: 2.41 Horz Seismic Coef.:

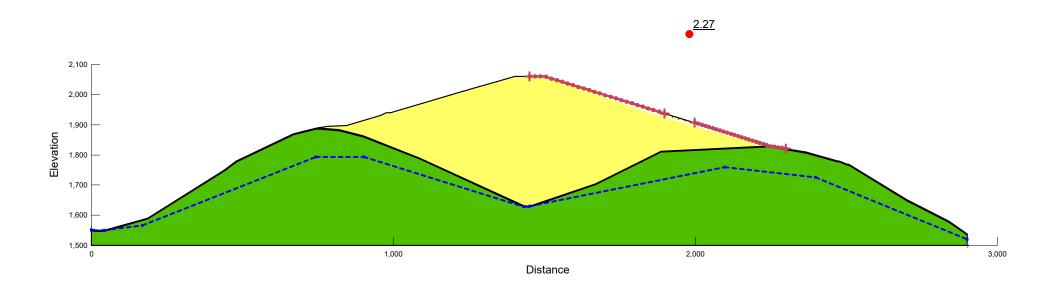
Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Greenstone Bedrock	165	12,500	30
	Greenstone Overburden	125	0	35
	Surface Soil	120	200	30


Parent: 02. South Slope - Pseudostatic

Name: 02b. Reclamation Surface

Method: Spencer

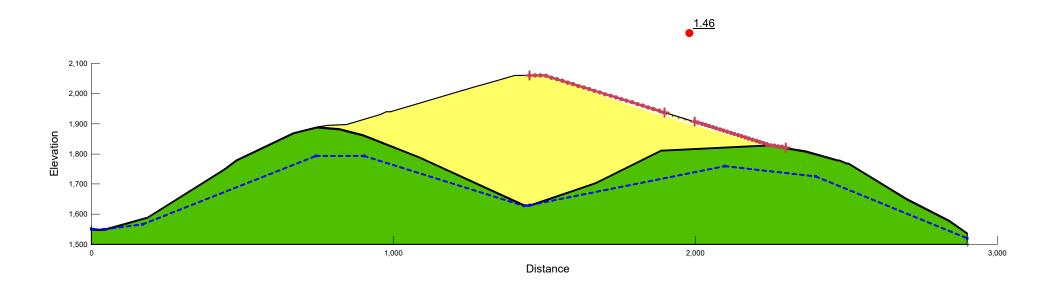
Factor of Safety: 1.52 Horz Seismic Coef.: 0.15


Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Greenstone Bedrock	165	12,500	30
	Greenstone Overburden	125	0	35
	Surface Soil	120	200	30

Parent: 03. North Slope - Static Name: 03b. Reclamation Surface

Method: Spencer Factor of Safety: 2.27 Horz Seismic Coef.:

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Greenstone Bedrock	165	12,500	30
	Greenstone Overburden	125	0	35
	Surface Soil	120	200	30


Parent: 04. North Slope - Pseudostatic

Name: 04b. Reclamation Surface

Method: Spencer

Factor of Safety: 1.46 Horz Seismic Coef.: 0.15

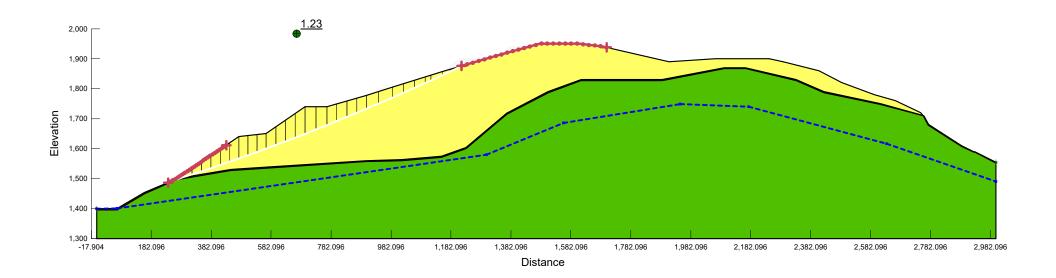
Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Greenstone Bedrock	165	12,500	30
	Greenstone Overburden	125	0	35
	Surface Soil	120	200	30

Parent: 01. South Slope - Static

Name: 01f. Reclaimed Surface (Global)

Method: Spencer Factor of Safety: 1.81 Horz Seismic Coef.:

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Greenstone Bedrock	165	12,500	30
	Greenstone Overburden	125	0	35
	Surface Soil	120	200	30

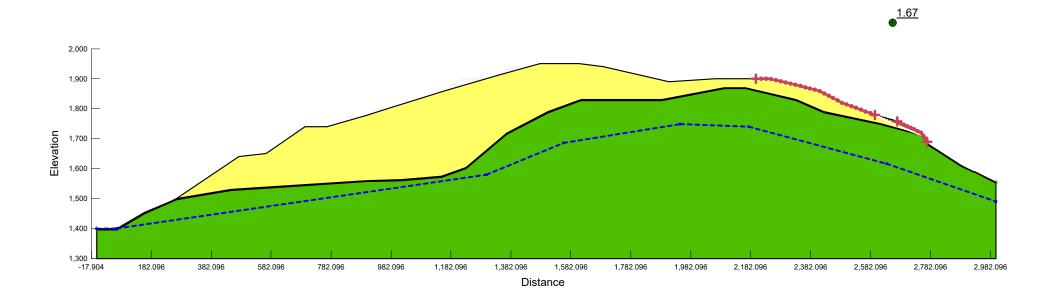


Parent: 02. South Slope - Pseudostatic Name: 02f. Reclaimed Surface (Global)

Method: Spencer

Factor of Safety: 1.23 Horz Seismic Coef.: 0.15

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Greenstone Bedrock	165	12,500	30
	Greenstone Overburden	125	0	35
	Surface Soil	120	200	30

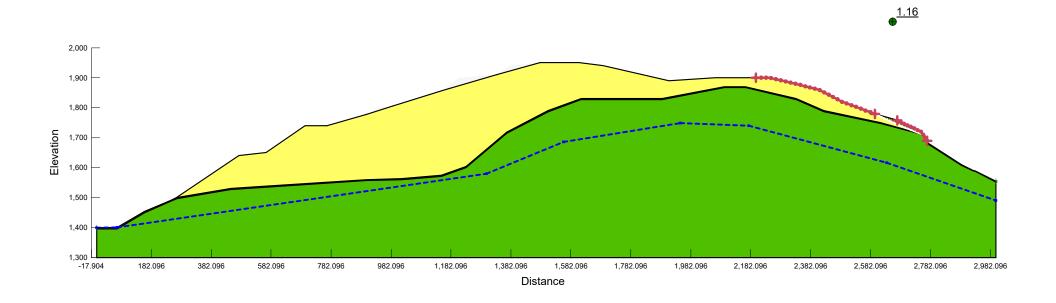


Parent: 03. North Slope - Static Name: 03b. Reclaimed Surface

Method: Spencer

Factor of Safety: 1.67 Horz Seismic Coef.:

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Greenstone Bedrock	165	12,500	30
	Greenstone Overburden	125	0	35
	Surface Soil	120	200	30


Parent: 04. North Slope - Pseudostatic

Name: 04b. Reclaimed Surface

Method: Spencer

Factor of Safety: 1.16 Horz Seismic Coef.: 0.15

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Greenstone Bedrock	165	12,500	30
	Greenstone Overburden	125	0	35
	Surface Soil	120	200	30

Appendix B

APPENDIX B

Seismic Displacement Analysis

WMSA Seismic Displacement Analysis

Section	Yield Acceleration	Average Failure	Seisn	nic Displacement (i	n) (Bray and
Section	ky (g)	Surface Height (ft)	Median	16% exceedence	84% exceedence
Section A	na	na	na	na	na
Section B	na	na	na	na	na

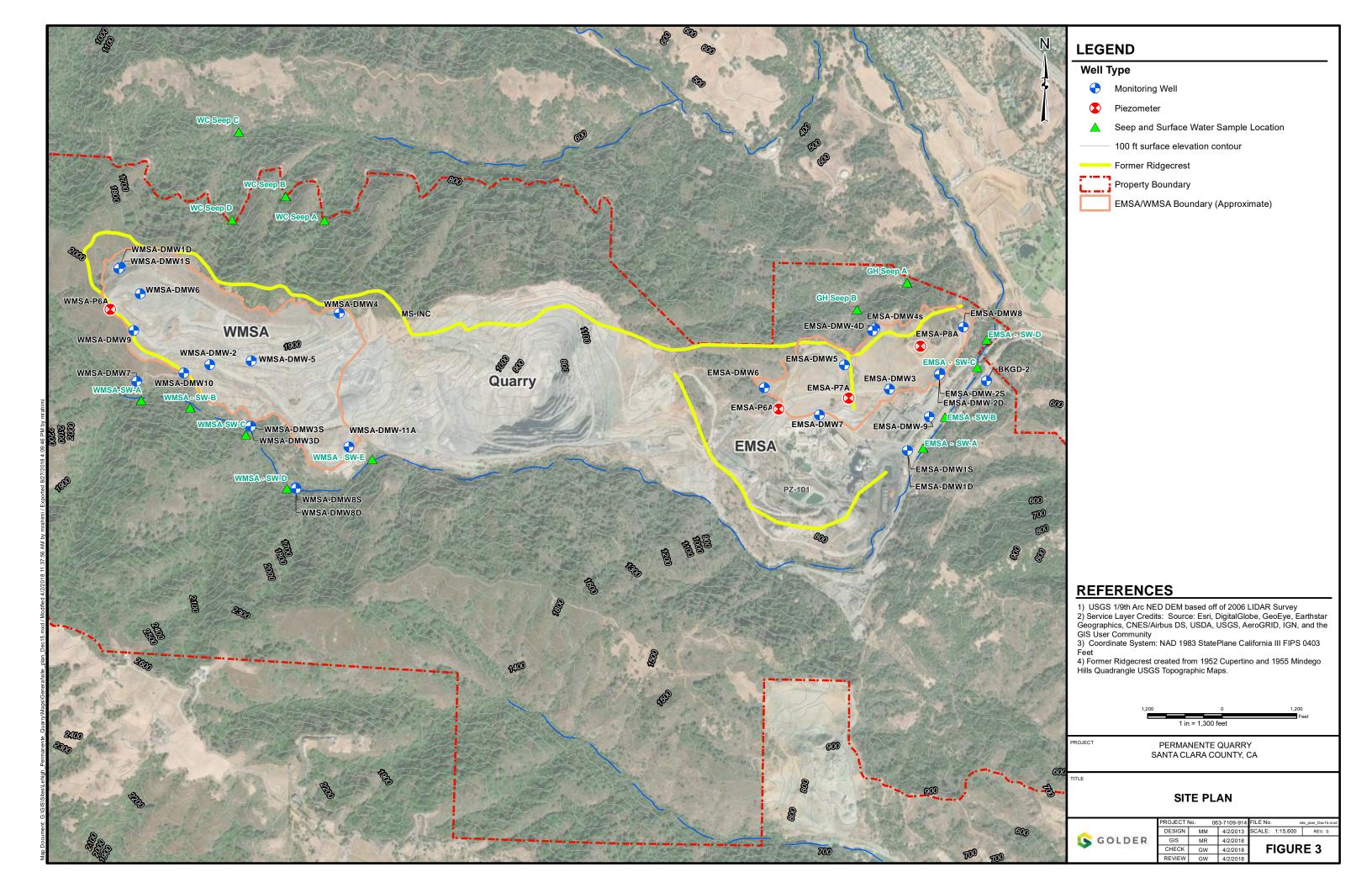
Note: Seismic displacement analyses were done for all models that have a FOS < 1.15 for Pseudo-static stability

Based on: Simplified Procedure for Estimating Earthquake Induced Deviatoric Slope Displacements

by Jonathan D. Bray and Thaleia Travasarou

Journal of Geotechnical and Geonvironmental Engineering, ASCE, V. 133(4), pp. 381-392, April 2007

MODEL INPUTS:ValueReferenceMoment Magnitude Mw7.1GolderPGA0.6gGolder


Non-ZeroStandard Deviation0.66Bray & Travasarou paperTs Coefficient1.5Bray & Travasarou paper

WEST MATERIALS STORAGE AREA GEOTECHNICAL EVALUATION

Appendix C

APPENDIX C WMSA Drilling Logs

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223 Fax: 408-220-9224

WELL NUMBER WMSA-DMW-1S

PAGE 1 OF 1

PROJECT NUMBER <u>063-7109-919</u> **DATE STARTED** 6/23/15 PROJECT NAME Lehigh Hydrogeologic Investigation DATE COMPLETED 6/24/15 LOCATION _ Cupertino, CA CASING TYPE/DIAMETER PVC / 2-inch SCREEN TYPE/SLOT Slotted / 0.010-inch DRILLING METHOD Sonic GRAVEL PACK TYPE #3 Monterey Sand SAMPLING METHOD Corebarrel GROUND ELEVATION ~1865-ft MSL GROUT TYPE/QUANTITY 5% Bentonite Cement TOP OF CASING _ ~1868-ft MSL GPS COORDINATES _____

	REMARKS Sonic drilling with 4-inch sample corebarrel. Well casing installed inside 6 5/8-inch sonic casing.									
PID	DEPTH (FT. BGS)	Water Level	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WELL DIAGRAM				
0	-			[FILL] GRAVEL, fine to coarse, subangular to angular (GW); dry, loose, no odor.						
0	10									
0	20 -	- - - -								
0	30 -									
0	- - - - -	- - - - -								
0	50 -									
0	60 -	- - - - -				5% Bentonite Type II-V Portland cement				
0	70 -	- - - - -								
0	- 80 -	- - - - -								
0	90 -			@87'bgs: Perched moisture, insufficient for sampling.	95.0	2-inch Schedule 40 PVC				
	100 -			[FRANCISCAN FORMATION] Franciscan metabasalt. Highly weathered, abundant iron oxidation, roots and other organics near the contact. Most of the rock material has weathered into a soil. Very poorly consolidated, dry, increased rock competency with depth.						
0	110 -				140.0					
0	120 -	<u> </u>		[FRANCISCAN FORMATION] Greenstone. Moderately weathered, hard, with abundant calcite veining. Increased rock competency with depth, very slow groundwater	119.0	3/8-inch Bentonite chips #3 Clean				
0	130 -	<u> </u>		infiltration rate.	137.0	Monterey sand 0.010-inch Screen				
]				Bottom of borehole at 137.0 feet.						

Golder

LEHIGH MONITORING WELLS GINT LOGS.GPJ LOG A EWNN01.GDT 2/25/16

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223 Fax: 408-220-9224

WELL NUMBER WMSA-DMW-1D

PAGE 1 OF 1

PROJECT NUMBER 063-7109-919	DATE STARTED 6/24/15
PROJECT NAME Lehigh Hydrogeologic Investigation	DATE COMPLETED 6/26/15
LOCATION Cupertino, CA	CASING TYPE/DIAMETER PVC / 2-inch
DRILLING METHOD Sonic	SCREEN TYPE/SLOT Slotted / 0.010-inch
SAMPLING METHOD Corebarrel	GRAVEL PACK TYPE #3 Monterey Sand
GROUND ELEVATION ~1865-ft MSL	GROUT TYPE/QUANTITY 5% Bentonite Cement
TOP OF CASING ~1868-ft MSL	GPS COORDINATES
LOGGED BY _ Jeff Linder	
REMARKS Sonic drilling with 4-inch sample corebarrel. Well casing inst	alled inside 6 5/8-inch sonic casing.

Water Level GRAPHIC LOG CONTACT DEPTH $\stackrel{\mathsf{D}}{=}$ LITHOLOGIC DESCRIPTION WELL DIAGRAM 0 [FILL] GRAVEL, fine to coarse, subangular to angular (GW); dry, loose, no odor. 10 0 20 0 30 40 50 60 70 5% Bentonite Type II-V 80 82.0 Portland 0 [FRANCISCAN FORMATION] Franciscan metabasalt. cement Highly weathered, abundant iron oxidation, roots and other organics near the contact. Most of the rock material has weathered into a soil. Very poorly consolidated, dry, 90 0 increased rock competency with depth. 2-inch Schedule 40 PVC 100 103.0 0 @103-107'bgs: Low grade limestone, slightly weathered; white; abundant calcite veining, dry. 107.0 110 120.0 120 @120-123'bgs: Low grade limestone, slightly weathered; white; abundant calcite veining, dry. 123.0 130 0 140 150 3/8-inch ∇ Bentonite chips @155'bgs: First encountered groundwater, very slow 159.0 #3 Clean infiltration rate. 160 Monterey sand [FRANCISCAN FORMATION] Greenstone. Moderately 0.010-inch 167.0 weathered, hard, with abundant calcite veining. Increased rock competency with depth. Screen Bottom of borehole at 167.0 feet.

Golder

LEHIGH MONITORING WELLS GINT_LOGS.GPJ LOG A EWNN01.GDT 2/25/16

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223 Fax: 408-220-9224

WELL NUMBER WMSA-DMW-2

PAGE 1 OF 1

	000 7400 045			DATE OT ADDED				
PROJECT NUMBER								
				DATE COMPLETED 8/1/15		nh.		
LOCATION Cupertine DRILLING METHOD				CASING TYPE/DIAMETER PVC SCREEN TYPE/SLOT Slotted / 0				
SAMPLING METHOD				GRAVEL PACK TYPE #3 Monter				
-				GROUT TYPE/QUANTITY 5% Be	_		ment	
TOP OF CASING _ ~16								
LOGGED BY Jeff Lin								
		ple core	barrel. Well casing insta	alled inside 6 5/8-inch sonic casing.				
	1	I I						
PID DEPTH (FT. BGS)	Water Level	GRAPHIC LOG	LITHOI	LOGIC DESCRIPTION		CONTACT DEPTH	WEL	L DIAGRAM
0			[FRANCISCAN FORM Highly weathered, aborganics near the conveathered into a soil.] Consolidation and rocino odor. [FRANCISCAN FORM highly weathered, argive in ing. Increased rocing groundwater in filtration of the convergence of the convergen	MATION] Franciscan metabasalt. undant iron oxidation, roots and other stact. Most of the rock material has Very poorly consolidated, dry. ck strength increase with depth, dry, MATION] Greenstone. Moderately to illic alteration, with abundant calcite ck competency with depth, very slow	3	285.0 301.0 312.0		► 5% Bentonite Type II-V Portland cement — 2-inch Schedule 40 PVC False inch Bentonite chips #3 Clean Monterey sand 0.010-inch Screen

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223 Fax: 408-220-9224

WELL NUMBER WMSA-DMW-3S PAGE 1 OF 1

PRO LOC. DRIL SAMI GRO TOP LOG	ATION _ Cuperting LLING METHOD _ PLING METHOD _ DUND ELEVATION OF CASING _ ~14 GGED BY _ Jeff Lin IARKS _ Sonic dril	nigh Hydrogeologi b, CA Mini Sonic Corebarrel ~1410-ft MSL 413-ft MSL ider ling with 4-inch sa	c Investig			PVC / 2-inc tted / 0.010-in Monterey Sa 5% Bentonit asing.	h nch nd e Cer	ment	
PID	DEPTH (FT. BGS)	Water Level	GRAPHIC LOG	LITHO	LOGIC DESCRIPTION		CONTACT	WEI	LL DIAGRAM
0 0	- - - 10			[ALLUVIUM] SILTY C sand lenses, fine to n subrounded, moderat Yellowish to orange-b (@12.5'bgs: Well grade Saturated. (@14'bgs: Well grade Saturated.	GRAVEL, fine to coarse, subandish brown topsoil mixed with li; dry, loose, no odor. CLAY with some ~1-inch grave nedium sand and fine gravel, le to high iron oxidation (CL); brown; moist, unconsolidated. ded sand lens ~1-inch thick.	ogular 7	8.5		-5% Bentonite Type II-V Portland cement 2-inch Schedule 40 PVC -3/8-inch Bentonite chips -#3 Clean Monterey sand
LEHIGH MONITORING WELLS GINT_LOGS.GPJ LOG A EWNNOT.GDT 2/28/16 O	_ 20			moderately weathered Increased rock compo	d, with abundant calcite veining etency with depth, very hard d	g. rilling.	0.0		- 0.010-inch Screen
EHIG				Bottom	of borehole at 30.0 feet.				

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223 Fax: 408-220-9224

WELL NUMBER WMSA-DMW-3D

PAGE 1 OF 1

PROJECT NUMBER 063-7109-919

DATE STARTED 7/14/15

PROJECT NAME Lehigh Hydrogeologic Investigation

DATE COMPLETED 7/16/15

LOCATION _Cupertino, CA

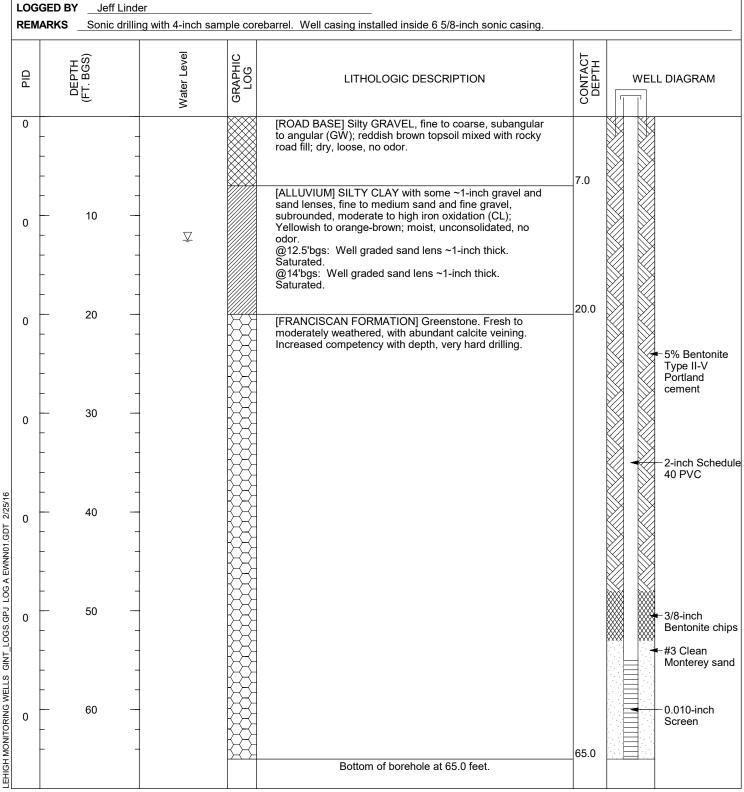
CASING TYPE/DIAMETER _ PVC / 2-inch

DRILLING METHOD _ Mini Sonic

SCREEN TYPE/SLOT _ Slotted / 0.010-inch

SAMPLING METHOD _ Corebarrel

GRAVEL PACK TYPE _ #3 Monterey Sand


GROUND ELEVATION _ ~1410-ft MSL

GROUT TYPE/QUANTITY _ 5% Bentonite Cement

TOP OF CASING _ ~1413-ft MSL

GPS COORDINATES

LOGGED BY _ Jeff Linder

60

70

100

110

 ∇

EHIGH MONITORING WELLS GINT LOGS.GPJ LOG A EWNN01.GDT 2/25/16

0

0

0

425 Lakeside Drive Sunnyvale, CA 94085

WELL NUMBER WMSA-DMW-4

PAGE 1 OF 1

2-inch Schedule 40 PVC

3/8-inch Bentonite chips #3 Clean Monterey sand

0.010-inch

Screen

81.0

117.0

Telephone: 408-220-9223 ssociates Fax: 408-220-9224 **PROJECT NUMBER** 063-7109-919 **DATE STARTED** 6/27/15 PROJECT NAME Lehigh Hydrogeologic Investigation **DATE COMPLETED** 6/29/15 LOCATION Cupertino, CA CASING TYPE/DIAMETER PVC / 2-inch SCREEN TYPE/SLOT Slotted / 0.010-inch **DRILLING METHOD** Sonic SAMPLING METHOD Corebarrel GRAVEL PACK TYPE #3 Monterey Sand GROUND ELEVATION ~1885-ft MSL **GROUT TYPE/QUANTITY** 5% Bentonite Cement TOP OF CASING ~1888-ft MSL **GPS COORDINATES** LOGGED BY Jeff Linder REMARKS Sonic drilling with 4-inch sample corebarrel. Well casing installed inside 6 5/8-inch sonic casing. GRAPHIC LOG Water Level CONTACT DEPTH 吕 LITHOLOGIC DESCRIPTION WELL DIAGRAM 0 [FILL] GRAVEL, fine to coarse, subangular to angular (GW); dry, loose, no odor. 10 0 @17'bgs: Perched moisture, insufficient for sampling. 20 21.0 0 [FRANCISCAN FORMATION] Franciscan metabasalt. Highly weathered, abundant iron oxidation, roots and other organics near the contact. Most of the rock material has weathered into a soil. Very poorly consolidated, dry, 30 increased rock competency with depth, dry, no odor. 0 40 0 5% Bentonite Type II-V Portland 50 cement 0

80 0 [FRANCISCAN FORMATION] Greenstone. Moderately to highly weathered, argillic alteration, with abundant calcite veining. Increased rock competency with depth, dry, no 90 0

> @109'bgs: First encountered groundwater, very slow infiltration rate.

> > Bottom of borehole at 117.0 feet.

Golder

EHIGH MONITORING WELLS GINT LOGS.GPJ LOG A EWNN01.GDT

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223

WELL NUMBER WMSA-DMW-5

PAGE 1 OF 1

Fax: 408-220-9224 **PROJECT NUMBER** 063-7109-919 **DATE STARTED** 7/14/15 PROJECT NAME Lehigh Hydrogeologic Investigation **DATE COMPLETED** 7/28/15 LOCATION Cupertino, CA CASING TYPE/DIAMETER PVC / 2-inch SCREEN TYPE/SLOT Slotted / 0.010-inch **DRILLING METHOD** Sonic SAMPLING METHOD Corebarrel GRAVEL PACK TYPE #3 Monterey Sand GROUND ELEVATION ~1830-ft MSL **GROUT TYPE/QUANTITY** 5% Bentonite Cement TOP OF CASING ~1833-ft MSL **GPS COORDINATES** LOGGED BY Jeff Linder REMARKS Sonic drilling with 4-inch sample corebarrel. Well casing installed inside 6 5/8-inch sonic casing. Level GRAPHIC LOG DEPTH (FT. BGS) CONTACT DEPTH 吕 LITHOLOGIC DESCRIPTION WELL DIAGRAM Water I [FILL] GRAVEL, fine to coarse, subangular to angular 0 10 (GW); dry, loose, no odor. 0 20 0 30 0 40 0 50 0 60 0 70 0 80 @77-81'bgs: Fines. 0 @84-107'bgs: Fines. 90 0 100 0 110 0 120 0 @125-131'bgs: Fines, no odor. 130 0 140 0 5% Bentonite 150 Type II-V 0 160 Portland 0 cement 170 0 180 0 190 0 200 2-inch Schedule 0 40 PVC 210 0 220 0 230 0 240 0 250 0 260 0 270 0 280 0 @281'bgs: Some perched moisture, insufficient for 290 sampling. 0 298.0 @290-298'bgs: Very large boulders, hard drilling, dry. 300 3/8-inch 0 [FRANCISCAN FORMATION] Franciscan metabasalt. Bentonite chips 313.0 310 #3 Clean Highly weathered, abundant iron oxidation, roots and other 0 ∇ organics near the contact. Most of the rock material has Monterey sand 320 0 327.0 weathered into a soil. Very poorly consolidated, dry, no 0.010-inch Screen [FRANCISCAN FORMATION] Greenstone. Moderately to highly weathered, argillic alteration, with abundant calcite veining. Increased rock competency with depth, very slow groundwater infiltration rate.

Bottom of borehole at 327.0 feet.

Golder

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223 Fax: 408-220-9224

WELL NUMBER WMSA-DMW-6

PAGE 1 OF 1

PROJECT NUMBER 063-7109-919

DATE STARTED 6/29/15

PROJECT NAME Lehigh Hydrogeologic Investigation

LOCATION Cupertino, CA

CASING TYPE/DIAMETER PVC / 2-inch

DRILLING METHOD Sonic

SCREEN TYPE/SLOT Slotted / 0.010-inch

SAMPLING METHOD Corebarrel

GROUND ELEVATION ~1935-ft MSL

TOP OF CASING ~1938-ft MSL

LOGGED BY Jeff Linder

PID DEPTH		Water Level GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WEL	L DIAGRAM
	10 20 30 40 50 60 70 80 90 00 10 20 30 40 50 60 70 80 90 00 10 20 30 40 50 60 70 80 90 00 10 20 30 40 50 60 70 80 90 00 10 20 30 40 50 60 70 80 90 00 10 20 30 40 50 60 70 80 90 00 10 20 30 40 50 60 70 80 90 00 10 20 30 40 80 90 00 10 20 30 40 80 90 00 10 20 30 40 80 90 00 10 20 30 40 80 90 00 10 20 30 40 80 90 00 10 20 30 40 80 90 00 10 20 30 40 80 90 00 10 20 30 40 80 90 00 10 20 30 40 80 90 90 90 90 90 90 90 90 90 90 90 90 90	¥	(GW); dry, loose, no odor. @295-307'bgs: Hard drilling through very large boulders. [FRANCISCAN FORMATION] Franciscan metabasalt. Highly weathered, abundant iron oxidation, roots and other organics near the contact. Most of the rock material has weathered into a soil. Very poorly consolidated, dry, no odor. @315'bgs: Decrease in oxidation and weathering, increased hardness and rock competency with depth. [FRANCISCAN FORMATION] Greenstone. Moderately to highly weathered, argillic alteration, with abundant calcite veining. Increased rock competency with depth. @345'bgs: First encountered groundwater, very slow infiltration rates. Bottom of borehole at 347.0 feet.	_307.0 _337.0 _347.0		► 5% Bentonite Type II-V Portland cement — 2-inch Sched 40 PVC Bentonite chi #3 Clean Monterey sar 0.010-inch Screen

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223 Fax: 408-220-9224

WELL NUMBER WMSA-DMW-7

PAGE 1 OF 1

PROJECT NUMBER <u>063-7109-919</u> **DATE STARTED** 7/7/15 PROJECT NAME Lehigh Hydrogeologic Investigation **DATE COMPLETED** 7/9/15 LOCATION _ Cupertino, CA CASING TYPE/DIAMETER PVC / 2-inch SCREEN TYPE/SLOT Slotted / 0.010-inch DRILLING METHOD Mini Sonic GRAVEL PACK TYPE #3 Monterey Sand SAMPLING METHOD Corebarrel GROUT TYPE/QUANTITY 5% Bentonite Cement GROUND ELEVATION ~1620-ft MSL TOP OF CASING ~1623-ft MSL GPS COORDINATES _____ LOGGED BY Jeff Linder

INCIVIA	ARKS Sonic drilling	ng with 4-inch sa	mple core	barrel. Well casing installed inside 6 5/8-inch sonic casing.			
PID	DEPTH (FT. BGS)	Water Level	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WEL	L DIAGRAM
0				[FRANCISCAN FORMATION] Franciscan metabasalt. Highly weathered, abundant iron oxidation. Top 5-ft resemble topsoil with roots and other organics. Most of the rock material has weathered into a soil. Very poorly consolidated, dry, no odor.			
0	10			concentration, ary, no case.			
0							
0				@27'bgs: Decrease in iron oxidation and weathering, increased rock competency and freshness with depth. Color change to olive brown.			←5% Bentonite Type II-V Portland
0	- - - 40 - 				45.0		cement - 2-inch Schedule
0	- - 50 - 			[FRANCISCAN FORMATION] Greenstone. Moderately to highly weathered, argillic alteration, with abundant calcite veining. Increased rock competency with depth, dry, no odor.			40 PVC
0	- 60 — 						
0	- 70 - - 70 -						←3/8-inch Bentonite chips ←#3 Clean Monterey sand
0	- - - 80 - 	<u>√</u>					−0.010-inch Screen
0	- - - 90 -			@85'bgs: Very slow groundwater infiltration.	95.0		
				Bottom of borehole at 95.0 feet.		1.	

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223 Fax: 408-220-9224

WELL NUMBER WMSA-DMW-8S PAGE 1 OF 1

PRO LOC DRII SAM GRO TOP LOG	CATIONCupertin LLING METHOD IPLING METHOD DUND ELEVATION OF CASING~1: GGED BYJeff Lin MARKSSonic dril	nigh Hydrogeologic b, CA Mini Sonic Corebarrel ~1380-ft MSL 383-ft MSL ider ling with 4-inch san	nple col		DATE COMPLETED	PVC / 2-in PVC / 2-in Slotted / 0.010 #3 Monterey S5% Benton	nch O-inch Sand nite Ce	ement	
PID	DEPTH (FT. BGS)	Water Level	GRAPHIC LOG	LITHC	PLOGIC DESCRIPTION		CONTACT	WEI	LL DIAGRAM
LEHIGH MONITORING WELLS GINT_LOGS.GPJ LOG A EWNN01.GDT 2/25/16 O O O		××	3	to angular (GW); red gravel-cobble sized f [ALLUVIUM] SILTY (sand lenses, fine to r subrounded, modera moist, unconsolidate [FRANCISCAN FOR moderately weathere Increased competent	countered water in a saturate zone. MATION] Greenstone. Fresh cd, with abundant calcite vein cy with depth, very hard drilli	vel and l, vrown; ed sandy	3.0		- 5% Bentonite Type II-V Portland cement 2-inch Schedule 40 PVC - 3/8-inch Bentonite chips - #3 Clean Monterey sand
LEHIGH				Bottom	of borehole at 30.0 feet.				

60

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223

WELL NUMBER WMSA-DMW-8D

PAGE 1 OF 1

0.010-inch

Screen

65.0

Fax: 408-220-9224 **PROJECT NUMBER** 063-7109-919 **DATE STARTED** 7/12/15 **PROJECT NAME** Lehigh Hydrogeologic Investigation **DATE COMPLETED** 7/13/15 LOCATION _ Cupertino, CA CASING TYPE/DIAMETER PVC / 2-inch SCREEN TYPE/SLOT Slotted / 0.010-inch **DRILLING METHOD** Mini Sonic SAMPLING METHOD __Corebarrel GRAVEL PACK TYPE #3 Monterey Sand GROUND ELEVATION ~1380-ft MSL **GROUT TYPE/QUANTITY** 5% Bentonite Cement TOP OF CASING ~1383-ft MSL **GPS COORDINATES** LOGGED BY Jeff Linder REMARKS Sonic drilling with 4-inch sample corebarrel. Well casing installed inside 6 5/8-inch sonic casing. GRAPHIC LOG Water Level CONTACT DEPTH 吕 LITHOLOGIC DESCRIPTION WELL DIAGRAM [ROAD BASE] Silty GRAVEL, fine to coarse, subangular to angular (GW); reddish brown topsoil mixed with rocky 0 3.0 road fill; dry, loose, no odor. [ALLUVIUM] SILTY CLAY with some ~1-inch gravel and sand lenses, fine to medium sand and fine gravel, subrounded, moderate iron oxidation (CL); pale-brown; moist, unconsolidated, no odor. 10 0 ∇ 20.0 20 @19.5'bgs: First encountered water in a saturated sandy clay, unconsolidated zone. [FRANCISCAN FORMATION] Greenstone. Fresh to moderately weathered, with abundant calcite veining. 5% Bentonite Type II-V Increased competency with depth, very hard drilling. Portland cement 30 2-inch Schedule 0 40 PVC LEHIGH MONITORING WELLS GINT LOGS.GPJ LOG A EWNN01.GDT 2/25/16 40 0 50 3/8-inch Bentonite chips #3 Clean Monterey sand

Bottom of borehole at 65.0 feet.

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223 Fax: 408-220-9224

WELL NUMBER WMSA-DMW-9

PAGE 1 OF 1

PROJECT NUMBER 063-7109-919

PROJECT NAME Lehigh Hydrogeologic Investigation

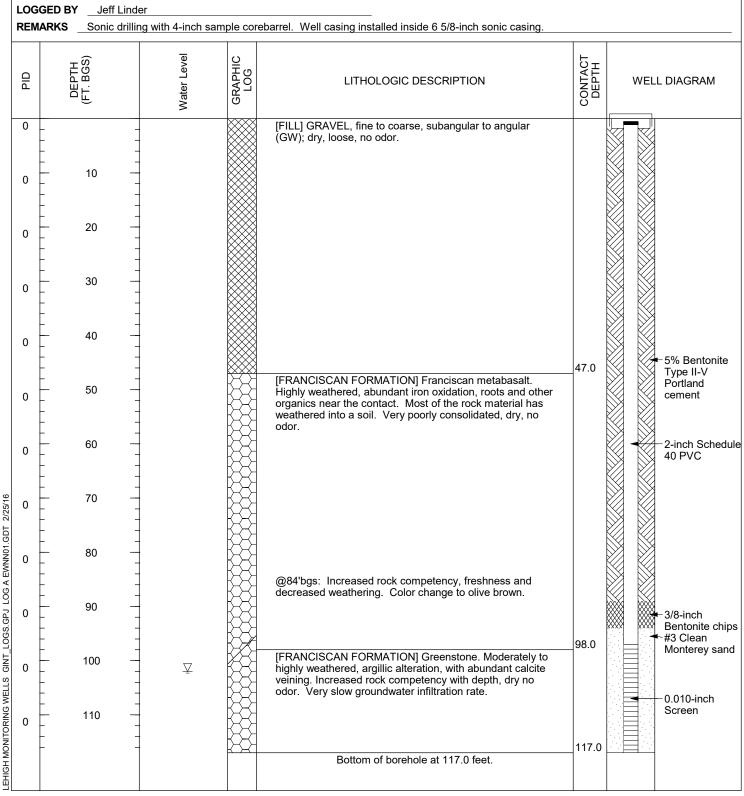
DATE COMPLETED 7/14/15

LOCATION Cupertino, CA

CASING TYPE/DIAMETER PVC / 2-inch

DRILLING METHOD Sonic

SCREEN TYPE/SLOT Slotted / 0.010-inch


SAMPLING METHOD Corebarrel

GRAVEL PACK TYPE #3 Monterey Sand

GROUND ELEVATION ~1770-ft MSL

TOP OF CASING ~1773-ft MSL

GPS COORDINATES

ssociates

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223 Fax: 408-220-9224

WELL NUMBER WMSA-DMW-10

PAGE 1 OF 1

PROJECT NUMBER <u>063-7109-919</u> DATE STARTED 7/10/15 PROJECT NAME Lehigh Hydrogeologic Investigation **DATE COMPLETED** 7/14/15 LOCATION _ Cupertino, CA CASING TYPE/DIAMETER PVC / 2-inch SCREEN TYPE/SLOT Slotted / 0.010-inch DRILLING METHOD Mini Sonic SAMPLING METHOD Corebarrel GRAVEL PACK TYPE #3 Monterey Sand GROUND ELEVATION ~1650-ft MSL GROUT TYPE/QUANTITY 5% Bentonite Cement TOP OF CASING _~1653-ft MSL GPS COORDINATES _____ LOGGED BY _ Jeff Linder

	IARKS Sonic drill		ple core	ebarrel. Well casing installed inside 6 5/8-inch sonic casing.			
PID	DEPTH (FT. BGS)	Water Level	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WEI	L DIAGRAM
0		-		[ROAD BASE] Silty GRAVEL, fine to coarse, subangular to angular (GW); dark grey; dry, loose, no odor.	6.0		
0	10 -	<u> </u>		[FRANCISCAN FORMATION] Franciscan metabasalt. Highly weathered, abundant iron oxidation, roots and other organics near the contact. Most of the rock material has weathered into a soil. Very poorly consolidated, dry, no			
0	20 -	<u>-</u>		odor.			
0	30 -						
0	40 -	<u> </u>					
0	50 -	<u> </u>		@45'bgs: Decrease in iron oxidation and weathering, increased rock competency and freshness with depth. Color change to olive brown, dry, no odor.			
0	60 -	<u>-</u> - -					←5% Bentonite Type II-V Portland
0	- - 70 -						cement
0	80 -				84.0		- 2-inch Schedule
0	90 -	- - - - - -		[FRANCISCAN FORMATION] Greenstone. Moderately to highly weathered, argillic alteration, with abundant calcite veining. Increased rock competency with depth, dry, no odor.			40 PVC
0 0	100 -	<u> </u>					
	110 -	1					
0	120 -	1 1 1					- 3/8-inch Bentonite chips - #3 Clean
	130 -	- - - - -					Monterey sand
0	140 -	<u> </u>		@137'bgs: Very slow groundwater infiltration.	145.0		-0.010-inch Screen
5 5 1 1				Bottom of borehole at 145.0 feet.	145.0		

ssociates

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223 Fax: 408-220-9224

WELL NUMBER WMSA-DMW-11

PAGE 1 OF 1

PROJECT NUMBER 063-7109-919 DATE STARTED 8/1/15 PROJECT NAME Lehigh Hydrogeologic Investigation DATE COMPLETED 8/3/15 LOCATION _ Cupertino, CA CASING TYPE/DIAMETER PVC / 2-inch SCREEN TYPE/SLOT Slotted / 0.010-inch DRILLING METHOD Sonic GRAVEL PACK TYPE #3 Monterey Sand SAMPLING METHOD Corebarrel GROUND ELEVATION ~1470-ft MSL GROUT TYPE/QUANTITY 5% Bentonite Cement TOP OF CASING ~1473-ft MSL GPS COORDINATES _____

PID	DEPTH (FT. BGS)		Water Level	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	WEL	L DIAGRAM
0		-			[FILL] GRAVEL, fine to coarse, subangular to angular (GW); dry, loose, no odor.			
0	– 10	-						
0	20							
0	30	<u>-</u>						
0	40	-						- 5% Bentonite
0	50 50	 						Type II-V Portland cement
0	60	- -						
0	- - 70	† - - -			@68-69'bgs: fines.			
0	- - 80	† - - -						−2-inch Sched 40 PVC
0	90	- - - -			[FRANCISCAN FORMATION] Franciscan metabasalt. Highly weathered, abundant iron oxidation, roots and other	88.5		
0	- - 100	- - - - -	Ā		organics near the contact. Most of the rock material has weathered into a soil. Very poorly consolidated, dry. Consolidation and rock strength increase with depth, no odor. @97.5'bgs: First encountered groundwater.			← 3/8-inch Bentonite chi ← #3 Clean Monterey sar
0	– 110	-			ക്രമ Jugs. Filst elicounteleu gioundwater.	113.0		
0	– 120	- - -			[FRANCISCAN FORMATION] Black shale with abundant calcite veining. Highly weathered, argillaceous alteration with moderate to high fissility. Limited blocks of relatively competent, moderately weathered R2 rock.	122.0		─ 0.010-inch Screen

425 Lakeside Drive Sunnyvale, CA 94085 Telephone: 408-220-9223

WELL NUMBER WMSA-P6A

PAGE 1 OF 1

	ASSO IECT NUMBER			108-220-		DATE STARTED 7/11/15			
PROJECT NAME 1 chigh Hydrogologic Investigation						-			
PROJECT NAME Lehigh Hydrogeologic Investigation									
LOCATION Cupertino, CA									
DRILLING METHOD Sonic									
SAMPLING METHOD Corebarrel GROUND ELEVATION ~1820-ft MSL									
						GROUT TYPE/QUANTITY 5% Bent	onite Ce	ment	
OP (OF CASING	~1823-	ft MSL			GPS COORDINATES			
	GED BY Jef								
			with 4-inch sa	mple cor	ebarrel. Well casing ins	talled inside 6 5/8-inch sonic casing.			
			_				1.		
	∓(SS)		e ve	우,,,			\(\bar{0} \) \(\partial \)		
윤	DEPTH (FT. BGS)		Water Level	GRAPHIC LOG	LITHO	DLOGIC DESCRIPTION	CONTACT	WELI	L DIAGRAM
<u>-</u>	呂단		ate	※기					
	=		>				0		
0	_				[FILL] GRAVEL, fine	to coarse, subangular to angular			
	_	1			(GW); dry, loose, no	odor.			
-	_	4							
-	_	4							
)	- 10	4							
'	-	+							
+	-	+							
t	-	†							
Ī	-	1					04.0		
) [– 20 -	\exists			IEDANICISCANI FOR	MATION] Franciscan metabasalt.	21.0		
	_]		\mathbb{R}		oundant iron oxidation, roots and other			
1	=	1			organics near the co	ntact. Most of the rock material has			
-	_	4		- KXXI		. Very poorly consolidated, dry, no			
+	- 30	\dashv		KX-{{	odor.				
ł	-	+		KX					
ł	_	+		\mathbb{R}					-5% Bentonite
t	-	†							Type II-V
Ī	- 40			\mathbb{R}					Portland cement
) [4U -								JUNETIL
-	_	1		\mathbb{R}					
-	_	4		KXX					-2-inch Sched 40 PVC
+	_	+		KX4	@48'has: Doorooss	in iron evidation and weathering			40 7 7 0
+	- 50	\dashv		RX	increased rock comp	in iron oxidation and weathering, betency and freshness with depth.			
	_	+		\mathbb{R}	Color change to olive				
t	-	†		\mathbb{A}	ŭ				
İ	-	1		KXX					
[- 60			KX					
I	-	1		\mathbb{R}					
-	=	4							
-	_	4		\mathbb{A}					
+	_	+		KX4					
ł	- 70	\dashv		KX				XX	2/0 inak
f	-	†		\mathbb{R}					⊢3/8-inch Bentonite ch
f	=	†						xxxx xxx	∸#3 Clean
Ţ	_		$\bar{\Sigma}$	\bowtie					Monterey sa
	- 80	\Box	-	KX-{{					,
[-	1		KXX					
-	_	4		\mathbb{R}					
-	_	4		\mathbb{R}					0.040 !!-
+	_	4		KX					-0.010-inch Screen
+	- 90	\dashv					92.0		JUI 6611
)	=	+		 - 	IFRANCISCAN FOR	MATION] Greenstone. Moderately to	92.0		
ł	-	+			highly weathered, are	gillic alteration, with abundant calcite	-		
t	-	†		$\mathbb{K} \times \mathbb{J}$	veining. Increased ro	ock competency with depth, dry, no	97.0		
- 1					∖odor. Very slow grou	undwater infiltration rate.			
- 1		1				of borehole at 97.0 feet.			

APPENDIX G-2 NORTH HIGHWALL RESERVE GEOTECHNICAL EVALUATION

North Highwall Reserve Geotechnical Evaluation

Permanente Quarry

April 5, 2019

Prepared for:

Lehigh Southwest Cement 24011 Stevens Creek Blvd. Cupertino, CA 95014-5659

Prepared by:

Stantec Consulting Services Inc. 2890 E. Cottonwood Parkway, Suite 300 Salt Lake City, UT 84121

Revision	Revision Description		or	Quality Check		Independent Review	
3	Client Comments	Paul Kos	4/5/19	Toni Jack	4/5/19	Greg Gold	4/5/19
2	Client Review	Paul Kos	2/1/19	Toni Jack	2/1/19	Greg Gold	2/1/19
1	Client Review	Paul Kos	12/21/18	Toni Jack	12/14/18	Greg Gold	12/21/18
0	For Approval	Paul Kos	11/30/18	Toni Jack	11/30/18	Greg Gold	11/30/18
Α	Initial Draft	Paul Kos	11/28/18	Toni Jack	11/28/18	Greg Gold	11/28/18

Sign-off Sheet

This document entitled North Highwall Reserve Geotechnical Evaluation was prepared by Stantec Consulting Services Inc. (Stantec) for the account of Lehigh Southwest Cement Company (Lehigh), a subsidiary of Lehigh Hanson, Inc. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party because of decisions made or actions taken based on this document.

Prepared by	Pal J. Kos			
	(signature)			

Paul Kos

Reviewed by Kawamura (signature)

Nelson Kawamura

Approved by (signature)

Greg Gold

Table of Contents

EXE	CUTIVE SUMMARY	
ABB	REVIATIONS	
GLO	SSARY	III
1.0 1.1 1.2 1.3	INTRODUCTIONPURPOSEPROJECT BACKGROUNDSCOPE OF WORK	1.1 1.1
2.0 2.1 2.2 2.3 2.4	SITE INVESTIGATIONS PREVIOUS GEOLOGIC INVESTIGATIONS PREVIOUS GEOTECHNICAL EVALUATIONS 2018 DRILLING 2018 FAULT AND STRUCTURE MAPPING	2.1 2.1 2.2
3.0 3.1 3.2 3.3	MINING AND RECLAMATION PLAN MINING PLAN LANDSLIDE MITIGATION RECLAMATION PLAN	3.1 3.1
4.0 4.1 4.2 4.3 4.4 4.5	GEOTECHNICAL EVALUATION ROCK MASS CHARACTERIZATION UNIAXIAL COMPRESSIVE STRENGTH OF INTACT ROCK ROCK QUALITY DESIGNATION RMR SUMMARY AND CLASSIFICATION GEOTECHNICAL STABILITY	4.1 4.1 4.2 4.2
5.0	RECOMMENDATIONS	5.1
6.0	CONCLUSION	6.1
7.0	REFERENCES	7.1
FIGU	JRES	7.1
LIST	OF TABLES	
Table Table Table Table	e 2.1 Historic Rock Strength Summary e 2.2 Borehole Details e 3.1 Preliminary Highwall Guidance e 4.1 UCS Data Summary e 4.2 RQD Summary e 4.3 RMR ₈₉ Summary	2.3 3.1 4.1 4.2
	e 4.4 Stability Analyses	

NORTH HIGHWALL RESERVE GEOTECHNICAL EVALUATION

Table of Contents

Table 4.5 Geotechnical Strength Parameters	4.5 4.5
LIST OF FIGURES	
Figure 1.1 Permanente Quarry Regional Location Map	
Figure 1.2 Permanente Quarry Project Overview	
Figure 2.1 Permanente Quarry Regional Geology Map	
Figure 2.2 Permanente Quarry North Highwall Reserve Geology Map	
Figure 2.3 Permanente Quarry North Quarry Fault and Discontinuity Mapping	
Figure 3.1 Permanente Quarry North Highwall Reserve Existing Topography	
Figure 3.2 Permanente Quarry North Highwall Reserve Extent of Mining Topography	
Figure 3.3 Permanente Quarry North Highwall Reserve Reclamation Topography	
Figure 3.4 Permanente Quarry North Highwall Reserve Cross-Sections	

LIST OF APPENDICES

Appendix A Drilling Logs Appendix B Slope Stability Analyses Appendix C Seismic Displacement Analyses

Executive Summary

Executive Summary

The North Highwall Reserve Geotechnical Evaluation has been prepared to assist Lehigh Southwest Cement Company (Lehigh), a subsidiary of Lehigh Hanson, Inc., with the upcoming Reclamation Plan amendment submission, under California's Surface Mining and Reclamation Act (SMARA). This report presents the proposed mining and reclamation plan, documents previous and recent investigations of the North Quarry area and provides results of stability analyses to support Lehigh in mining and reclaiming the North Quarry and in mitigating the historic landslide (Main Slide) in the North Quarry.

The North Quarry is where mineral extraction currently occurs and has historically taken place. The North Quarry features a large mining area, with elevations that currently range from approximately 550 feet (ft) to 1,750 feet above mean sea level (AMSL). The North Quarry has a history of localized instability of the highwalls, and an integral part of this project involves revising the mining and reclamation plans to mitigate the Main Slide.

Previous and recent investigations of the North Quarry include drilling programs, geologic mapping, laboratory testing, and visual inspections. The site has been studied for geology several times, and these investigations were used to develop the 2018 investigation. This recent geologic investigation included aerial photograph interpretation and field mapping of faults, bedding, and structure for potential impacts to highwall stability. A key finding is that bedding dip slope and direction appear to have a negative impact on slope stability, and highwalls sloped in the dip direction (generally south east) need to be sloped at less than the dip angle. The investigation also included drilling, geotechnical sampling, and geophysical logging of the boreholes to identify areas of weathered versus competent greenstone in the proposed highwall. These data were used to design a permanently stable highwall.

Lehigh will regrade the North Quarry to stabilize the Main Slide and recover economic limestone resources in the north wall. The mining will begin at the 1,900-foot AMSL elevation, and the slope will be mined from top to bottom to the 600-foot AMSL elevation. The current practice of 50-foot high slopes between benches will be continued. The inter-bench slope gradients range from 26° to 38° depending on rock types, wall orientation, structure, and wall height. The Reclamation Plan for the North Quarry proposes modifications to the 1972 Scenic Easement by lowering the crest by up to 100 feet to elevations that vary between 1,390 feet and 1,425 feet AMSL. The new configuration will allow the area to be revegetated and improve the overall aesthetic appearance of the ridgeline.

The Main Slide will be mitigated by removing it in its entirety. Previous investigations suggest that the Main Slide occurred along a fault at the base of the limestone. Recent drilling data indicate competent greenstone beneath the fault and associated weathered greenstone. This plan intends to excavate the landslide and fault, thus leaving a permanently stable highwall in competent greenstone.

Geotechnical stability analyses were completed on five cross-sections through the North Quarry. These cross-sections represent a variety of slope angles and combinations of lithology and include sections through the Main Slide. The minimum acceptable factors of safety for the analyses are 1.3 for static conditions and 1.0 for pseudo-static conditions, based on mining industry standards. All configurations modeled as part of these analyses meet or exceed the minimum acceptable factor of safety. Generally, geotechnical stability is governed by the near surface geology, which will have reduced strengths due to mining activities. The geotechnical analyses require that groundwater be lowered along some of the highwalls so that it does not coincide with this surficial "mining impacted zone"

Abbreviations

Abbreviations

0	degree (s)			
%	percent			
AMSL	Above mean sea level			
BFA	bench face angle			
cm	centimeter(s)			
ft	feet			
FoS	factor of safety			
g	Gravitational force			
Golder	Golder Associates Inc.			
GSI	geological strength index			
in	inches			
IRA	Inter-ramp angle			
ksi	Kips per square inch			
ky	yield acceleration			
Lehigh	Lehigh Southwest Cement Company, a subsidiary of Heidelberg Cement			
m	meter			
pcf	Pounds per cubic foot			
PGA	Peak ground acceleration			
psf	Pounds per square foot			
psi	Pounds per square inch			
RMR	rock mass rating			
RPA	Reclamation Plan Amendment			
RQD	Rock quality designation			
SMARA	[California's] Surface Mining and Reclamation Act			
Stantec	Stantec Consulting Services, Inc.			
UCS	Uniaxial Compressive Strength			
WMSA	West Material Storage Area			

Glossary

Glossary

Cohesion The force which holds molecules or like particles together in a rock or soil.

Factor of safety The ratio of resisting force to driving force in a slope stability problem. A

factor of safety of one represents the minimum factor of safety for which the

slope is stable.

Greenstone Common term applied to metabasalts within the Franciscan Complex, due to

unweathered, dark green color (Foruria 2004).

Greenstone overburden Material unsuitable for use as aggregate material. Typically, it is weathered

greenstone, but it may include other rock types such as low-grade limestone,

graywacke, and chert.

North Highwall Reserve Limestone and aggregate resources in the north highwall of the North

Quarry.

Phi', φ' The frictional shear resistance of soil or rock.

Pseudo-static slope stability

analysis

A limit equilibrium method of analysis which represents the effects of earthquake shaking by accelerations that create inertial forces. This is the simplest way to analyze the dynamic effects of earthquake loading of a soil

or slope. The output is a single factor of safety.

Rock Plant Reserve Limestone and aggregate resources in an approximately 30.5-acre area at

the southern extent of the Permanente Property.

Seismic deformation analysis

An empirical calculation which estimates the extent of lateral displacement

during the design earthquake. The output is the median displacement.

Scenic Easements The Ridgeline Protection Easement Deed executed in 1972 which applies to

a portion of the northern ridgeline.

Soil Native, unconsolidated material present at the surface before mining

operations began.

Static slope stability analysis A limit equilibrium method of analysis which satisfies moment and force

equilibrium to solve a slope stability problem. The output is a single factor of

safety.

Introduction

1.0 INTRODUCTION

1.1 PURPOSE

Lehigh Southwest Cement Company (Lehigh), a subsidiary of Lehigh Hanson, Inc., engaged Stantec Consulting Services Inc. (Stantec) to provide professional engineering services related to development of the Reclamation Plan for the North Quarry at the Permanente Property. The Reclamation Plan for the North Quarry involves mining limestone and aggregate resources from the existing quarry, mitigating the existing landslide, and backfilling the quarry to the minimum elevation of the surrounding natural topography. The mining, landslide mitigation, and reclamation plans are described herein to provide guidance to Lehigh for completing and reclaiming the quarry. In addition, static and pseudo-static slope stability analyses of the reclamation surface have been completed to support these plans.

This North Highwall Reserve Geotechnical Evaluation has been prepared to assist Lehigh with upcoming Reclamation Plan amendment submissions under California's Surface Mining and Reclamation Act (SMARA). This report presents the Reclamation Plan, documents the results of stability analyses, and provides specifications to guide Lehigh in reclaiming the North Quarry.

1.2 PROJECT BACKGROUND

The Permanente Quarry (Quarry) is a limestone and aggregate mining operation, active since the late 1930's, in the unincorporated foothills of western Santa Clara County, approximately two miles west of the city of Cupertino, California. The Quarry occupies a portion of a 3,510-acre property (Permanente Property) owned by Hanson Permanente Cement, Inc. and operated by Lehigh.

The Permanente Property is situated in the rugged foothills along the eastern side of the Santa Cruz Mountains segment of the California Coast Ranges. This area of the Coast Ranges is characterized by moderately to steeply sloping hillsides ranging from approximately 500 to 2,000 feet (ft) above mean sea level (AMSL). The eastern side of the range is incised with eastern flowing drainages, including the Permanente Creek Drainage Basin, which flows through the central part of the Permanente Property, and drains into the southern part of the San Francisco Bay, near Palo Alto and Mountain View, California. The regional location map is included as Figure 1.1.

Operational areas at the Quarry comprise surface mining excavations, overburden stockpiling, crushing and processing facilities, access roads, administrative offices, and equipment storage facilities. Other predominantly undisturbed areas are held in reserve for future mining or to buffer operational areas from adjacent land uses. The North Quarry is where mineral extraction currently occurs and has historically taken place. The North Quarry features a large mining area, with elevations that currently range from approximately 550 to 1,750 feet AMSL. Limestone and greenstone mined from the North Quarry are crushed and can be either processed into aggregate products at Lehigh's on-site rock (aggregate) plant or are used for cement manufacture at Lehigh's adjacent cement plant. Figure 1.2 shows a plan view of the site.

The North Quarry is located on the hillside to the west of the cement plant. The topography surrounding the North Quarry ranges in elevation from approximately 1,000 feet AMSL near the east end of the south highwall to

NORTH HIGHWALL RESERVE GEOTECHNICAL EVALUATION

Introduction

approximately 1,750 feet AMSL, at the top of the scarp in the northwest corner of the highwall. Mining operations in the North Quarry are ongoing, with plans to mine the southern portion of the quarry to an elevation of 440 feet AMSL and the northern portion of the quarry to an elevation of 600 feet AMSL. Currently, the quarry has been developed to a maximum elevation of approximately 525 feet AMSL.

Mining operations take place subject to SMARA, which mandates that surface mining operations have an approved reclamation plan that describes how mined lands will be prepared for alternative post-mining uses, and how residual hazards will be addressed. Golder Associates Inc, (Golder) completed geotechnical investigations and slope stability evaluations in 2011 to support an amended Reclamation Plan for the operational areas disturbed by mining activities. The current Reclamation Plan was approved in 2012. Changes to the current approved Reclamation Plan are being considered, which necessitate an update of the Reclamation Plan for the Permanente Quarry under SMARA.

This report provides geologic information and specifications and guidelines to support the amended Reclamation Plan with respect to mining and reclaiming the North Quarry and mitigating the landslide, and is accompanied by three other similar reports (Rock Plant Reserve Geotechnical Evaluation, West Materials Storage Area Geotechnical Evaluation, and North Quarry Backfill Geotechnical Evaluation), which provide specifications and guidelines related to the proposed amendments to the Reclamation Plan for other areas in the Quarry.

1.3 SCOPE OF WORK

Lehigh retained Stantec to prepare this report to support the amended Reclamation Plan in connection with the North Highwall Reserve. Stantec's scope of work included:

- Review previous geologic and geotechnical studies.
- Analyze current and historical aerial photographs.
- Map geological structures and lithology.
- Plan and oversee drilling operations.
- Log core and cuttings for geotechnical and geological properties.
- Plan and oversee geophysical evaluation of boreholes.
- Procure core and drill cutting samples for geotechnical laboratory analysis.
- Evaluate historic and new data to determine rock strength parameters for stability analyses.
- Revise geologic model with new drilling data and prepare cross-sections.
- Redesign a stable north highwall.
- Design a stable slope below existing landslide.
- Evaluate geotechnical stability of highwall and landslide area under static and seismic conditions.

Site Investigations

2.0 SITE INVESTIGATIONS

Lehigh is seeking a Reclamation Plan amendment for the Permanente Property in order to improve overall site reclamation, expand its resource base in the area and support its nearby cement operations. The property has been studied extensively for several decades in support of the mining operation; this section briefly discusses the previous site investigations and results. A detailed discussion of the previous geologic and geotechnical investigations is available in the current Reclamation Plan geotechnical documents prepared by Golder (Golder 2011). This section also provides a summary of the recent site investigations, which included a drilling program and field mapping to characterize resources, rock strength, and geologic structures in the Quarry area.

2.1 PREVIOUS GEOLOGIC INVESTIGATIONS

The geology in the project area is complex due to the faulting and deformation associated with the Franciscan Complex. This geologic unit consists of faulted limestone and metabasalts (greenstone) and also contains basalt, diorite, shale, sandstone, chert, greywacke, and schist. Structure in the area includes numerous low- and high-angle faults. Low-angle faults separate limestone units from greenstone units and tend to follow the limestone bedding planes and typically dip to the southeast at 10° to 40°. High-angle faults, including the regional Berrocal Fault, are typically oriented in the northwest-southeast direction and dip at greater than 60°. The geology has been mapped several times by different geologists, and numerous drilling programs have been conducted. The results of these previous studies on the geologic units, structure, and interpretation were included in previous submittals (Golder 2011 and Foruria 2004). Figure 2.1 shows the regional geology that has been mapped for the greater project area. Figure 2.2 shows the geology in the vicinity of the North Quarry and includes the results of the recent geologic investigations discussed below.

The geology of the North Quarry consists of the Franciscan Complex, as discussed above. The highwalls are mostly limestone mixed with a minority of greenstone. Several faults, including the Berrocal Fault, intersect the existing highwall. Golder identified key aspects that impact North Quarry slope stability:

- Bedding is well-developed in the limestone, and although it roughly parallels the thrust faults, bedding
 orientations can change abruptly due to small-scale folding, or across the contacts between adjacent limestone
 blocks. Bedding is overturned near the Northwest Berrocal Fault strand. Bedding is involved in the control of
 bench face angles along the west and north walls; and in the development of slides two to three benches high in
 the north wall, west of the Main Slide (1987), below elevation approximately 1,500 feet (Golder 2011).
- Surface weathering affects rock mass strength of all lithologies to some extent, but particularly greenstones, which are pervasively oxidized and reduced to a clay-rich residual soil within 50 to 100 feet of the original ground surface.
- Thrust contacts along the north wall dip to the south, toward the North Quarry. A greenstone/limestone contact is implicated in development of the Main Slide (Golder 2011).

2.2 PREVIOUS GEOTECHNICAL EVALUATIONS

The North Quarry and related landslide areas have been evaluated several times by several companies. Each investigation included drilling, laboratory testing, assessment of strength parameters for the various rock types encountered, and slope stability calculations. The rock strength parameters were based on laboratory data, rock

NORTH HIGHWALL RESERVE GEOTECHNICAL EVALUATION

Site Investigations

mass rating (RMR) calculations, and back-analysis of landslide areas. The strength parameters for soil, greenstone overburden, and limestone have been consistent through multiple geotechnical analyses performed by multiple consultants, and these values are listed in Table 2.1. The strength parameters for greenstone vary significantly depending on the condition of the bedrock and particularly the amount of weathering and shearing, and lower-bound values have historically been used for design purposes to be conservative. These lower-bound values are based on back-analysis of the Main Slide in the North Quarry. Laboratory data suggest the in-place greenstone may have significantly higher strength. Site observations also suggest that greenstone strengths are often under-reported as several areas of the highwall are constructed in weathered greenstone, and these areas have maintained their integrity with 50-foot high benches with face angles of 60° to 70° (Golder 2011).

Table 2.1 Historic Rock Strength Summary

Material	Unit Weight (pcf)	Cohesion (psf)	ф'
Limestone	165	12,500	30
Greenstone	155-165	1,400-1,880	19-23
Weathered Greenstone	125	1,400	19
Fault	155	0	20
Slide Debris	135	0-700	20-23
Greenstone Overburden	125	0	35
Soil	120	200	30

2.3 2018 DRILLING

Six boreholes were drilled during 2018 to characterize the geologic and geotechnical conditions in the North Highwall Reserve and beneath the Main Slide in the North Quarry. Four sonic borings were advanced, at the crest of the landslide, to identify the thickness of the weathered greenstone and the base of the landslide material. Two core holes were advanced into bedrock beneath the landslide to characterize the extent of limestone versus greenstone and to obtain site-specific geotechnical information. Stantec recorded percent recovery, fracture information, and lithology from the core before calculating rock quality designation (RQD). Core samples were procured and submitted to a geotechnical laboratory for strength testing. The complete data set was then used to calculate RMR and strength parameters for each rock type. Figure 2.2 shows the Permanente Property geology with 2018 borehole locations. Table 2.2 summarizes details for these boreholes. The drilling logs are included in Appendix A.

Site Investigations

Table 2.2 Borehole Details

Borehole	Method	Elevation (ft)	Dip (°)	Azimuth (°)	Total Depth (ft)	
GT-1-2018-1	Core	~1,310	-70	45	500	
GT-1-2018-2	Core	~950	-70	271	171	
S-1-2018-1	Sonic	Sonic ~1,790 -90		-	70	
S-1-2018-2	Sonic	~1,730	-90	-	200	
S-1-2018-3	Sonic	~1,670	-90	-	150	
S-1-2018-4	Sonic	~1,620	-90	-	150	

2.4 2018 FAULT AND STRUCTURE MAPPING

The current understanding of major fault structures in the area is based on surface mapping, drill hole intercepts, aerial photography, mapping, and published reports. As noted from the previous reports for the site and available regional geological information, the Quarry area is less than two miles from the San Andreas Fault and the Berrocal Fault. The Berrocal Fault has been mapped with multiple trace locations and has been mapped as running through the Permanente Property. The North Quarry area has numerous shear zones and faults running through it, which include both high and low angle faults (Foruria 2004). Given the potentially controlling nature of these faults on overall highwall stability, the development of a fault structure model was a critical step in evaluating the quarry. In consideration of potential structural impacts on quarry stability, conservative values for rock strength and quarry wall slopes were used for the design.

Fault and discontinuity mapping were performed by Stantec personnel in October 2018. Stantec concentrated on mapping exposed larger scale discontinuities and shear zones and collecting data on dominant discontinuities and fracture and bedding sets in the North Quarry and across the Permanente Property. Stantec acquired structural orientations along many of the discontinuities and shear zones exposed within the quarry, with an emphasis on the larger structures that could be traced across the Quarry as these features are more likely to have an impact on the Quarry stability. In total, 145 discontinuity data points on joints, shears, shear-zones, and bedding were obtained while mapping the Permanente Property. Fault mapping by Stantec indicated numerous moderate to high angle, north-south and northwest-southeast trending structures present throughout the North Quarry, and the results of the mapping are presented on Figure 2.2. The northwest oriented sets appear to be in agreement with the northwest trending faults mapped by Foruria (2004). It may be likely that the two distinct orientation groups represent a change in the overall faulting regime for the region; however, the timing of which of the orientations are more recent was not evident in the exposures.

Stantec's review of historical stereo-photographs from as early as 1960 indicated a large northwest trending fault, or wide fault zone across the Permanente Property. This fault is clearly visible in the stereo-paired historical photos, but it is difficult to identify on the ground due to vegetation and modifications to the terrain that have occurred since the photo was obtained. The fault zone trends to the northwest and appears to dip steeply to the northeast. The fault may be made up of multiple strands (en echelon), with the main strand trending northwest along the slope break of the ridge south of Permanente Creek, southeastward across the top of the ridge, and down a southeast trending drainage toward the Stevens Creek Quarry's northern and western highwall (Figure 2.2). While it is likely that this

Site Investigations

fault traverses the North Quarry, it is difficult to identify how the numerous faults that traverse the quarry are connected, as the bottom of the quarry is obscured, and there appears to be two dominant trends as identified above. The interpretation is that the major fault visible on the historic aerial photos is possibly the western trace of the Berrocal Fault, with many other strands of faulting contained within the North Quarry walls. Stantec recognizes that multiple faults intercept the quarry walls, and the design considers the potential impacts of the structures.

Discontinuity orientations were obtained in multiple locations within the North Quarry. Additional discontinuity data was also acquired from down hole geophysical logging. Dips software by Rocscience (ref, Version 7.006) was used for creating a stereonet of the surficial data collected in order to conduct a discontinuity analysis. The main discontinuity orientations delineated are shown on Figure 2.3.

Discontinuity data collected across the site suggests roughly three prominent orientations of discontinuities. Bedding is encountered within several of the limestone units exposed along the surveyed area, and generally dips moderately out of the slope with an average dip of 33° and dip direction of 147° to the southeast (set 5m, Figure 2.3). Areas along the 1,200 to 1,300-foot levels within the western portion of the North Quarry exhibit more steeply dipping beds.

The collected discontinuity data indicated a prominent high angle, north-south trending series of faults exposed along the north, east, and south wall of the North Quarry (sets 1m and 2m, Figure 2.3). These discontinuities primarily dip westward with an average dip of 76° and dip direction of 270°, though some eastward dipping discontinuities are also present with an average dip of 75° and dip direction of 87°. Faults among this group typically exhibit moderately wide to wide zones of deformation, including gouge, drag folds, and mapped minor to moderate lithologic offset. These faults tend to persist over a range from tens to hundreds of feet, with the largest faults potentially traversing across the North Quarry and beyond. Other kinematic indications, such as slickensides, are sparse, but do appear on several surfaces. These largely indicate a combination of right lateral and reverse motion, but it is important to mention that the determination of recency of movement along these faults was beyond the scope of this mapping, and the presence of faults within the quarry does not imply that they are active. These discontinuities likely exist due to the extensively deformed nature of the Franciscan Formation Melange unit of the Permanente Block.

Collected data also indicated a second dominant orientation that is a high angle, northwest-southeast trending group of faults, exposed along the western, northern, and southern quarry highwalls (sets 3m and 4m, Figure 2.3). Discontinuities and faults along this trend are high angle and dip primarily to the southwest. Faults along this orientation persist on the order of hundreds of feet at minimum, and many likely traverse the Quarry and persist for thousands of feet to the northwest and southeast. Larger faults along this orientation exhibit very large, wide shear zones, on the order of feet to tens of feet across, with clay gouge and brecciation along the shear zone. Few kinematic indicators were encountered along these discontinuities, shears, and deformation zones to indicate direction of offset. However, these are likely also present due to the deformation in the Permanente Block of the Franciscan Formation.

Mining and Reclamation Plan

3.0 MINING AND RECLAMATION PLAN

3.1 MINING PLAN

Stantec has developed a mine shell configuration for the North Quarry, based on Lehigh's geological resource models and recent drilling results, in order delineate the ultimate highwall heights and configuration. The existing topography for the North Quarry is shown on Figure 3.1. This design aims to stabilize the Main Slide, recover economic limestone resources in the north wall, and achieve long-term slope stability in the North Quarry. The design vertical extents ranged from 1,900 to 600 feet AMSL in elevation. Quarry wall heights range from 800 feet in the north wall to 1,300 feet in the west wall. Benches will be mined in 25-foot intervals, with a catch bench every other bench or 50 vertical feet apart. Inter-ramp or inter-bench slope angles are 26.5 degrees, or 2H:1V for the west and northwest walls from the top cut down to the 1,250-foot elevation, with a 1H:1V face angle. This guidance is summarized in Table 3.1. The bench height of 50 feet is based on current operating practice and equipment sizing and assumes a multiple number of mining cuts make up the 50-foot bench height. These guidelines follow the general configuration for the existing highwalls within the Quarry. Shallower slopes were designed where the cut from current topography would be less than 50 feet. Below the 1,250-foot elevation, the entire north wall has significantly more limestone; therefore, a steeper angle of 38 degrees or 1.28H:1V was recommended and utilized with a 0.75H:1V face angle. At the 1,000-foot elevation, extra width was added to the catch bench across the entire wall from west to north for post mining access. The 600-foot elevation bench at the bottom of the guarry has approximate dimensions of 450 by 600 feet

This ultimate design for the North Quarry does propose the modification of the Scenic Easement. The new design crest of the Scenic Easement varies between approximately 1,390 feet and 1,425 feet AMSL. This corresponds to a decrease in the elevation of the crest line of up to 100 feet lower than currently stated in the agreement. This is done to allow for revegetation, improve the aesthetic quality of the ridgeline, and permanently stabilize this area which historically has been subject to small landslides and a degrading highwall and resolve inconsistencies between the Scenic Easement and the existing conditions. The ultimate design for the North Quarry is shown in Figure 3.2.

Table 3.1 Preliminary Highwall Guidance

Component	Specification					
Bench Height (competent rock)	50 ft					
Bench Width	25 to 50 ft					
Bench Face Angle (BFA)	45 to 53°					
Inter-ramp Angle (IRA)	Max. 45°					
Cut slope in overburden (RMR<25)	2H:1V (27°)					

3.2 LANDSLIDE MITIGATION

The Main Slide of the North Quarry will be removed in its entirety. The landslide cause was previously identified as a fault at the limestone-greenstone interface, and the sliding occurred along weathered greenstone in the vicinity of the fault (Golder 2011). Stantec's investigation of the Main Slide and other landslides in the area suggest that a

Mining and Reclamation Plan

combination of faulting and dipping limestone caused the slope failure. The recent drilling confirmed the presence of the intact greenstone beneath the landslide material both at the crest and toe of the landslide. Therefore, removing the landslide and underlying fault in their entirety will leave a stable greenstone highwall slope. To be conservative, and to minimize excess rock volumes, the highwall in the Main Slide area will be sloped at an overall 2H:1V gradient. The lowest section of the remaining highwall contains both limestone and greenstone, and this section of the quarry is an interim surface as it will be backfilled during site closure. Thus, the slope gradient below the 1,200-foot elevation is 38°. Above 1,200-foot elevation, the highwall is sloped at 2H:1V where there is intact greenstone.

3.3 RECLAMATION PLAN

North Quarry highwalls will be mined to reclamation grade and limits. Topsoil and other amendments will be placed on the benches and vegetation planted in a manner consistent with the revegetation plan component of the proposed Reclamation Plan amendment. Stormwater will be managed according to the included plans and the North Quarry will be left in a condition that all water naturally drains and does not form a lake or standing water. The reclamation topography is shown on Figure 3.3, and cross-sections through the North Quarry are shown on Figure 3.4.

4.0 GEOTECHNICAL EVALUATION

The following presents a geotechnical evaluation of the North Quarry's northern wall, including the Main Slide. Note that, at lower elevations, the North Quarry will be backfilled, with a mixture of greenstone rock (generated on site) and clean fill (imported from off-site) to a minimum elevation of approximately 990 feet AMSL. Details on the backfilling process and materials and geotechnical evaluation of the backfilled quarry are included in the North Quarry Backfill Geotechnical Evaluation.

4.1 ROCK MASS CHARACTERIZATION

The rock mass has been characterized using the 1989 version of the Rock Mass Rating system (RMR₈₉). The RMR₈₉ system provides an empirical methodology for estimating rock mass shear strengths for different rock units using guidelines set forth by Hoek et al. (2000) and Bieniawski (1989). Each rock unit is classified from "Very Poor Rock" to "Very Good Rock" based on a rating system with a maximum value of 100. RMR₈₉ ratings are then correlated to the Geological Strength Index (GSI). Ratings are assigned based on the following categories:

- Uniaxial Compressive Strength (UCS) of intact rock.
- Rock Quality Designation (RQD).
- Spacing of discontinuities.
- Condition of discontinuities (persistence, aperture, roughness, infill and weathering).
- Groundwater conditions (typically set to dry or damp for boreholes where the data will be used in stability analyses that will account for groundwater conditions).

4.2 UNIAXIAL COMPRESSIVE STRENGTH OF INTACT ROCK

Design UCS values for each rock type consider field estimates using a geological hammer, point load testing, and/or laboratory UCS test results. Typical values will be considered for rock types with limited information. Laboratory testing was carried out to quantitatively assess the compressive strength of core samples. Table 4.1 summarizes the laboratory results for UCS.

Table 4.1 UCS Data Summary

Drill Hole	Depth	Rock Type	UCS (psi)
GT-1-2018-1	1.0- 54.3	Greenstone/Metabasalt	1,286
GT-1-2018-1	92.0 - 144.0	Greenstone/Metabasalt, breccia	275.5
GT-1-2018-1	144.0 - 410.0	Greenstone/Metabasalt	4,060
GT-1-2018-1	410 - 500	Greenstone/Metabasalt	684
GT-1-2018-2	0 - 11.7	Greenstone/Metabasalt Breccia	1,286
GT-1-2018-2	65.0 - 120.1	Bleached and Ca veined Limestone	9,955
GT-1-2018-2	120.1 - 171.0	Lightly bleached Limestone	7,105
GT-2-2018-14	70.5 - 78.0	Limestone, Ca Veined	15,310
GT-2-2018-14	119.0 - 145.0	Breccia/Clay	189
GT-2-2018-14	145.0 - 239.0	Metabasalt/Greenstone	3,764

4.3 ROCK QUALITY DESIGNATION

All recovered rock cores were evaluated for an RQD. RQD is defined as the summation of recovered core pieces of minimum length of 100 mm over the total length of the core run and is a good measure of the degree of jointing and discontinuity within a rock mass. A higher RQD generally indicates a higher quality, less fractured rock mass.

RQD values appear to fall into two different groupings. The breccia with clay zones and clay zones (fault gouge) have low RQD values (0 to 30) while the intact rock (limestone and metabasalt/greenstone) and breccia typically have higher RQD values based on the weighted averages (47 to 68). RQD values in excess of 80 occur in lengths of competent rock within the core so the weighted values for the more competent lithologies may be affected by disturbance due to movement along the faults that have been noted in the area of the quarry.

Table 4.2 summarizes the weighted RQD values for each major rock type.

Table 4.2 RQD Summary

Major Rock Type	Weighted RQD (%)	RQD Range (%)				
Limestone	47	0 to 87				
Metabasalt/Greenstone	68	0 to 100				

4.4 RMR SUMMARY AND CLASSIFICATION

Major rock types encountered are generally described as Fair Rock, based on weighted average RMR₈₉ values. However, similar to RQD, the weighted RMR₈₉ values reflect a range including lower values likely resulting from fault related deterioration. RMR₈₉ values for each rock type are shown in Table 4.3. These values correspond well with information from the earlier studies (Golder 2011).

Table 4.3 RMR₈₉ Summary

Drill Hole	Depth (ft)	Rock Type	RMR	Description	GSI
GT-2-2018-14	27.0 - 31.0	Breccia/Clay	Poor Rock	26	
GT-2-2018-14	31 - 49.5	Breccia/Clay	18	Poor Rock	18
GT-2-2018-14	49.5 - 70.5	Metabasalt/Greenstone	35	Poor Rock	35
GT-2-2018-14	70.5 - 78.0	Limestone, Ca Veined	55	Fair Rock	55
GT-2-2018-14	78.0 - 104.0	Metabasalt/Greenstone	47	Fair Rock	47
GT-2-2018-14	104.0 - 119.0	Limestone	41	Fair Rock	41
GT-2-2018-14	119.0 - 145.0	Breccia/Clay	43	Fair Rock	43
GT-2-2018-14	145.0 - 239.0	Metabasalt/Greenstone	52	Fair Rock	52
GT-2-2018-14	T-2-2018-14 239.0 - 262.0 Alternating Greenstone and Limestone 47		47	Fair Rock	47
GT-1-2018-1	1.0- 54.3	Greenstone/Metabasalt	30	Poor Rock	30
GT-1-2018-1	54.3 - 92.0	Limestone	43	Fair Rock	43
GT-1-2018-1	92.0 - 144.0	Greenstone/Metabasalt, breccia	56	Fair Rock	56
GT-1-2018-1	144.0 - 410.0	Greenstone/Metabasalt	57	Fair Rock	57
GT-1-2018-1	410 - 500	Greenstone/Metabasalt	50	Fair Rock	50
GT-1-2018-2	0 - 11.7	Greenstone/Metabasalt Breccia	19	Poor Rock	19
GT-1-2018-2	11.7 - 65.0	Bleached Limestone, interbedded Chert	59	Fair Rock	59
1 G1_1_2018_2		Bleached and Ca veined Limestone	51	Fair Rock	51
GT-1-2018-2 120.1 - 171.0 Lightly bleache Limestone		Lightly bleached Limestone	53	Fair Rock	53

4.5 GEOTECHNICAL STABILITY

The slope stability analyses were modeled using the software Slope-W® 2018 R2 version 9.1 by GeoStudio, released in 2018. The software used limit equilibrium calculations on slices of potential failure surfaces to calculate factors of safety (FoS). The models were evaluated under static and pseudo-static conditions, with horizontal ground acceleration for operation and closure configurations of the highwalls using the Spencer method. The minimum FoS for each model evaluation is included in this report. The two types of analysis have been summarized in Table 4.4. The minimum acceptable factor of safety for the analyses are 1.3 for static conditions and 1.0 for pseudo-static conditions based on mining industry standards. For the pseudo-static model conditions, a horizontal seismic coefficient of 0.15 time the force of gravity (g) was applied to the static condition models to be consistent with previous studies (Golder 2011) and to follow recommendations for earthquakes with magnitudes up to 8-1/4 (Seed 1982). To evaluate the slope stabilities, cross-sections were analyzed for the reclamation surface. The cross-section locations are shown on Figures 3.1 to 3.3, and sections are shown on Figure 3.4.

Geotechnical Evaluation

Table 4.4 Stability Analyses

Analysis Type	Description	Minimum Acceptable Factor of Safety
Static Analysis	A limit equilibrium method of analysis which satisfies moment and force equilibrium to solve a slope stability problem. The output is a single FoS for the potential failure surface with the lowest FoS.	1.3
Pseudo-static Analysis	A limit equilibrium method of analysis which represents the effects of earthquake shaking by accelerations that create inertial forces. This is the simplest way to analyze the dynamic effects of earthquake loading of a soil or slope. The output is a single FoS for the potential failure surface with the lowest FoS.	1.0

Site specific geotechnical information is available for each rock type on the property, and strength parameters for the material have been established in previous geotechnical analyses (Golder 2011). These strength parameters are based on laboratory testing, back-calculation, and published values for soil properties. These strength parameters are listed in Table 4.5.

Table 4.5 Geotechnical Strength Parameters

Material	Unit Weight (pcf)	Cohesion (psf)	Phi' (Degrees)
Greenstone Overburden	125	0	35
Greenstone (Mining Influenced Zone/Weathered)	165	1,800	27
Greenstone	165	12,500	30
Limestone	165	12,500	30

As previously discussed, the greenstone strengths can vary significantly depending on the degree of weathering, and Stantec focused on evaluating the greenstone strengths as part of the 2018 geotechnical investigation. The greenstone strengths were re-evaluated based on RMR classifications. The historic greenstone strength (ϕ '=27° and cohesion=1,800 pounds per square foot [psf]) is suitable for areas that have been influenced or will be influenced by mineral extraction; designated as the "Mining Influenced Zone". A stronger strength for greenstone is expected for the area "beyond" the mining operation. A 75-foot horizontal distance from the highwall was used to define the mining influenced zone. This distance is one and one-half times the bench height following industry design guidelines (Hustrulid 2000).

The greenstone parameters, from RMR classification, were provided to estimate Mohr-Coulomb strength parameters. RocLab (1.0) free software from Roc Science were used to do the calculation. The calculations were based "General" application for failure envelope range. The disturbance factor D=0 is used for the greenstone beyond the "Mining Influenced Zone". The calculated friction angle and cohesion are listed in Table 4.6.

Table 4.6 Greenstone Strength Parameters

DH ID	RM Unit	Depth (ft)	Friction Angle (degrees)	Cohesion (ksi)	Cohesion (psf)
GT-2-2018-14	RM-3	49.5 - 70.5	26.1	0.077	11,088
GT-2-2018-14	RM-5	78.0 - 104.0	31.9	0.269	38,736
GT-2-2018-14	RM-8	145.0 - 239.0	32.7	0.197	28,368
GT-1-2018-1	RM-1	1.0- 54.3	21.8	0.022	3,168
GT-1-2018-1	RM-4	144.0 - 410.0	34.9	0.313	45,072
GT-1-2018-1	RM-5	410 - 500	30.5	0.108	15,552
		Average	30	0.164	23,664

The average value of calculated friction angle (30 degrees) is selected for the greenstone. The average cohesion is 23,664 psf from the calculations; however, the cohesion is capped at 12,500 psf based on the strength parameters used for limestone.

Stability analyses are focused on the highwall. The configurations modeled as part of this analysis meet or exceed the minimum acceptable factor of safety, as defined in Table 4.4. The stability of the backfilled soil slopes is analyzed in a separate report, North Quarry Backfill Geotechnical Evaluation. The final surface stability analysis does consider the presence of the backfilled material providing a buttress for the lower highwall slopes. Generally, geotechnical stability is governed by the mining influenced zone and the presence of limestone remaining in the highwall. Results from the stability analyses are shown in Table 4.7. Appendix B contains printouts of the slope stability sections.

Table 4.7 Geotechnical Stability Analyses Results

Section	Analysis Type	Upper Slope	Middle Slope			
^	Static	1.50	2.15			
A	Pseudo-static	1.17	1.67			
Б	Static	1.75	1.30			
В	Pseudo-static	1.31	1.04			
0	Static	1.92	1.32			
С	Pseudo-static	1.41	1.04			
D	Static	1.80	1.36			
D	Pseudo-static	1.35	1.09			
F	Static	1.95				
E	Pseudo-static	1.40				

Seismic displacements were calculated using an empirical equation developed by Bray and Travasarou (Bray 2007). This method estimates the displacement of a rigid block on a slope. This method is consistent with previous displacement analyses. The peak ground acceleration (PGA) value of 0.6g was used for the calculations, which is also consistent with previous analyses. This PGA corresponds to an earthquake with a mean return time of 475 years (Petersen 2008). The yield acceleration (ky) was calculated using the Slope/W model by adjusting the seismic

Geotechnical Evaluation

coefficient until the model provided a FoS = 1.0, and these values were used for the displacement calculation. The ky values and displacement results are listed in Table 4.8. The displacement calculations are included in Appendix C. Cross-sections with pseudo-static FoS greater than 1.15 will have minimal displacement during a seismic event (Seed 1982), and displacements for these cross-sections are assumed to be less than two inches (in). Literature on seismic slope displacements suggest that median displacements of less than 6 in (15 centimeters [cm]) are "minor" and displacements of greater than 3 feet (1 meter [m]) are "major" (Bray 2007). All displacements for the North Quarry are "minor" and unlikely to impact the reclaimed slope.

Table 4.8 Seismic Displacement Analyses Results

	Yield Acceleration	Seismic Displacement (in)							
Section	ky (g)	Median	16% Exceedance	84% Exceedance					
Section A - Upper Slope	na	<2	<2	<2					
Section A - Middle Slope	na	<2	<2	<2					
Section B - Upper Slope	na	<2	<2	<2					
Section B - Middle Slope	0.18	2	5	1					
Section C - Upper Slope	na	<2	<2	<2					
Section C - Middle Slope	0.185	2	4	1					
Section D - Upper Slope	na	<2	<2	<2					
Section D - Middle Slope	0.205	2	3	1					
Section E	na	<2	<2	<2					

The geotechnical analysis assumes that groundwater does not impact the highwall slope stability, and these conditions must be confirmed, or drains must be installed wherever groundwater is present to lower the groundwater elevations beneath the mining influenced zone. The geotechnical analysis also assumes that discontinuities that may create slide planes or wedge failures are not present beyond those identified by the fault and structure mapping. The design considers the presence of these faults and adverse dipping structure; however, additional geotechnical investigations should confirm the subsurface conditions where no faults were identified.

Recommendations

5.0 RECOMMENDATIONS

The geotechnical assessment provided in this report demonstrates that the proposed Reclamation Plan for North Quarry mine plan meets or exceeds SMARA requirements for factors of safety under static and seismic conditions. Recommendations for on-going geotechnical monitoring during development of the mine include:

- Additional delineation and mapping of geologic structures.
- Verifying groundwater levels in the highwall slopes by installation of groundwater monitoring instruments (standpipes, vibrating wire piezometers) as part of any future borehole investigations.
- Additional laboratory testing of representative rock lithologies and fault gouge zones.

Conclusion

6.0 CONCLUSION

This report provides the analysis and supporting information needed to demonstrate that Lehigh Southwest Cement Company's plan for reclamation operations at the North Quarry meets SMARA and associated design and performance requirements. The North Quarry will be excavated so that stable slopes remain, and positive drainage will remain for the reclamation periods. The geotechnical assessment provided in this report demonstrates that the proposed Reclamation Plan meets or exceeds the SMARA requirements for factors of safety under static and seismic conditions, and that these stable conditions are met during both the operational and reclamation periods.

This report has been prepared for Lehigh Southwest Cement Company to provide them with geotechnical guidance in support of the development and reclamation of the North Quarry. As mutual protection to Lehigh, the public, and Stantec, this report and its figures are submitted for exclusive use by Lehigh Cement Company. Our report and recommendations should not be reproduced in whole or in part without our express written permission, other than as required in relation to agency review and submittals. The drawings included with the report are for regulatory review and are not intended as detailed construction drawings. All information and design results contained herein have been prepared by the authors who have signed below and attached drawings have been certified by Nelson Kawamura, California, PE. A draft of this report was reviewed by personnel from Lehigh Southwest Cement Company.

Stantec Consulting Ltd.

Paul Kos P.E.

Senior Geological Engineer

Phone: 720-889-6122 paul.kos@stantec.com

Nelson Kawamura G.E.

Principal, Civil Engineer, Waterpower & Dams

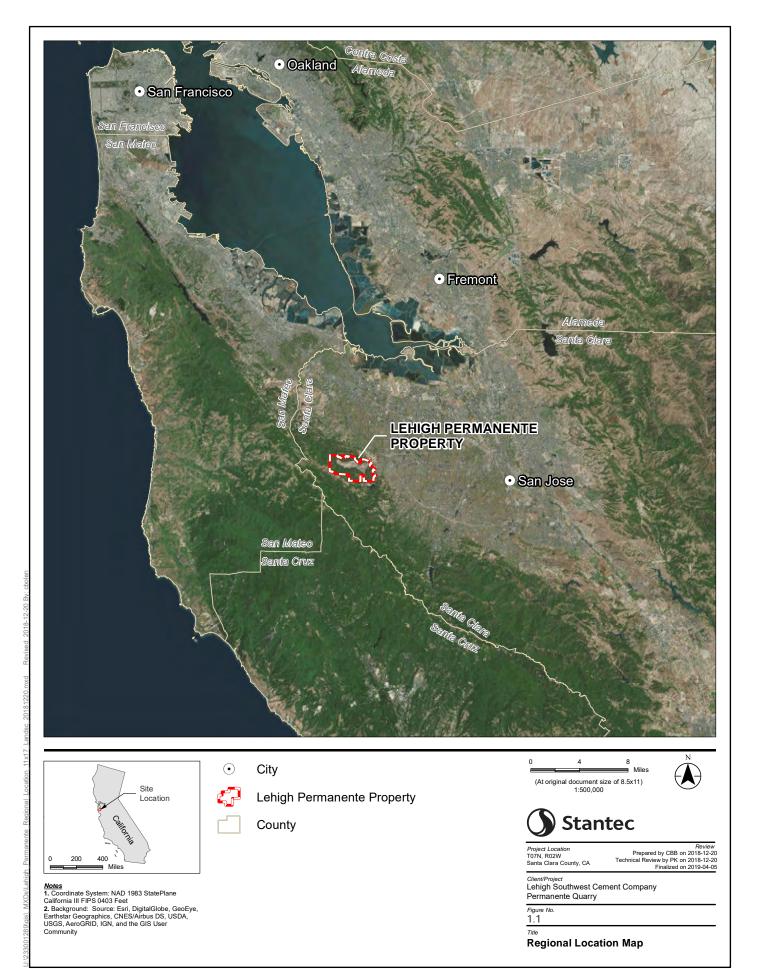
nelson Kawamura

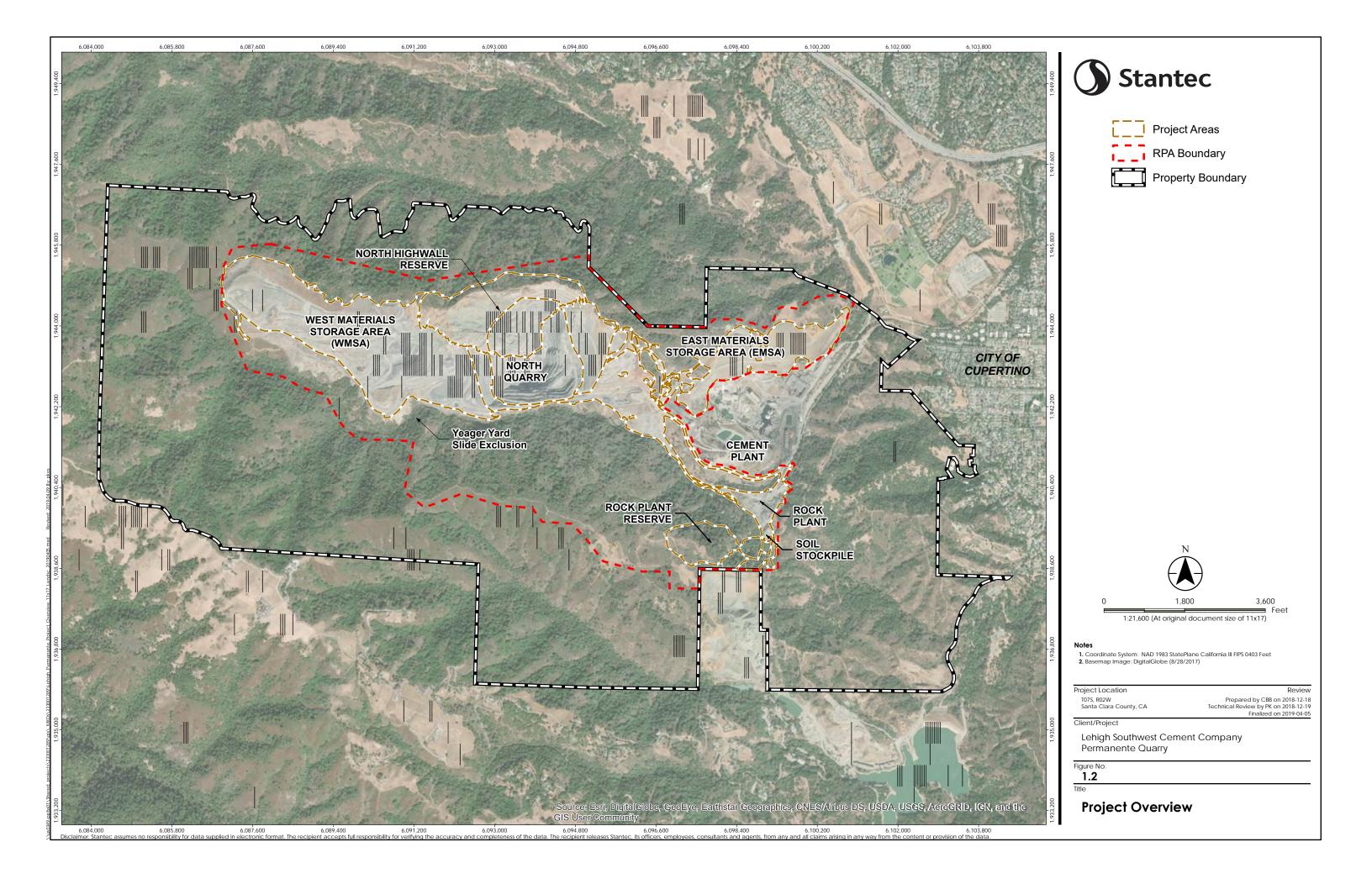
Phone: 503-220-5424

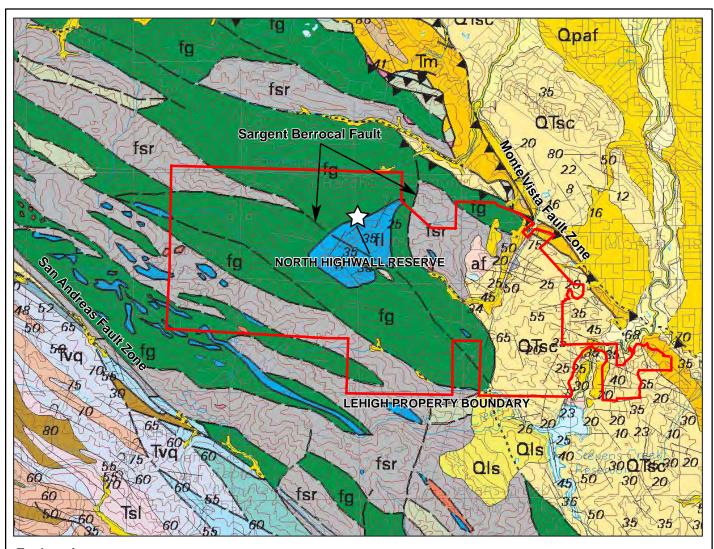
nelson.kawamura@stantec.com

April 5, 2019

References


7.0 REFERENCES


- Bieniawski, Z.T. 1989. Engineering Rock Mass Classifications. New York: Wiley. 1989.
- Bray, J. D., and Travasarou, T., 2007. "Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements", Journal of the Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 4, pp. 381-392.
- Foruria, J. September 2004. GEOLOGY OF THE PERMANENTE LIMESTONE & AGGREGATE QUARRY, SANTA CLARA COUNTY, CALIFORNIA. 2004.
- Golder Associates, November 2011. GEOTECHNICAL EVALUATIONS AND DESIGN RECOMMENDATIONS (REVISED). Permanente Quarry Reclamation Plan Update, Santa Clara County, California. 2011.
- Hoek et al, November 2000. Rock slopes in Civil and Mining Engineering. Proceedings of the International Conference on Geotechnical and Geological Engineering, GeoEng2000. Melbourne. 2000.
- Hustrulid, William A., McCarter, Michael K., Van Zyl, Dirk J.A. 2000. Slope Stability in Surface Mining. Society for Mining, Metallurgy, and Exploration, Inc. (SME), Littleton, Colorado. 2000.
- Petersen, Mark D., Frankel, Arthur D., Harmsen, Stephen C., Mueller, Charles S., Haller, Kathleen M., Wheeler, Russell L., Wesson, Robert L., Zeng, Yuehua, Boyd, Oliver S., Perkins, David M., Luco, Nicolas, Field, Edward H., Wills, Chris J., and Rukstales, Kenneth S., 2008. Documentation for the 2008 Update of the United States National Seismic Hazard Maps: U.S. Geological Survey Open-File Report 2008–1128, 61 p.
- Seed, H. B., 1979. "Considerations in the Earthquake-Resistant Design of Earth and Rockfill Dams," Geotechnique, vol. 29, No. 3, pp. 215-263.


Figures

FIGURES

- **Figure 1.1 Permanente Quarry Regional Location Map**
- Figure 1.2 Permanente Quarry Project Overview
- Figure 2.1 Permanente Quarry Regional Geology Map
- Figure 2.2 Permanente Quarry North Highwall Reserve Geology Map
- Figure 2.3 Permanente Quarry North Quarry Fault and Discontinuity Mapping
- Figure 3.1 Permanente Quarry North Highwall Reserve Existing Topography
- Figure 3.2 Permanente Quarry North Highwall Reserve Extent of Mining Topography
- Figure 3.3 Permanente Quarry North Highwall Reserve Reclamation Topography
- Figure 3.4 Permanente Quarry North Highwall Reserve Cross-Sections

Explanation

Map symbols

Contact - dashed where approximately located; dotted where covered by alluvium

Fault - Dashed where approximately located; short dashed where inferred; dotted where concealed by

Reverse or Thrust Fault - Dashed where approximately located, dotted where concealed by alluvium. Sawteeth on hanging wall

db

fsr

db - diabase and gabbro

fl - limestone

fs - sandsone

fc - chert

Franciscan Assemblage Rocks

fg - greenstone (metabasalt)

fsr - sheared rock (melange)

Strike and dip of bedding

Strike and dip of overturned bedding

Map units

Qls

Tvq

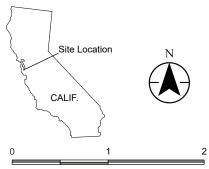
af artifical fill

landslide deposits

alluvial fan and fluvial deposits **Qpaf**

Santa Clara Fm (conglomerate, sandstone, mudstone) QTsc

Monterey Fm (shale) Tm


Tvq - Vaqueros Sandstone (sandstone/mudstone/shale)

San Lorenzo FM Tsl (shale/mudstone/siltstone)

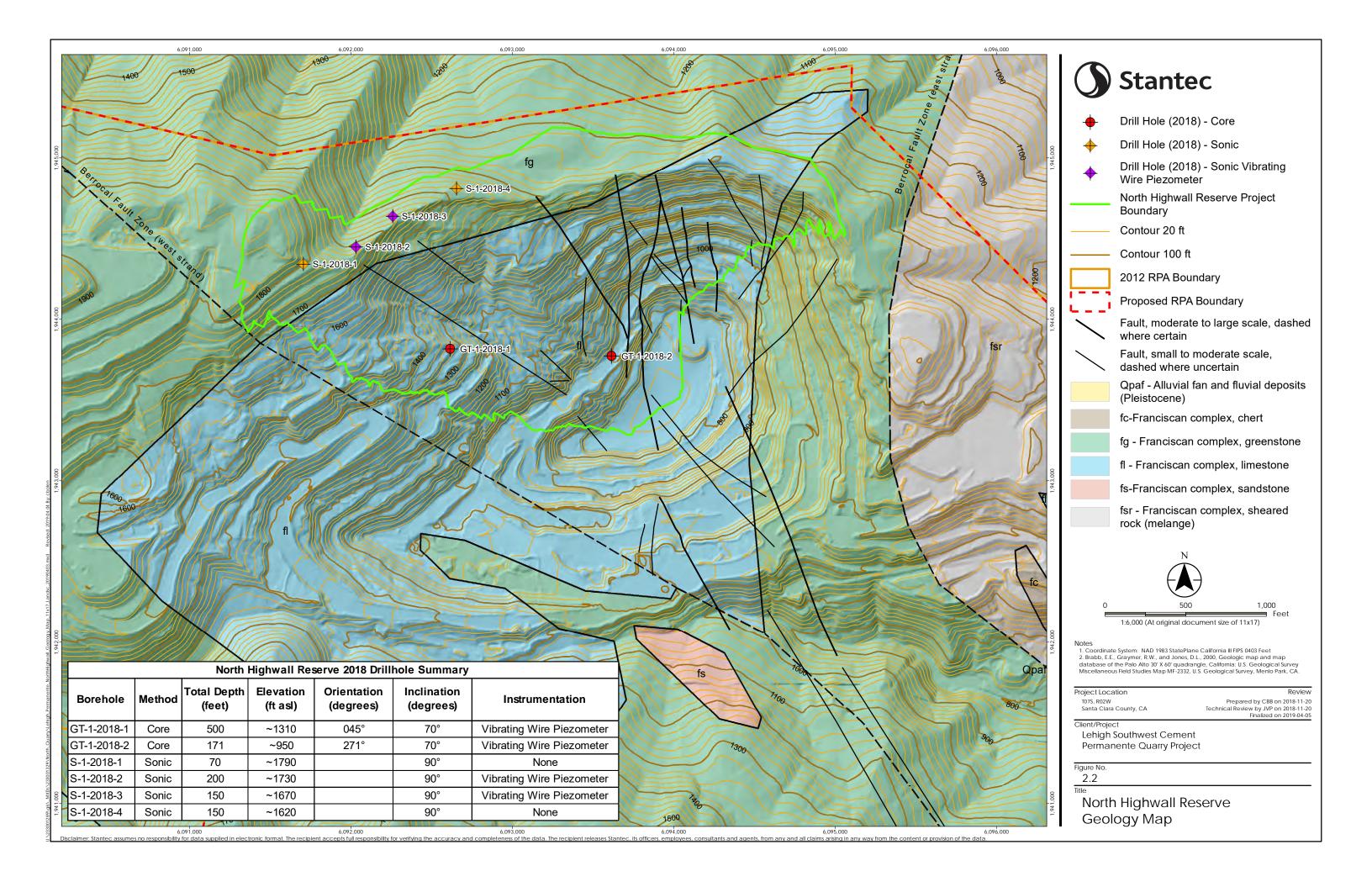
Butano Formation - undifferentiated Tbu (sandstone/conglomerate/shale)

Tblc **Butano Conglomerate**

Butano Sandstone Tbs

1. Coordinate System: NAD 1983 StatePlane California III FIPS 0403 Feet 2. Brabb, E.E., Graymer, R.W., and Jones, D.L., 2000, Geologic map and map database of the Palo Alto 30' X 60' quadrangle, California: U.S. Geological Survey Miscellaneous Field Studies Map MF-2332, U.S. Geological Survey, Menlo Park, CA.

Project Location Prepared by EDZ on 2018-07-05 Technical Review by JVP on 2018-07-05 Finalized on 2019-04-05 T07S, R02W Santa Clara County, CA


Client/Project

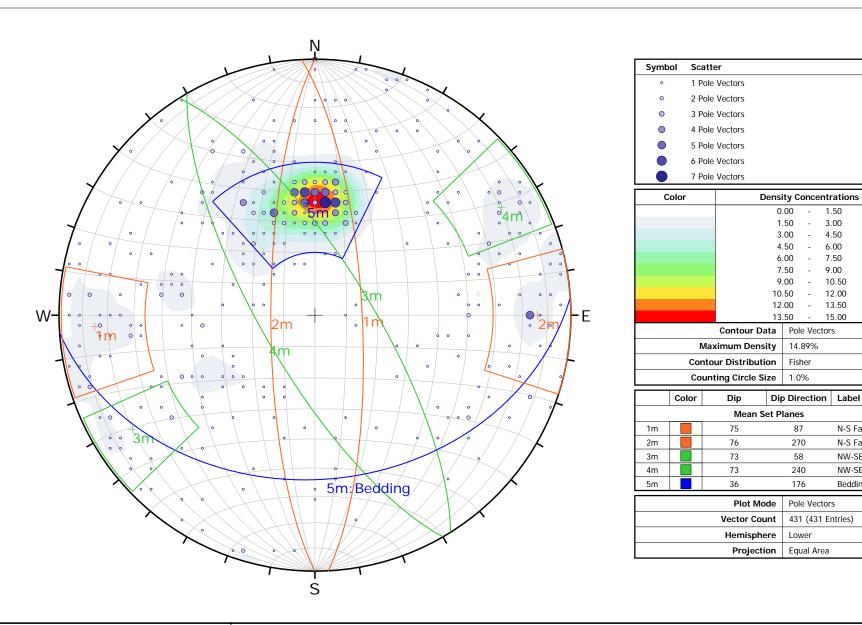
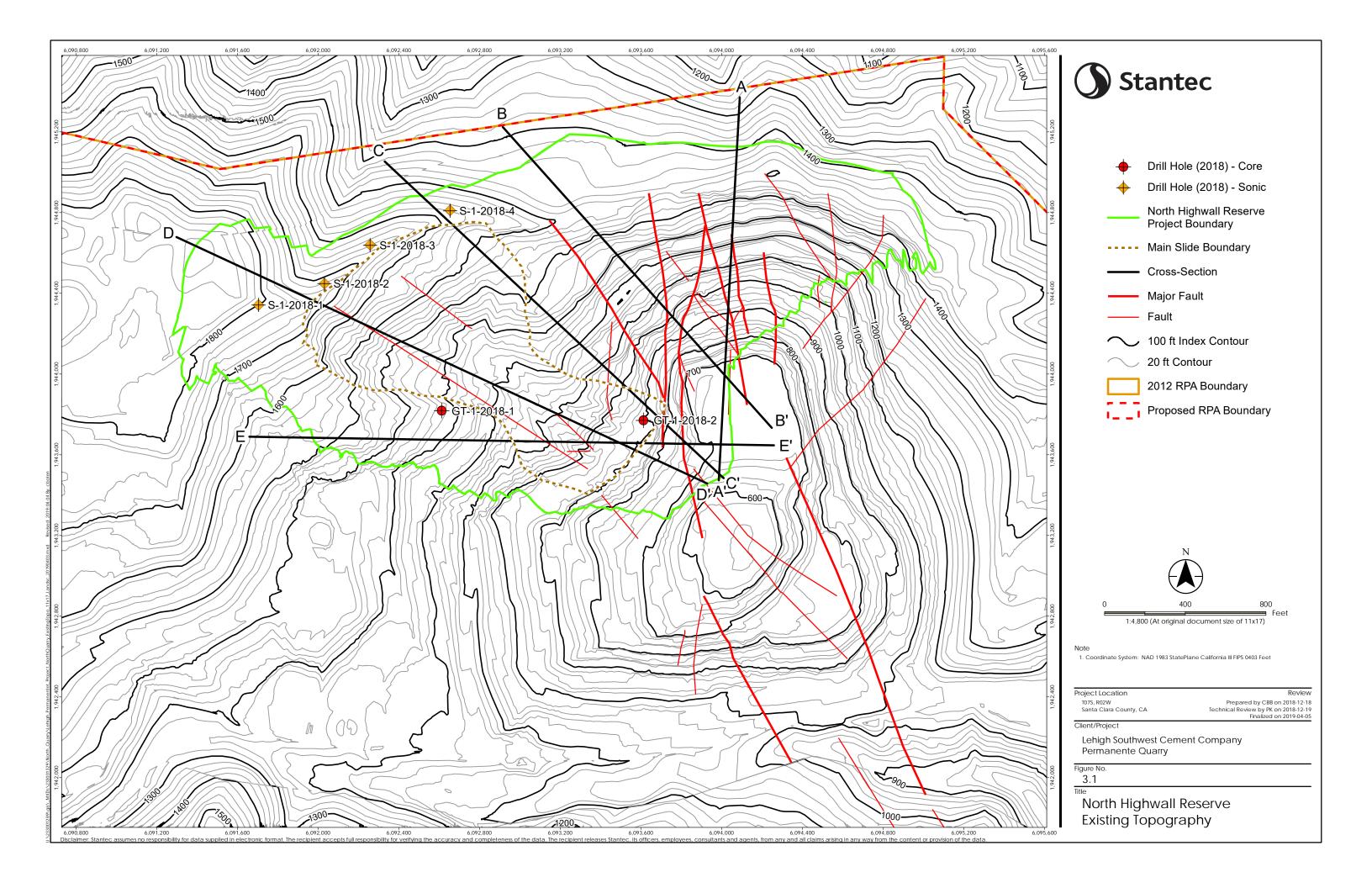

Lehigh Southwest Cement Permanente Quarry Project

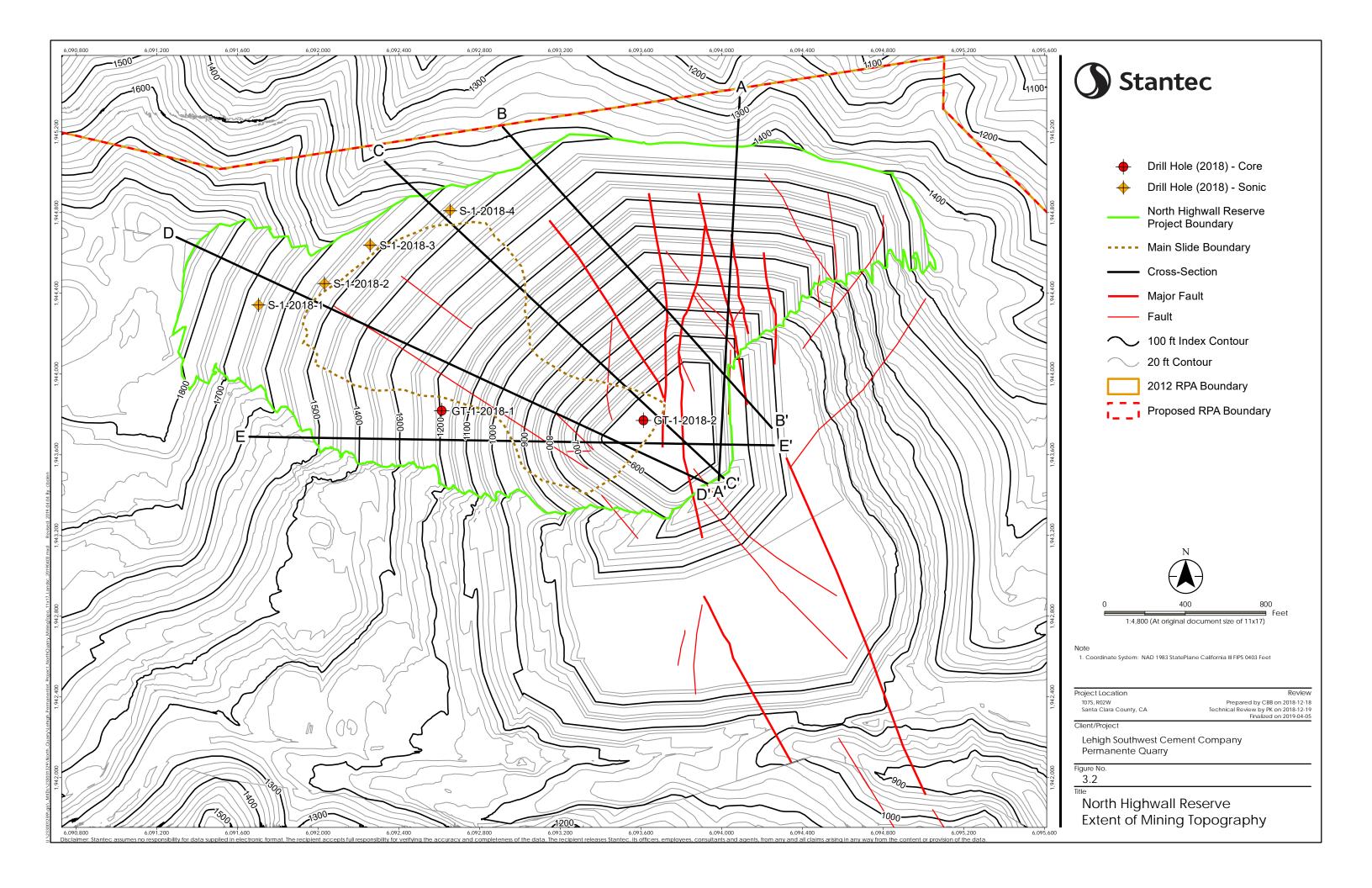
Figure No.

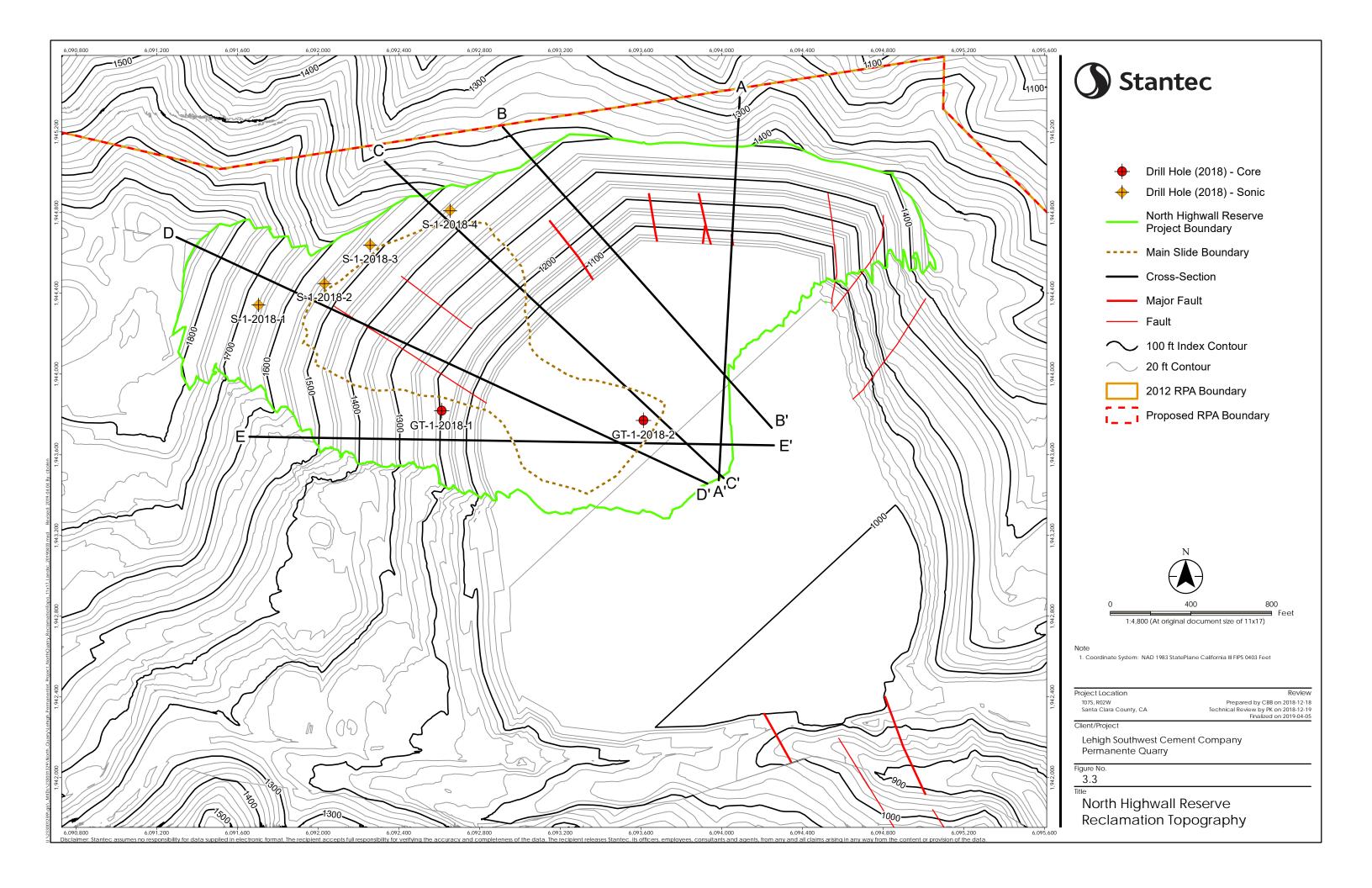
2.1

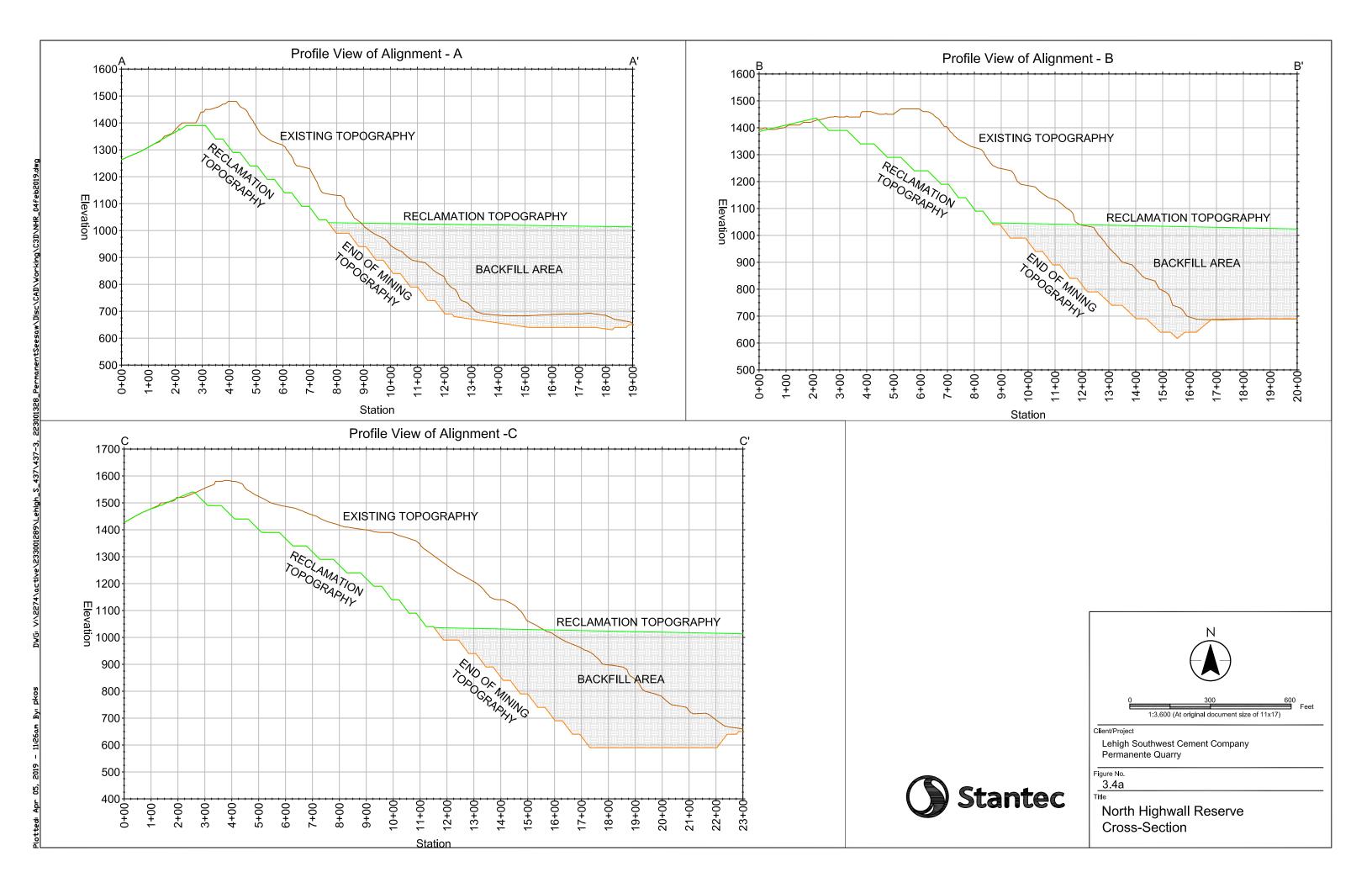
Regional Geology Map

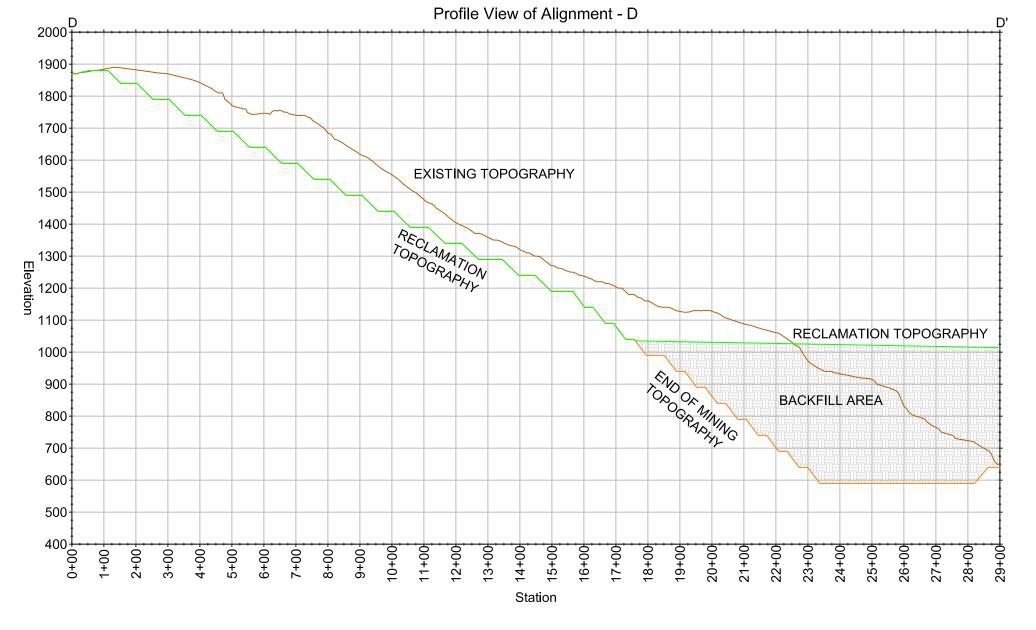
15.00

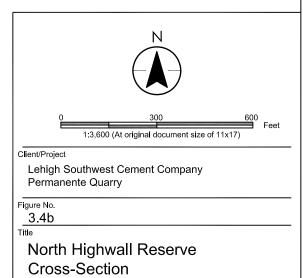

N-S Fault/joint

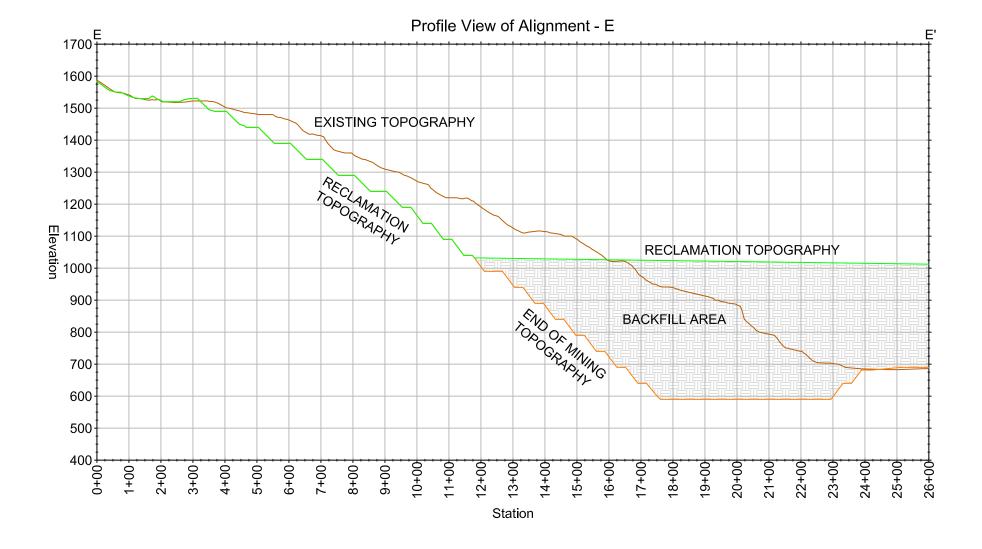

N-S Fault/joint NW-SE Joint/faul

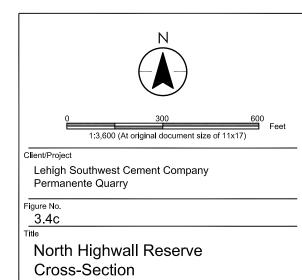

NW-SE Joint/faul


Bedding


	Figure 2.3 North Quarry Fault and Discontinuity Mapping							
1015	Analysis Description							
ssience	<i>Drawn By</i> J. Van Pelt	Company Stantec						
DIPS 7.006	Date 04/05/2019, 9:29:21 AM	File Name Fault and discontinuities mapping with downhole data.dips7						







Appendix

APPENDIX A Drilling Logs

Date Start: 9/23/18			Drilling Co.: Cascade					CORE LOG GT-1-2018-1												
		Cup					500470 004	Drill Rig: LF70 / Drilling Method: Core Drill Bit Type/Size: HQ						•	,0					1 of 51
		levati				eet Al	592478.831 MSL			<u>!</u> eday, S. Brir	nton. L. Ro	odriaue	z .	Tota	Dep	th: 500				10.01
		evatio				et AM		Prepared By: S. Clarke				-	Groundwater Data: ft bgs,							
Azim	nuth: (045 / 1	nclir	natio	n: 20)		Checked By: J	. Van l	Pelt									Ľ.	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	scription		Recovery %	RQD % & 8 8 8	Fractures per ft.	Drawing	qiQ	Disc Midth	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
-	- - 2 -						OVERBURDEN - Yel fractured, weathered,	lowish-brown, 10YR oxidized	5/4,		16	>10								
-	- - 4 -		1/1	W4	R0-R1					5	16	>10		E	Z					
-	-			W3	R2-R3		LIMESTONE - 10B 6/ moderately weathere strong, abundant calc	d. weak to moderatel	tly to ly			1		90 45 N	J IB			PI Ir	R R	4.2-5' Retained for analysis
_	6 -			M3	R2							>10		45	J J Z			ir ir	R R	
_	8 -		2/1							40	7	>10								
-	-											>10								
			3/2	w3	R1-R2		METABASALT/Greer greenish-gray, slightly very weak to weak, ca	y to moderately weat	hered,	24	0									
DISCO	NTINUI	TY TYPI		APER/	ATURI	E		INFILLING SHAPE		ROUGHNES	s	DISC	CONTI	NUITY	SPAC	ING	v	/EAT	HERI	NG STRENGTH
F - Fault J - Joint Fz - Frac S - Shea Sz - Shea V - Vein Fo - Folia B - Bedd MB - Med Bz - Brok	r ar Zone ation ing Joint chanical B ten Zone	reak	Narro Oper Wide	Narrow ow (N) n (O) (W)	0.08	0.05" C C 5-0.1" E Fi 1-0.5" G >0.5" M	i - Biotitie Mn - Manganese Cl I - Clay My - Mylonite St a - Calcite No - None Sp p - Cpidote Py - Pyrite Pa p - Epidote Qz - Quartz Fil	ean (No) ained (Su) ottly (Sp) prial Filled (Pa) led (Fi) mented (Cm) Wa - Wavy PI - Pianer St - Stepped Ir - Irregular	Smooth (S) Slightly Ro Rough (R) Very Rough	smooth sugh (Sr) Asperities are and can be fe Asperities are some ridges of feels abrasive Near-vertical ri surface	distinguishable t tclearly visable, vident, surface dges occur on	Extremel Wide (W) Moderate Close (C) Very Clos Extremel) e (M) i) se (VC ly Clos) e (Ex)	0.7	2ft-6ft 8in-2ft 4.4in-8in 5in-2.4in <0.75in		y (W2 ately (W4) etely uum ((W3) (W5) (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Mode(R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

		t: 9/23				10/8/	18	Drilling C		Cascad						:OI	RF	10	G	GT.	-1-2018-1
		Cup					-00470 004				Method: Co	re				,0				lo. 2 d	
		levati				ting: t	592478.831	Drill Bit T Logged B	-		day, S. Brint	on I R	odrigu	97	Total	Den	th: 50			0	<i>5</i> , 6, 1
		evatio				et AM		Prepared				ion, E. 10	ourigu				ater Da			ogs,	
		045 / I						Checked		. Van F					0100	IIGVVC	ator Du	tu.	10.	Jg5,	
								•								Disc	ontinuitie	s	1	H	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery % & & & &	8 8 8 8 % RQD	Fractures per ft.	Drawing	Dip	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
-	- - 12 -		3/2	W3	R1-R2		METABASALT/GREI	ENSTONE, c	continued	1	24	0	>10		E	z					
-	- 14 -												>10								
	-		4/2								63	0	>10								
-	16 -			W2-W4	R1-R2								>10								
-	18 –			4	5								>10		B		CI Eo	Fi	le.	Vr	
	-		5/2	W2-W4	R1-R2						91	24	2				CI, Fe	Pa		Sr	
	-		6/3	W2-W4	R1-R2						33	0	0								
			\perp	Χ.	œ													\perp			
	NTINUI	TY TYPE	-		ATURI		INFILLING TIPE	AWOUNT	SHAPE	eli-t	ROUGHNESS			SCONT		SPAC				HERING	STRENGTH
F - Fault J - Joint Fz - Frac S - Shea Sz - Shea V - Vein Fo - Folia B - Bedd MB - Med Bz - Brok	r ar Zone ation ing Joint chanical B	Try Type						tained (Su) potty (Sp) artial Filled (Pa) illed (Fi) emented (Cm)	/a - Wavy I - Planer t - Stepped - Irregular	Smooth (S)	d (Sik) Visual evidence and striations Surface appears smooth ugh (Sr) Aspertities are d and can be felt Aspertities are c some ridges evi feels abrasive (Vr) Near-vertical rid, surface	s and feels istinguishable learly visable, ident, surface	Extrem Wide (V Modera Close (Very Cl Extrem	V) ite (M) C) ose (V(c)	2	>6ft 2ft-6ft 8in-2ft 4in-8in 5in-2.4in <0.75in	Fresh Slight Mode Highly Comp Resid	ly (Warately (W4) letely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Loca	tion:	t: 9/23 Cup	ertin	o, C	alifo		18 592478.831				Method: C	ore			(0				GT-	1-2018-1
		levation				eet Al		Logged	• • • • • • • • • • • • • • • • • • • •		day, S. Brir	nton, L. R	odrigue	ez	Tota	l De	pth: 50	0.0 fe	et		
Botto	m El	evatio	n:	86	0 fe	et AM	SL	Prepare	ed By: S	S. Clark	е				Grou	ındv	ater Da	ıta:	ft k	ogs,	
Azim	uth: (045 / I	nclir	atio	n: 20)		Checke	ed By: J	l. Van I	Pelt										
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery %	RQD % 8 8 8	Fractures per ft.	Drawing	Dip	Type	Continuitie Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
-			6/3				METABASALT/GREE	ENSTONE	, continued	1	33	0	>10		1	3Z					
-	- - 24 -			W2-W3	R1-R2								>10 >10								
-	- - 26 -		7/3	W3	R0-R1		becomes brecciate		to modera	 telv	62	26	>10		100	3Z					
-	28 -			W2-W3	R2		weathered, weak	a, ongray	to modoro	iciy			5		75 70 18 50 85	J VI J VI J VI	Ca, Fe	Pa Fi Fi Fi Fi	PI PI PI PI	ST ST R ST	
_	-		8/3	w3	R0-R1						100	0	->10 >10		1	J VI	n Ca	Pa Fi	PI	Sr R	
			9/4	W2-W3	R2						71	34									
	_		\perp	3					1	1			Ш		60	J Vı	n Fe	Fi	PI	R	
F - Fault J - Joint Fz - Frac S - Shear Sz - Shear V - Vein Fo - Folia B - Beddi MB - Med Bz - Brok	Discontin ture Zone ar Zone tion ng Joint hanical B en Zone	reak	Tight Very Narro Open Wide	(T) Narrow ow (N) I (O) (W)	0.4	0" B C 0.05" C 5-0.1" E F- 1-0.5" G >0.5" M	- Biotitie	ean (No) ained (Su) obottist Filled (Pa) lled (Fi) mented (Cm)	SHAPE Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Ro Rough (R) Very Rough	and can be fe Asperities are some ridges of feels abrasive Near-vertical r surface	e of polishing irs and feels distinguishable t clearly visable, vident, surface dges occur on	Extrem Wide (V Modera Close (Very Cl Extrem	ite (M) C) ose (V(ely Clo	le (EW	0.	>6ft 2ft-6ft 8in-2ft 2.4in-8in 75in-2.4in <0.75in	Fresh Slightl Moder Highly Compl Residu	(W1) y (W2 ately (W4) letely uum ((W3) (W5) W6)	STRENGTH Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Sta					10/8/	18	Drilling C		Cascad					_		DE I	\cap	C	СT	-1-2018-1
Location:						500470.004				Method: C	ore			•	,0					of 51
Surface I					eet Al	592478.831 MSL	Drill Bit 1 Logged B			day, S. Brii	nton. L. Ro	driau	ez	Tota	Der	oth: 500				0.01
Bottom E					et AM		Prepared				,	- u g u.				ater Data			ogs,	
Azimuth:	045 / 1	nclir	atio	n: 20)		Checked	d By: J	J. Van F	Pelt									Ľ	
Elevation, ft MSL Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery %	RQD %	Fractures per ft.	Drawing	qiQ	Disc Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
	-					METAVOLCANIC/GF continued	REENSTON	E/BREC	CIA,	8 6 4 20	20 40 60 80 80	4		70	J Vn	Ca, Fe Ca, Fe	Pa	Wa Wa	Sr R	
	-		W3	R1-R2										45	J Vn Z	Ca/CI Ca, Fe		PI PI	Sr Sr	
32		9/4									34	8			J Vn J Vn	Ca, Fe		PI PI	Sr Sr	
	_		X	X								>10		E	z					
34	_											>10		35	J Vn	Ca, Fe	Fi	PI	R	
	-		W2-W3	R1-R2								3		30		Ca, Fe, Cl Ca, Fe, Cl	Fi Fi	PI PI	Sr Sr	
36	-	10/4		\ /						58	48	>10								
	-		\bigvee									>10								
29.	-		$/\setminus$	$/ \setminus$								>10								
- 38	-	11/4								0	0	>10								
-		12/5		X			INFILLING			4	0	>10								
DISCONTINU F - Fault J - Joint (Discont Fz - Fracture Zor S - Shear Sz - Shear Zone V - Vein Fo - Foliation B - Bedding Join MB - Mechanical Bz - Broken Zone	t Break	Tight Very Narro Oper Wide	(T) Narrow ow (N) I (O) (W)	0.0	0" E 0.05" C 5-0.1" E 1-0.5" G >0.5" N	ii - Biotitie Mn - Manganese C II - Clay My - Mylonite S a - Calcite No - None S the Chlorite Py - Pyrite P p - Epidote Qz - Quartz Fi	AMOUNT lean (No) tained (Su) potty (Sp) artial Filled (Pa) illed (Fi) emented (Cm)	Wa - Wavy Pl - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Roi Rough (R) Very Rough	smooth ugh (Sr) Asperities are and can be fe Asperities are some ridges feels abrasiv Near-vertical i surface	ce of polishing s ars and feels distinguishable it clearly visable, evident, surface didges occur on	Extrem Wide (V Modera Close (Very Cl Extrem	N) ate (M) (C) lose (VO lely Clo	le (EW) C) se (Ex)	0.7	>6ft F 2ft-6ft S 8in-2ft M 2.4in-8in F 5in-2.4in C <0.75in F	resh Blightl Moder Iighly Compl Residu	(W1) y (W2 ately (W4) letely uum ((W3) (W5) W6)	STRENGTH Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start					10/8/	18	Drilling		Cascad)DE		\cap	C	GT_	1-2018-1
Location:						592478.831		g: LF70 / Type/Siz			d: Co	re			•		JINL				o. 5 of	
Surface El					eet A		Logged				Brin	ton, L. R	odrique	ez	Tota	al D	epth:				<u> </u>	<u> </u>
Bottom Ele					et AlV			ed By: S				,					 lwater			ft b	ogs,	
Azimuth: 0)45 / I	nclir	atio	n: 20)		Checke	ed By: J	J. Van F	Pelt											Ι,	
Elevation, ft MSL Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recove	1	RQD % 워 육 윤 윤	Fractures per ft.	Drawing	Dip		Migda	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
42 -		12/5				METAVOLCANIC/Gf continued	REENSTO	NE/BREC(CIA,	4		0	>10									
44 -			W2-W3	R1-R2									>10			BZ						
46 -		13/5	W2-W3	R1-R2						100		40	>10		50 20 30 15 20	J	Vn Fe, C Vn Fe, C Vn Fe Vn Fe Vn Cl, Fe	a	Fi Pa		Sr Sr R R R	
48 -			w3	-R1									>10		20 20 50	J	Vn Fé, C Vn Cl, Fe Vn Cl, Fe	a, Cl	Fi Fi	P. P. P.	R Sr Sr	
-		14/5	\$	R0-R1						88		60	0			BZ						
-		15/6	W3	R0-R1				I		50		20	>10									
DISCONTINUIT	TY TYPE	4	PER/	ATURI	E	INFILLING TYPE	AMOUNT	SHAPE		ROUGH			DIS	CONTI	INUIT	Y SF	ACING		W	EATI	HERING	STRENGTH
F - Fault J - Joint (Discontinu Fz - Fracture Zone S - Shear Sz - Shear Zone V - Vein Fo - Foliation B - Bedding Joint MB - Mechanical Br Bz - Broken Zone	eak	Narro Open Wide	Narrow ww (N) (O) (W)	0.0	0.05" (0.05" (0.05")	Cl - Clay My - Mylonite S Ca - Calcite No - None S Ch - Chlorite Py - Pyrite P Ep - Epidote Qz - Quartz F	lean (No) tained (Su) potty (Sp) artial Filled (Pa) illed (Fi) emented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Rou Rough (R) Very Rough	Surfac smoot ugh (Sr) Asperi and ca Asperi some feels a (Vr) Near-ve surfac	triations e appear h ties are d an be felt ties are c ridges ev ibrasive ertical rid e	s and feels istinguishable learly visable, ident, surface ges occur on	Extreme Wide (V Modera Close (V Very Cle Extreme	V) te (M) C) ose (VC ely Clos	C) se (E)	c)		ft Si ft M in H in C 5in R		(W2 stely (W4) etely um ((W3) (W5) W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date	Star	t: 9/23	/18	Е	nd:	10/8/	18	Drilling Co.: C	Cascac	le					<u>``</u>	DE I	_	C	G	T-1-2018-1
		Cup					-00470 004	Drill Rig: LF70 /			ore			•	,0					6 of 51
		levation				eet Al	592478.831 MSI	Drill Bit Type/Siz		eday, S. Brir	nton I Ro	driane	27	Tota	l Der	oth: 500				00.01
		evatio				et AM		Prepared By: S			1011, L. 110	on igue				ater Dat			bgs,	
Azim	nuth: (045 / I	nclir						. Van l					0100	IIIGVV	ator Dai	<u>u.</u>	10.	<u>J</u>	
															Disc	ontinuitie:	s		$\dot{\exists}$	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription		Recovery	RQD % 8 8 8 8	Fractures per ft.	Drawing	diQ	l ype Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
	- 52 -		15/6				METAVOLCANIC/GF continued	REENSTONE/BREC	CIA,	50		>10		40	J Vn	Fe, Ch	Pa	PI	R	
_	- 54 -			W3	R1						20	4		10 E	SZ J Vn J Vn	Fe, Ca Ca, Cl Ca, Fe Fe, Ca, Cl	Fi Fi Fi	Pi Ir	R S R Vr	
	-				R4		LIMESTONE - grey to medium grained, sligl with intervals of mode moderately strong to weak, moderately sof	htly weathered to frest erate weathering, weak, occasionally v ft to moderately hard,	sh, ery			5		50 60 40	J Vn J Vn J Vn	Ca Ca Ca Ca	Fi Fi Fi	PI PI	Sr Sr R	
-	- 56 -			W1	R3		occasional sheared z	ones, carbonaceous				7 >10		40 40 10	J Vn	Ca Ca Ca	Pa Fi Fi	PI PI	S R	BZ = Numerous calcite veins
-	58 -		16/6		1					89	11	>10								
_	-			X	X							7		E	3Z					
	-		17/6	W2	R2					86	11	8				Ca Ca	Fi Cm	PI	s	BZ = Numerous calcite veins
DISCO	NTINUI	TY TYPE		PER	ATUR	E		INFILLING AMOUNT SHAPE		ROUGHNES		DIS	CONT	INUIT	SPAC	ING	W	/EAT	HERI	ING STRENGTH
F - Fault J - Joint Fz - Frac S - Shea Sz - Shea V - Vein Fo - Folia B - Bedd MB - Med Bz - Brok	ture Zone r ar Zone ation ing Joint chanical B ten Zone	reak	Narro Open Wide	Narrow ww (N) (O) (W)	0.0	0.05" C C 5-0.1" E Fi 1-0.5" G >0.5" M	- Clay	lean (No) Jained (Su) Jootty (Sp) Jorda Filled (Pa) Bed (Fi) Henerited (Cm) Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S Slightly Ro Rough (R) Very Roug	smooth smooth pugh (Sr) Asperities are and can be fel Asperities are some ridges of feels abrasive Near-vertical ri surface	distinguishable t clearly visable, vident, surface dges occur on	Extreme Wide (W Moderat Close (C Very Clo Extreme	() te (M) C) ose (VC ely Clos	;) se (Ex)	0.7	2ft-6ft 8in-2ft 2.4in-8in 5in-2.4in <0.75in		y (W2 ately (W4) etely uum ((W3)) (W5) (W6)	Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

		: 9/23				10/8/	18	Drilling	Co.: (Cascad	е					·	DE I	<u> </u>	C	G	T-1-2018-1
		Cup					502470 024				Method: C	ore									7 of 51
		levati				eet Al	592478.831 MSL	Logged	Type/Siz		day, S. Brir	ton. L. R	odriau	ez	Total	Dep	th: 50			-	
		evatio				et AM			ed By: S			,					ater Da			ogs,	
Azim	uth: ()45 / I	nclir	atio	n: 20)		Checke	ed By: J	J. Van F	Pelt									Ĭ,	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery	RQD % & & & &	Fractures per ft.	Drawing	Dip		Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
							LIMESTONE, continu	ued				240						+		\Box	
-			17/6	W2	R2						.86	11	3		50 50 50 50 50 50 50 50 50 50 50 50 50 5	Vn Vn Vn Vn	CI	No No No No No	Ir PI PI PI PI PI PI PI	RSS S S SS R R	
_	-			W2 W1	R2 R4								2		50 50 M	Vn Vn		No No	Ir PI PI Ir	R SS R	
_	-		18/7								52	34	4		F F F	z			lr lr lr	R R R	
_	66 -			$\left\langle \right\rangle$									>10								
_	- 68		19/7	W1	R2						92	92	1		70 N	В	Ca, Cl		PI PI	R R	
_	-		20/7	W1	R3						50	40	2		45 M				PI PI	Sr R 6	i8.8-69.2' Retained for analysis
			\Box			щ:		INFILLING	Ι				\perp		90 F		No	\perp	lr	R	
F - Fault J - Joint (Fz - Fract S - Shear Sz - Shear V - Vein Fo - Folial B - Beddii MB - Mec Bz - Broke	Discontinure Zone r Zone ion ng Joint nanical Ben Zone	uity) reak	Tight Very Narro Open Wide	(T) Narrow ow (N) I (O) (W)	0.08	0" E 0.05" C 5-0.1" E 1-0.5" G >0.5" N	i - Biotitie Mn - Manganese C I - Clay My - Mylonite S a - Calcite No - None S p - Chlorite Py - Pyrite P p - Epidote Qz - Quartz F	AMOUNT clean (No) tained (Su) potty (Sp) arrtial Filled (Pa) illed (Fi) temented (Cm)	SHAPE Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Roi Rough (R) Very Rough	smooth ugh (Sr) Asperities are and can be fe Asperities are some ridges of feels abrasive Near-vertical ri surface	e of polishing rs and feels distinguishable clearly visable, vident, surface dges occur on	Extrem Wide (I Modera Close (I Very C Extrem	ate (M) (C) lose (Vonely Clo	le (EW)	0.7	>6ft 2ft-6ft 8in-2ft 2.4in-8in 5in-2.4in <0.75in	Fresh (Slightly Modera Highly Compl Residu	(W1) y (W2 ately (W4) etely ium ((W3) (W5) W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18	Drilling Co.: Casc			C	ORF	LOG GT-	1_2018_1
Location: Cupertino, California Northing: 1857033.632 / Easting: 592478.831	Drill Rig: LF70 / Drilli Drill Bit Type/Size: F			•		Sheet No. 8 of	
Surface Elevation: 1330 feet AMSL		oveday, S. Brinton, L.	Rodriguez	Total		00.0 feet	
Bottom Elevation: 860 feet AMSL	Prepared By: S. Cl			Grour	idwater D	ata: ft bgs,	
Azimuth: 045 / Inclination: 20	Checked By: J. Va	ın Pelt			Discontinui	ties	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery RQI % % 유용율 유용	er f		of Infillina	Amount of Infilling Surface Shape Roughness	Comments
72 - 20/7	ontinued, dark gray-black,	50 40	3 >10 >10	90 J 80 J 80 Fz 80 Fz 30 J	Vn Ca Vn Ca Vn No	Pa Pi R Pa Pi Pa Pi Pa Ir Sr Pa Ir Sr	
- 76 -		72 40	2 3 >10	80 J 80 J 80 J 80 J 80 J 80 J	T Ca T Ca T Ca Vn Cl Vn Cl Vn Cl	Fi Fi Fi Pa Pi R Pa Pi R Pa Pi R Pa Pi R	
DISCONTINUITY TYPE F - Fault J - Joint (Discontinuity) F - Fault Very Narrow (Vn) < 0.05* S - Shear Zone V - Vein F - Foliation F - Foliatio	Smoot Sportly (Sp)	tly Rough (Sr) Asperities are distinguishab and can be felt Asperities are clearly visabl some ridges evident, surfac feels abrasive Rough (Vr) Near-vertical ridges occur or surface	Extremely V Wide (W) Moderate (I Close (C) Very Close Extremely ((VC) Close (Ex)	>6FACING >6ff 2ft-6ft 8in-2ft 2.4in-8ir 0.75in-2.4i <0.75i	Slightly (W2) Moderately (W3) h Highly (W4) n Completely (W5) n Residuum (W6)	STRENGTH Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End:	10/8/18	Drilling Co.: Cascad	de		CORE	LOCCT	1 2010 1
Location: Cupertino, Califo		Drill Rig: LF70 / Drilling				LOG GT-	
Northing: 1857033.632 / Eas		Drill Bit Type/Size: HC) a alui :		Sheet No. 9 of	1 J I
	feet AMSL et AMSL		eday, S. Brinton, L. F	Rodriguez	Total Depth: 50		
Azimuth: 045 / Inclination: 20		Prepared By: S. Clar Checked By: J. Van			Groundwater Da	ata: ft bgs,	
		onecked by. v. van	T T		Discontinuit	ies	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index	Graphic Log	escription	Recovery RQD %	Fractures per ft.	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
82 - 22/8	LIMESTONE, continu	wavy calcite filled veins	70 52	1 4 >10	45 J Vn Cl, Ca 80 J Vn Cl 60 J Vn Cl 45 J Vn Cl, Ca 45 J Vn Cl, Ca 60 J Vn Cl, Ca 80 J Vn Cl 80 J Vn Cl	Pa PI R Pa PI R Pa PI Sr Pa PI Sr Pa PI R Pa Ir R Pa Ir R	
23/8 ZW-1-X	METAVOLCANIC/GF sheared	REENSTONE/BRECCIA,	78 72	>10 	BZ 45 Fz Vn Ca	Pa Pi R	
86 - - - 23/9 - 88 -	LIMESTONE, continu	ied, sheared	78 72	0	45 Fz Vn Ca 45 Fz Vn Ca	Pa PI R Pa PI R	
DISCONTINUITY TYPE APERATURI F - Fault J - Joint (Discontinuity) F - Fracture Zone Very Narrow (Vn) <	0" Bi - Biotitie Mn - Manganese C	INFILLING	and striations Surface appears and feels	Extremely W	2ft-6ft	Slightly (W2)	STRENGTH Extremely Weak (R0) Very Weak (R1)
S - Shear	Ch - Chlorite Py - Pyrite P		some ridges evident, surface feels abrasive	Moderate (M Close (C) Very Close (Extremely C) 8in-2ft 2.4in-8in VC) 0.75in-2.4in	Moderately (W3) Highly (W4) Completely (W5)	Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

		t: 9/23				10/8/	18	<u> </u>	Cascad					_	∩P)		C	GT.	1-2018-1
		Cup						Drill Rig: LF70 /			ore			C	UN				o. 10 o	1
							592478.831	Drill Bit Type/Siz											J. 10 C	11 31
		levati				eet Al				day, S. Brin	iton, L. Ro	odrigu				: 500				
		evatio				et AM	SL	Prepared By: S	J. Van f					Grour	dwate	er Dat	a:	ft b	ogs,	
AZIII	iuin.	145 /	HCIII	iatio	11. 20	, 		Checked By:	J. Vali i	-eii		т т			Discon	tinuitie				
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription		Recovery	RQD % 8 8 8 8	Fractures per ft.	Drawing	Dip Type	Width	Type of Infilling	Di Di	Surface Shape	Roughness	Comments
-	-				R1-R2 R1		LIMESTONE, continu	ed, gray to black				0		45 J	Vn Ca	a	Fi	Са	Sr	
	92 -						METABASALT/GREE fine to medium graine moderately strong, ha	ed, fresh, weak to	green,					25 J	Vn Ca	a	Fi	Wa	s	
	-		24/9	W1						106	82	5		45 J BZ	Vn Ca	a	Pa	PI	Sr	
	-				R2-R3							4		10 J 20 J	Vn Ca Vn Ca	a a	Fi	PI Ir	Sr R	
1	94 -													80 J 40 J	Vn Ca Vn Ca	a a	Pa Pa	PI PI	S R	
-	- 96											0		20 J	Vn Ca	a	Sp	PI	R	
-	-		25/10	W1	R1-R2					100	88	3		20 J	Vn Ca		Sp	PI PI	R R	
-	98 -											6		20 J 20 J 20 J 20 J 20 J	Vn Ca Vn Ca Vn Ca Vn Ca	a a a a	Sp Sp Sp Sp Sp	PI PI PI PI	R R R R	
	-											5		20 J45 J45 J45 J	Vn Ca Vn Ca Vn Ca	a a	Sp Sp Sp	PI PI PI	R R R R	
	-		26/10	W1	72					98	98	1								
DISCO	NTINUI	TY TYP	4	APER/	ATUR	E	INFILLING TYPE	INFILLING AMOUNT SHAPE		ROUGHNES		DIS	CONTI	NUITY	PACIN	G	W	/EAT	HERING	STRENGTH
F - Fault J - Joint Fz - Frac S - Shea Sz - Shea V - Vein Fo - Folia B - Beddi MB - Meo Bz - Brok	ture Zone Ir Zone tion ng Joint hanical B		1	Narrow ow (N)	0.	:0.05" C 5-0.1" E 1-0.5" G	I - Clay My - Mylonite St a - Calcite No - None Sp h - Chlorite Py - Pyrite Pa p - Epidote Oz - Quartz Fil	ean (No) ained (Su) Vity (Sp) Pi - Planer rital Filled (Pa) led (Fi) mented (Cm) Wa - Wavy Pi - Planer St - Stepped Ir - Irregular	Smooth (S)	smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	rs and feels distinguishable t clearly visable, vident, surface	Wide (V Modera Close (Very Cl	ite (M))	8i 2.4i 0.75in	ft-6ft n-2ft in-8in i-2.4in	Fresh (Slightly Modera Highly Comple Residu	y (W2 ately (W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

		t: 9/23				10/8/	18	Drilling Co.:						C	OF	RE I	O	G	GT-	1-2018-1
		Cup					592478.831	Drill Rig: LF Drill Bit Typ			ore				•				o. 11 o	
		levati				eet Al		Logged By:		day, S. Brir	nton. L Ro	driau	ez	Total	Dent	h: 500				-
		evatio				et AM		Prepared B			11011, 2. 110	ranga				ter Dat			ogs,	
		045 /		atio	n: 20)		Checked By						Orour	Idwa	ici Dai	и.	10.6	, 95,	
															Disco	ntinuitie	<u> </u>		H	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription		Recovery	RQD % & & & &	Fractures per ft.	Drawing	Dip	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
_	-						METABASALT/GREE	ENSTONE, con	ntinued			1		50 J	Vn			PI	Sr	
	-											2		50 J	Vn (Ca	Sp	PI	Sr	
	102 -		26/10	W1	R2					98	98			50 J	Vn (Ca	Sp	PI	Sr	
	-											1		50 J	Vn (Ca	Sp	PI	Sr	
-	104 –				R1		BRECCIA, with meta sheared matrix, purpl	ish-gray, locally	y black,			0		ME	3					
_	-			<u>×</u>	<u>×</u>		occasional veins of c limestone and gray w of sheared claylclays when wet and hard w degrees to core axis, supported	acke to 10-inch tone, soft and n hen dry, sheari	nes in matrix moldable ing in 50			1								
_	106 -		27/11	.W2	R1-R2					.102	100	0		50 J	Vn (CI	Fi	PI	R	
_	108 –		27/11	W1-W2	R1-						1003	1		50 J	Vn S	Sp		Wa	R	
	-											0		50 J	Vn S	Бр		Wa	R	
- 			28/11	W1-W2	R1-R2					102	100	2		50 J	Vn (CI	Fi	PI	Sr	
DISCO	NTINUI	TY TYP	= 7	APER/	ATURI	E		INFILLING AMOUNT SH	IAPE	ROUGHNES	s	DIS	SCONT	INUITY	SPACII	NG	W	/EAT	HERING	STRENGTH
F - Fault J - Joint Fz - Frac S - Shea Sz - Shea V - Vein Fo - Folia B - Beddi MB - Mec Bz - Brok	ture Zone ar Zone ition ing Joint chanical B		- 1	Narrow ow (N)	0.0	0.05" C 5-0.1" E 1-0.5" G	i - Biotitie	lean (No) tained (Su) potty (Sp) artial Filled (Pa)	aner Slightly Routepped Rough (R)	smooth ugh (Sr) Asperities are and can be fe Asperities are some ridges of feels abrasive	ars and feels distinguishable It clearly visable, evident, surface	Wide (V Modera Close (Very Cl	ate (M)	;)	2. 0.75i	2ft-6ft Bin-2ft 4in-8in n-2.4in	Fresh (Slightly Modera Highly Comple Residu	y (W2 ately (W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/	Drilling Co.: 0	Cascade		CODE	LOGGT	1 2019 1
Location: Cupertino, California		Drilling Method: Core			LOG GT- heet No. 12 o	
Northing: 1857033.632 / Easting: 5 Surface Elevation: 1330 feet AN		ze: HQ D. Loveday, S. Brinton, L. Rodriç	T	Fotal Depth: 50		01 31
Bottom Elevation: 860 feet AM				Groundwater Da		
Azimuth: 045 / Inclination: 20	Checked By:			510unuwater Da	ita: ft bgs,	
				Discontinuitie	es	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery RQD % % % % % % % % % % % % % % % % % % %	per ft. Drawing	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
28/11 28/12 - 114 –	BRECCIA, continued	102 \$8 100 0		MB MB MB 60 J Vn CI MB MB MB MB MB	Pa Pl/Ir R	anical Breaks from boxing
116 - - 29/12 ZW-LW		102 33 100 3		MB MB		
Fz - Fracture Zone S- Shear Zone S- Shear Zone Very Narrow (Vn) 0.05" C C C C C C C C C	INFILLING TYPE AMOUNT - Blocklide No - Manganese Clapan (No) - Clay - Chiorite No - None Port of Private Filled (Pa) - Epidote Qz - Quartz Filled (Pa) - Greenteed (Cm) - Headed Un - Unknown	Slickensided (Sik) Visual evidence of polishing and striations Smooth (s) Surface appears and feels wide smooth Slightly Rough (Sr) Apperities are distinguishable and can be felt Rough (R) Apperities are clearly visable, Very		2ft-6ft 8in-2ft 2.4in-8in 0.75in-2.4in	WEATHERING Fresh (W1) Slightly (W2) Moderately (W3) Highly (W4) Completely (W5) Residuum (W6)	STRENGTH Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R6) Extremely Strong (R6)

Date Start: 9/23/18			Drilling Co.: Cascad					CC	RF	10	G	GT_	1-2018-1
Location: Cupertir			Drill Rig: LF70 / Drilling		ore							o. 13 o	
Northing: 1857033. Surface Elevation:			Drill Bit Type/Size: HC Logged By: D. Love	ર eday, S. Brin	ton I Do	driguez	Tot	ol Do	pth: 50			J. 13 U	131
Bottom Elevation:	860 feet A		Prepared By: S. Clar		itori, L. INO	uriguez			vater Da			ogs,	
Azimuth: 045 / Inclin			Checked By: J. Van					Juliuv	vator De	ııa.	IL K	, 193,	
7								Dis	continuitie	es		H	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No.	Weathering Index Strength Index Graphic Log	Des	cription	Recovery %	8 8 8 8 % RQD	Fractures per ft.	Drawing Dip	Type	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
30/1:	R1-R2	BRECCIA, continued, s	sheared	98	92	0	35	J V	n No		PI	8	
122 -						5	50 90	J V BZ	n Cl	Su	PI Ir	Sr Vr	
124 –	W1 W1 R1-R2			98	92	3	90 50		n No		Ir Wa Wa	Vr Sr	
126 -						3	50 50 50	1 V			Pl Pl Wa	R R R	
128 -	M1-W2 R1-R2			100	88	1	40	МВ	n Cl	Su	PI	R 128.1-ianalysi	128.8' Retained for s
33/1:	3 ₹ £	INFILLING TYPE IN	IFILLING SHAPE	98 ROUGHNESS	98	3	ONTINUI	MB BZ MB	CING	,.	EAT	HERING	STRENGTH
F - Fault		Bi - Biotitie Mn - Manganese Clea	MOUNT SHAFE In (No) Wa - Wayy Slickensid	ded (SIk) Visual evidence	o of polishing							IENING	
J - Joint (Discontinuity) Fz - Fracture Zone S - Shear Sz - Shear Zone V - Vein Fo - Foliation B - Bedding Joint B - MB - Mechanical Broad	rrow (N) 0.05-0.1" en (O) 0.1-0.5" de (W) >0.5"	CI - Clay My - Mylonite Stair Ca - Calcite No - None Spot Ch - Chlorite Py - Pyrite Parti En - Epidote Oz - Quartz Filler	ned (Su) tty (Sp) PI - Planer Smooth (\$	and striations Surface appear smooth ough (Sr) Asperities are and can be felt Asperities are some ridges er feels abrasive	rs and feels distinguishable t clearly visable, vident, surface	Extremely Wide (W) Moderate Close (C) Very Close Extremely	(M) e (VC)	0.	>6ft 2ft-6ft 8in-2ft 2.4in-8in 75in-2.4in <0.75in	Fresh Slightl Moder Highly Compl Residu	y (W2 ately (W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Sta					10/8/	18		Cascad						:OI	RF	10	G	G	T-1-2018-1
Location						592478.831	Drill Rig: LF70 /			ore				O .					4 of 51
Surface					eet A		Drill Bit Type/Siz		eday, S. Brir	nton I Ro	driau	97	Total	Den	th: 50			· ·	
Bottom E					et AM		Prepared By: S			itori, E. rte	ungu				ater Da			bgs,	
Azimuth:							Checked By:						Orou	IGVVC	ator Do	itu.	- 10	<u> </u>	
		T .												Disc	ontinuitie	es	1	H	
Elevation, ft MSL Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription		Recovery % 8 9 8 8	RQD % 02 9 98 88	Fractures per ft.	Drawing	Dip	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
-		33/13				BRECCIA, continued clay	, sheared, with shale	and	98	98									
132		33/14		R1-R2 R3		increased clay mat	trix		-98	32	0 0		90 J M M M M M M M M M M M M M M M M M M	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		Fi	lr PI	Vr	
			\times	\times															
136	_										0		M					1	136.2-137' Retained for analysis
138	_	34/14	W1	R2-R3		matrix supported, o	clayey, very weak		102	1003	0		70 J	Vn B	Ch	Fi	PI	S	
		35/15	W1	25					102	100									
DISCONTINU	ITY TYI	PE	APER/	ATUR	E	INFILLING TYPE	INFILLING AMOUNT SHAPE		ROUGHNES		DIS	SCONT	INUITY	SPAC	ING	V	VEAT	HERIN	NG STRENGTH
F - Fault J - Joint (Discon Fz - Fracture Zor S - Shear Sz - Shear Zone V - Vein Fo - Foliation B - Bedding Join MB - Mechanical Bz - Broken Zone	t Break	Narr	Narrow ow (N) n (O)	0.0 0.	:0.05" C 5-0.1" E 1-0.5" C	ii - Biotitie Mn - Manganese Cl II - Clay My - Mylonite Sia - Calcite No - None Sight - Chlorite Pv - Pyrite Pr	lean (No) tatined (Su) potty (Sp) PI - Planer artial Filled (Pa) emented (Cm) Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S)	smooth bugh (Sr) Asperities are and can be fe Asperities are some ridges feels abrasive	s ars and feels distinguishable It clearly visable, evident, surface	Extrem Wide (V Modera Close (Very Cl Extrem	W) ate (M)	5)	2	>6ft 2ft-6ft 8in-2ft 4in-8in 5in-2.4in <0.75in	Fresh Slight Model Highly Comp Resid	ly (Warately (W4) letely	2) (W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/18 Location: Cupertino, California	Drilling Co.: Cascac			CORE	LOG GT	-1-2018-1
Northing: 1857033.632 / Easting: 592478.831	Drill Bit Type/Size: HC			S	heet No. 15	of 51
Surface Elevation: 1330 feet AMSL		eday, S. Brinton, L. Ro	odriguez	Total Depth: 50	00.0 feet	
Bottom Elevation: 860 feet AMSL	Prepared By: S. Clari			Groundwater Da	ata: ft bgs,	
Azimuth: 045 / Inclination: 20	Checked By: J. Van	Pelt 		Discontinuiti	es	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Meathering Strength Index Graphic Log	escription	Recovery RQD %	Fractures per ft.	Dip Type Width Type of Infiling	Amount of Infilling Surface Shape Roughness	Comments
BRECCIA, continued 142 - 35/15 ₹ ₹ 144 -	I, sheared	102 368 1008	0	MB MB	No n obse	natural joints or fractures erved
dusky grayish-green fresh, weak to mode	salt clasts, localized	96 90	1 0 0	60 J Vn Ch 70 J Vn Ch/Ca	Su PI Sr Ja PI R	
36/16 S S S S S S S S S S S S S S S S S S S	INFILLING CHADE	96 908	0	MB BZ		
Fz - Fracture Zone	AMOUNT Iclean (No) Wa - Wavy Latined (Su) potty (Sp) pit- Planer St - Stepped emented (Cm) Ir - Irregular Very Roug	smooth smooth syn(Sr) Aspertiles are distinguishable and can be felt Aspertiles are clearly visable, some ridges evident, surface feels abrasive th (Vr) Near-vertical ridges occur on surface	Extremely Wi Wide (W) Moderate (M) Close (C) Very Close (V Extremely Cl	2ft-6ft 8in-2ft 2.4in-8in /C) 0.75in-2.4in ose (Ex) <0.75in	Residuum (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascade		CORE	LOG GT-	1_2018_1
Location: Cupertino, California	Drill Rig: LF70 / Drilling Metho	od: Core		heet No. 16 d	
Northing: 1857033.632 / Easting: 592478.831	Drill Bit Type/Size: HQ				וסות
Surface Elevation: 1330 feet AMSL Bottom Elevation: 860 feet AMSL		S. Brinton, L. Rodriguez	Total Depth: 50		
Azimuth: 045 / Inclination: 20	Prepared By: S. Clarke Checked By: J. Van Pelt		Groundwater Da	ata: ft bgs,	
Azimum 0437 momation. 20	Oncored by. J. Van i Cit		Discontinuiti	es	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	scription Reco % ର ବ :	% % %	1 1 1 1	Amount of Infilling Surface Shape Roughness	Comments
METABASALT/GREE continued, chert clasts	INSTONE BRECCIA, s scattered throughout	3	60 J Vn No 60 J Vn No 80 Fz Vn No	PI R	
-152 -		2	80 Fz Vn No 80 Fz Vn No	PI R	
37/16 ≨ 82/2	100	1003	80 Fz Vn No 80 Fz Vn No	PI R	
		2	80 Fz Vn No	PI R	
154 -		0			
156 - 38/16	96	1 98 98	50 J Vn No	Pl Vr	
		1	80 Fz Vn No	Vr	
158 -		1	80 Fz Vn No	Vr	
38/17	96	8 98 1	80 Fz Vn No	Vr	
39/17 \$ \$\frac{\text{\text{\$\ext{\$\til\eta}}\\ \text{\$\etitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\etin}}}}}\$\text{\$\text{\$\text{\$\text{\$\texitt{\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$	10	0 86			
	(////				
DISCONTINGITITIE AFERATORE INFILEMOTIFE	AWOUNT		INTINUITY SPACING	WEATHERING	STRENGTH
Fz - Fracture Zone Very Narrow (Vn) < 0.05" Ca - Calcite No - None Sp - Shear Sz - Shear Zone Narrow (N) 0.05-0.1" En - Epidote Qz - Quartz Fill	war-wavy inied (Su) tial Filled (Pa) ed (Fi) mented (Cm) Ir - Irregular war-wavy PI - Planer Slightly Rough (Sr) Asp Rough (R) Asp Rough (R) Very Rough (Vr) Nea	ual evidence of polishing distritions of distritions of distritions of the face appears and feels profities are distringuishable of can be felt profities are clearly visable, of the feel profities are clearly visable, of the feel profities are clearly visable, of the feel profit	2ft-6ft M) 8in-2ft 2.4in-8in (VC) 0.75in-2.4in		Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18	Drilling Co.: Cascade	CORE LOG GT-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling Method: Core	Sheet No. 17 of 51
Northing: 1857033.632 / Easting: 592478.831	Drill Bit Type/Size: HQ	
Surface Elevation: 1330 feet AMSL Bottom Elevation: 860 feet AMSL	Logged By: D. Loveday, S. Brinton, L. Rodriguez	
Bottom Elevation: 860 feet AMSL Azimuth: 045 / Inclination: 20	Prepared By: S. Clarke Checked By: J. Van Pelt	Groundwater Data: ft bgs,
AZIMUM. 0407 INCINICIONALON. 20	Officered By. 3. Vall 1 Cit	Discontinuities
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Graphic Log	Scription Recovery RQD % 13 to 15 t	Dip Type Width Type of Infilling Amount of Infilling Surface Shape Roughness
162 - 39/17 ₹ ₩ METABASALT/GREE continued	0 0 0 356 0	MB MB MB BZ
166 - 40/17	1 1 1	MB 50 J Vn Ch PI Sik 50 J Vn Ch PI R
168 - 40/18 - 41/18 \(\begin{array}{c} \text{2} \\ \text{2} \\ \text{2} \\ \text{3} \\ \text{4} \\ \text{4} \\ \text{5} \\ \text{2} \\ \text{2} \\ \text{4} \\ \text{4} \\ \text{6} \\ \text{7} \\ \text{6} \\ \text{7} \\ \t	102 1008 0	мв
41/18 > 문		
DISCONTINUITY TYPE APERATURE INFILLING TYPE	NFILLING AMOUNT SHAPE ROUGHNESS DISC	ONTINUITY SPACING WEATHERING STRENGTH
F - Fault J - Joint Discontinuity J - Joint Discontinuity Tight (T)	AMMOUNT and No) and (Su) and (Su) PI - Planer otty (Sp) dd (Fi) St - Stepped Rough (R) St - Appertities are clearly visable, Rough (R) Rough (R) Appertities are clearly visable, Close (C) Rough (R) Appertities are clearly visable, Rough (R) Appertities are clearly visable, Close (C) Close (C)	v Wide (EW)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascade			CORE	I OG GI	Γ-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling N	Method: Core			heet No. 18	
Northing: 1857033.632 / Easting: 592478.831 Surface Elevation: 1330 feet AMSL	Drill Bit Type/Size: HQ Logged By: D. Loveda	ay, S. Brinton, L. Rodr	riguez	Total Depth: 50		, 01 31
Bottom Elevation: 860 feet AMSL	Prepared By: S. Clarke	-	riguez	Groundwater Da		
Azimuth: 045 / Inclination: 20	Checked By: J. Van Pe			Groundwater Da	ııa. ıı bys,	
			<u> </u>	Discontinuitie	es	
Elevation, ft MSL Depth, ft Dnill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log		Recovery RQD % 유용용을 유용용	Fractures per ft. Drawing	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
172 - 41/18 ₹	ENSTONE BRECCIA,	98 94	0 0 0	MB MB		
42/18		102 20 96	4	40 J Vn Ch/Cl 0-10 J Vn Ch 30 V/J Vn Ca 40 V/J Vn Ch 50 J Vn Ch 30 J Vn Ch	Pa Wa Sr Pa Wa Sr Pa Pi Sr Pa Pi Sr Pa Pi Sr	
- 42/19 178 − 42/19			1	35 J Vn Cl	Pa Pl Sr	
43/19 ½ ^{R2} ^{R3}		-	0	50 MB 35 J Vn Ch	Pa Pl Sr	
DISCONTINUITY TYPE APERATURE INFILLING TYPE	INFILLING SHAPE	ROUGHNESS	DISCON	TINUITY SPACING	WEATHERING	STRENGTH
F - Fault (Discontinutly) J - Joint (Discontinutly) F z - Fracture Zone S - Shear Very Narrow (Vn) < 0.65" C - Calcite No - None No - No - None No - No - None No - No - No - None No -	AWOUN	Sik) Visual evidence of polishing and striations Surface appears and feels smooth smooth (Sr) Aspertites are distinguishable and can be felt Aspertites are clearly visable, some ridges evident, surface feels abrasieve	xtremely Wid lide (W) loderate (M) lose (C) ery Close (V xtremely Clo	de (EW) >6ft 2ft-6ft 8in-2ft 2.4in-8in (C) 0.75in-2.4in	Fresh (W1) Slightly (W2) Moderately (W3) Highly (W4) Completely (W5) Residuum (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8	18 Drilling C	Co.: Cascade	!		CODI	E LOG GT	1 2019 1
Location: Cupertino, California		LF70 / Drilling M	Method: Core		CORI	Sheet No. 19	
Northing: 1857033.632 / Easting: Surface Elevation: 1330 feet A		Type/Size: HQ	lay, S. Brinton, L. F	Rodriguez	Total Depth:		
Bottom Elevation: 860 feet AM		d By: S. Clarke		(ouriguez	Groundwater		
Azimuth: 045 / Inclination: 20		d By: J. Van Pe			Croundwater	Data: 1t bgg,	
(min) Sox No. Ig					Discontin		
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description		Recovery RQD %	Fractures per ft.	Dip Type Width	Type of Infilling Amount of Infilling Surface Shape Roughness	Comments
	METABASALT/GREENSTONE E continued	BRECCIA,			50 J Vn Ch/C	CI Pa PI Sr	
				3	70 J Vn Ch/C	CI Pa PI S	
182 - 43/19 \(\frac{1}{2} \)			102 2 100	0	65 J Vn Ch/C	Cl Pallr Sr	
184 –				0	MB MB		
44/19			100 1003	0	60 J Vn No	PI Sr	
186 -				2	35 J Vn Ch	Fi Pl S	
44/20 ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹			100 1003	2	35 J Vn Ch 30 J Vn Ch	Fi Pl Sr Fi Pl Sr	
				0	35 J Vn Ch 35 J Vn Ch 10 J Vn Ch 35 J Vn Ch/C	Fi PI Sr Fi PI Sr Fi PI Sr Ci Fi PI Sr	
45/20 \(\bar{\chi} \)			//100/// \$100		МВ		
DISCONTINUITY TYPE APERATURE	INFILLING TYPE INFILLING AMOUNT	l	ROUGHNESS	DISCON	TINUITY SPACING	WEATHERING	STRENGTH
Fz - Fracture Zone Very Narrow (Vn) < 0.05" S-Shear Sz - Shear Zone V-Vein Narrow (N) 0.05-0.1" Fo - Foliation Fo - Foliation Open (O) 0.1-0.5"	II - Clay My - Mylonite Stained (Su) a Calicite No - None Spotty (Sp) P th - Chlorite Py - Pyrite p - Epidote Qz - Quartz e - Iron Oxide Sd - Sand Cemented (Cm)	Wa - Wavy Pi - Planer St - Stepped Ir - Irregular Slickensided (S Smooth (S) Slightly Rough Rough (R) Very Rough (Vr	and striations Surface appears and feels smooth h (Sr) Asperities are distinguishable and can be felt Asperities are clearly visable, some ridges evident, surface feels abrasive	Extremely Wi Wide (W) Moderate (M) Close (C) Very Close (V Extremely Clo	2ft- 8in- 2.4in- (C) 0.75in-2	2ft Moderately (W3) 8in Highly (W4)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascad		CORFLOG	GT-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling			lo. 20 of 51
Northing: 1857033.632 / Easting: 5924 Surface Elevation: 1330 feet AMSL		eday, S. Brinton, L. Rodriguez	Total Depth: 500.0 feet	0.200.01
Bottom Elevation: 860 feet AMSL	Prepared By: S. Clark			bgs,
Azimuth: 045 / Inclination: 20	Checked By: J. Van		Crodinawater Bata.	595,
_	·		Discontinuities	
Elevation, ft MSL Depth, ft Dnill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery ROD % 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Dip Type Width Type of Infilling Amount of Infilling Surface Shape	Roughtness Comments
	ABASALT/GREENSTONE BRECCIA, nued	0 1008 1	40 J Vn Ch Fi Pl 40 J Vn Ch Fi Pl 35 J Vn Ch, Cl Fi Pl	s
45/21		100/200		
196 - - 46/21 ₹ 22	95.05-195.4 calcite veins to 0.5 inches thick, ane, well healed	0	50 J Vn Ca Su Pl	S
198 -		0		
47/21 \(\bar{\S} \) \(\bar{\S} \) \(\bar{\S} \) \(\bar{\S} \)		100 8100		
DISCONTINUITY TYPE APERATURE INFII	LING TYPE INFILLING SHAPE	ROUGHNESS DISCO	DITINUITY SPACING WEAT	THERING STRENGTH
F-Fault J - Joint (Discontinuity) Tight (T)	AMYOUN1 Mn - Manganese (Iclan (No) My - Mylonitie Stained (Su) It No - None Sportly (Sp) It Py - Pyrite Partial Filled (Pa) It Q - Quartz Filled (Fill St - Stepped Rough (Sp) It St - Stepped Rough (R) It St - Stepped Rough (R)	ed (Sik) Visual evidence of polishing and striations Surface appears and feels Surface appears and feels and can be felt Appertities are clearly visable, come ridges evident, surface	Wide (EW)	Extremely Weak (R0)

Date Start: 9/23	3/18	End	: 10/8	/18	Drilling	Co.: C	Cascad	е				_	· 🖳	DE	10	C	G	T 1 2019 1
Location: Cup								Method: C	ore			C	·Ui					T-1-2018-1
Northing: 18570					_	Type/Siz			ton I D	del e		04-1	D				U. 4	21 of 51
Surface Elevation Bottom Elevation			feet A		Logged	By: Led By: S		day, S. Brin	iiori, L. Ko	urigu				th: 50			ha-	
Azimuth: 045 /				IOL .	Checke		J. Van F				16	ırou	iiuWa	ater Da	ıld.	ıt I	bgs,	
		T	Т		1	, ,							Disc	ontinuitie	es		\dashv	
Elevation, ft MSL Depth, ft Drill Time (min)	Run No./Box No.	Strength Index	Graphic Log	Di	escription			Recovery	8 8 8 8 8 8 8 RQD	Fractures per ft.	Drawing	Up P	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
				METABASALT/GRE	ENSTONE	BRECCIA	۸,											No natural joints or fractures observed
202 -	47/21	R3		conunued				100	100	1 1	6	00 11	Vn Vn Vn	Ch	Su		S	
204 -	47/22							100	100	0	6	50 J/L	V Vn	Ca	Fi	PI	S	
206 -										1			V Vn I Vn	Ca, Ch Ch		PI Wa		
	48/22 ≶	82						100	92		4	15 J	Vn	Ch	Su	Wa	s	
											5	55 J	Vn	Ch	Su	Wa	s	
208 -										1		40 J	Vn Vn Vn		Su			
	49/22 ≶	R2						94	92									
	5								<u> </u>						\perp			
DISCONTINUITY TYP	E APE	RATUF	RE	INFILLING TYPE	INFILLING AMOUNT	SHAPE		ROUGHNES	1	DIS	SCONTIN	UITY	SPAC	ING	W	/EAT	HERI	ING STRENGTH
F - Fault J - Joint (Discontinuity) F2 - Fracture Zone S2 - Shear S2 - Shear Zone V - Vein F0 - Foliation B - Bedding Joint MB - Mechanical Break B2 - Broken Zone	Tight (T) Very Narrow (N Narrow (N Open (O) Wide (W)) 0.	<0.05" .05-0.1" 0.1-0.5"	CI - Clay My - Mylonite S Ca - Calcite No - None S Ch - Chlorite Py - Pyrite F En - Epidote Oz - Quartz F	Clean (No) Stained (Su) Spotty (Sp) artial Filled (Pa) Filled (Fi) Cemented (Cm)	Wa - Wavy Pi - Pianer St - Stepped Ir - Irregular	Slickenside Smooth (S) Slightly Rou Rough (R) Very Rough	and striations Surface appea smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	rs and feels distinguishable t clearly visable, vident, surface	Wide (V Modera Close (Very Cl	ite (M)		2	>6ft 2ft-6ft 8in-2ft 2.4in-8in 5in-2.4in <0.75in	Fresh Slight! Moder Highly Compl Residu	y (W2 ately (W4) etely	2) (W3) (W5)	Moderately Strong (R3)

Date Start: 9/23/1		d: 10/8/	18		ascade							RF	۱ ۸	G	GT-	1-2018-1
Location: Cuper			-00470 004	Drill Rig: LF70 / D		Method: Co	ore								o. 22 o	
Northing: 185703 Surface Elevation		asting: :		Drill Bit Type/Size		day, S. Brin	iton I Ro	driau	27 .	Total	Den	th: 50			o. 	
Bottom Elevation		feet AM		Prepared By: S.			itori, E. Mo	ungu	-			ater Da			ogs,	
Azimuth: 045 / Inc				Checked By: J.						0100	IIGW	ator Do	itu.	10.	J95,	
_											Disc	ontinuitie	es	1		
Elevation, ft MSL Depth, ft Drill Time (min)	Weathering Index	Strength Index Graphic Log	De	escription		Recovery % & & & &	8 8 8 8 8 8 8	Fractures per ft.	Drawing	Dip	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
49		Z	METABASALT/GREE continued	ENSTONE BRECCIA,	,	94	92	0		N	В					
	9/23					94	92	1		20	/ J Vn	Ca	Fi	PI	s	
-								0		M	В					
216 -	D/23 \$ 8	24-731 24				.100	90	0 0								
218 -								2			J Vn J Vn		Su Su		S SIk	
51	1/23 \(\bar{2} \)					///100///	92		_							
DISCONTINUITY TYPE	APERATI	URE	INFILLING TYPE	INFILLING AMOUNT SHAPE		ROUGHNES	S	DIS	CONTI	INUITY	SPAC	ING	v	VEAT	HERING	STRENGTH
Fz - Fracture Zone S - Shear Sz - Shear Zone V - Vein Fo - Foliation B - Bedding Joint	Tight (T) Very Narrow (Vn) Narrow (N) Open (O) Wide (W)	0.05-0.1" E 0.1-0.5" G	i - Biotitie Mn - Manganese Cl I - Clay My - Mylonite St a - Calcite No - None St h - Chlorite Py - Pyrite Ps p - Epidote Qz - Quartz	AWUUNT I I I I I I I I I I I I I I I I I I I	Smooth (S)		rs and feels distinguishable t clearly visable, vident, surface	Extrem Wide (V Modera Close (I Very Cl Extrem	V) te (M) C) ose (VC	;)	0.7	>6ft 2ft-6ft 8in-2ft 2.4in-8in 5in-2.4in <0.75in	Fresh Slightl Moder Highly Comp Reside	ately (W4) letely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascade		CORE	LOG GT-	1_2018_1
Location: Cupertino, California	Drill Rig: LF70 / Drilling Method: Core			heet No. 23 o	I
Northing: 1857033.632 / Easting: 592478.831 Surface Elevation: 1330 feet AMSL	Drill Bit Type/Size: HQ Logged By: D. Loveday, S. Brinton, I	Podriguez	Total Depth: 50		7 31
Bottom Elevation: 860 feet AMSL	Prepared By: S. Clarke	INOUIIGUEZ	Groundwater Da		
Azimuth: 045 / Inclination: 20	Checked By: J. Van Pelt		Oroundwater De	na. n bgs,	
			Discontinuitie	es	
Elevatici Depth, Depth, Drill Tin Run No Weathe Index Strengt	escription Recovery RO % 유무율의 유무	oper f	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
METABASALT/GREE continued		0	15 J Ch 40 S Ch	Su Wa S Pa Pi S	
222 - \(\sum_{\text{\tince{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\titt{\text{\titil\titt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tett{\text{\text{\text{\text{\texict{\text{\text{\text{\ti}\tittit{\text{\text{\text{\text{\texict{\text{\texi}\tittt{\text{\texit}\tittt{\text{\texict{\ti}\til\text{\text{\text{\text{\tet	100	1	10 MB Ch	Pa PI S	
224 -		0			
226 -		0			
	100	0	50 J No	Wa S	
53/24 \(\beta \)	95/ 278	0			
DISCONTINUITY TYPE APERATURE INFILLING TYPE	INFILLING SHAPE ROUGHNESS	DISCON	ITINUITY SPACING	WEATHERING	STRENGTH
F - Fault Tight (T)	acm (No) anned (Su) PI - Planer blott (Su) PI - Planer blott (PS) St - Stepped blott (PS) PI - Planer blott (PS) P	s Wide (W) Moderate (M) Close (C) Very Close (V Extremely Wi	2ft-6ft) 8in-2ft 2.4in-8in /C) 0.75in-2.4in	Fresh (W1) Slightly (W2) Moderately (W3) Highly (W4) Completely (W5) Residuum (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date	Star	t: 9/23	/18	E	End:	10/8/	18	Drilling Co.: 0	Cascad	le				_	· · ·	DE	 : 1	\cap	<u></u>	GT	1-2018-1
		Cup					-00.170.001	Drill Rig: LF70 /			ore			•						- ا G o. 24 o	
		18570 Ilevati				eet Al	592478.831 MSI	Drill Bit Type/Siz		eday, S. Brir	nton I Ro	odrigu	ez .	Tota	l De	pth:				J. <u>2</u> 7 0	
		evatio				et AM		Prepared By:			1011, E. 110	Janga				vater I				ogs,	
Azim	uth:	045 / 1	nclir	atio	n: 20)		Checked By:	J. Van I	Pelt										Ĭ.	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription		Recovery %	RQD % 8 8 8 8	Fractures per ft.	Drawing	QİQ	Dis	continu	lype of Intilling	Amount of Infilling	Surface Shape	Roughness	Comments
			53/24		R3		METABASALT/GREE continued, grayish-gra and matrix supported	een, variable betwee		95	78.2			85 .	I/S V	n No		No	lr	Slk	
-	232 -		53/25	W1	R2-R3 R1		and matrix supported weathered, weak rock with fingernail, calcite	k matrix is fragile in	ndented ks	95	78.2	1 0 0		ľ	I/S V	n Cl		Fi	PI	S	
	236 -		54/25	W1	R2-R3		some slickensides	on joint surfaces		100	91.6	0			V I		'n	Cm Cm	lr/Pi lr/Pi	SS	
_	- 238 -											2		60 60 70	1	n n		No No No	PI PI PI PI	SIK SIK SIK SIK	
-			55/26	>	R2-R3			INFILLING CHARE		58	58	0									
E - Equit		TY TYPI	_		ATUR		INFILLING I TPE	AMOUNT SHAPE	Slickenside	ROUGHNES ed (Slk) Visual evidence	ce of polishing		SCONTI				e4 -			HERING	STRENGTH
J - Joint Fz - Frac S - Shear Sz - Shear V - Vein Fo - Folia B - Beddi MB - Med Bz - Brok	ar Zone ation ing Joint hanical E	reak	Narro Open Wide	Narrow ow (N) I (O) (W)	0.0	5-0.1" E 1-0.5" G >0.5" N	I - Clay My - Mylonite St a - Calcite No - None Sp h - Chlorite Py - Pyrite Pa p - Epidote Qz - Quartz Fil	lean (No) tained (Su) potty (Sp) artial Filled (Pa) liled (Fi) emented (Cm) Ir - Irregular	Smooth (S) Slightly Ro Rough (R) Very Rough	and striation: Surface apper smooth Sugh (Sr) Asperities are and can be fe Asperities are some ridges of feels abrasive h (Vr) Near-vertical r surface	ars and feels distinguishable t clearly visable, vident, surface	Wide (V Modera Close (Very Cl Extrem	ate (M) C) lose (VC lely Clos) se (Ex	0		ft SI ft M in Hi lin Co 5in R		(W2 stely (W4) etely um ((W3) (W5) W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascad			C	ORF	I 06	: G1	Г-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling			•				of 51
Northing: 1857033.632 / Easting: 592478.831 Surface Elevation: 1330 feet AMSL	Drill Bit Type/Size: HC Logged By: D. Love	ર eday, S. Brinton, L. Ro	odriguez	Total	Depth: 50			70.01
Bottom Elevation: 860 feet AMSL	Prepared By: S. Clar		ouriguez		idwater Da		bgs,	
Azimuth: 045 / Inclination: 20	Checked By: J. Van			Orour	idwaler Be	ita. 10	bgs,	
				T. T.	Discontinuitie	es	Ħ	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery RQD %	Fractures per ft. Drawing	Dip Type	Width Type of Infilling	Amount of Infilling Surface Shape	Roughness	Comments
METABASALT/GRE continued Soft, altered matri	EENSTONE BRECCIA,	58 858	0 0	90 J	Vn Cl, Cl	lr		0' ol
244 -			7 ->10	Fz	Vn Ch, Cl Vn Ch, CL	Pa P Fi Ir	Sr	
246 - 56/26 ₹ №		100 830	1	25 J	Vn Ch, Cl	Fi Pi	S a Sik	
248 - 57/26 ₹ 12 248-248.5' soft m	atrix material	75 75	3	80 J 15 S	Vn Slk Vn Slk Vn Cl, Sd	Fi W	a SIk S	5' ol run 56 rec in run 57
58/27 \$ \$ \$		100 \$100	>10	BZ BZ	Vn Cl, Sd Ch, Cl	Pa Ir		
DISCONTINUITY TYPE APERATURE INFILLING TYPE	INFILLING SHAPE	ROUGHNESS	DISCON	ITINUITY S	SPACING	WEA	THERING	STRENGTH
F-Fault J-Joint (Discontinuity) F2 - Fracture Zone Very Narrow (Vn) <0.05" Bi - Biottile C1 - Ctay My - Mylonite C2 - Calcite No - None C3 - Chlorider C4 - Chlorider C5 - Chlorider C6 - Chlorider C7 - Very Narrow	Clean (No) Stained (Su) Spotty (Sp) PI - Planer Silckensic Smooth (S	ded (Sik) Visual evidence of polishing and striations S) Sufface appears and feels smooth tough (Sr) Asperties are distinguishable and can be felt Aspertiles are clearly visable, some ridges evident, surface feels abrasive	Extremely W Wide (W) Moderate (M Close (C) Very Close (' Extremely C	ide (EW)) VC)	>6ft 2ft-6ft 8in-2ft 2.4in-8in 0.75in-2.4in <0.75in	Fresh (W1 Slightly (V Moderatel Highly (W Complete Residuum) V2) y (W3) 4) ly (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascade			CORE LOG GT-1-2018-1					
Location: Cupertino, California	Drill Rig: LF70 / Drilling	Method: Core			heet No. 26 c				
Northing: 1857033.632 / Easting: 592478.831	Drill Bit Type/Size: HQ			Total Depth: 500.0 feet					
Surface Elevation: 1330 feet AMSL Bottom Elevation: 860 feet AMSL		day, S. Brinton, L. Ro	ariguez						
Bottom Elevation: 860 feet AMSL Azimuth: 045 / Inclination: 20	Prepared By: S. Clarke Checked By: J. Van Pelt			Groundwater Da	ata: ft bgs,				
Azimuti. 0437 incination. 20	Checked by. 5. Vall P	CIT.		Discontinuitie	es				
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log		Recovery RQD % R R R R R R R R R R R R R R R R R R R	Fractures per ft. Drawing	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments			
METABASALT/GREE continued			2	90 J Vn Ch, Cl 70 J Vn Ch, Cl 50 J Vn Ch, Cl	Pa Ir Vr Pa Ch Sr Pa PI R				
			3	50 J Vn Ch, Cl	Fi PI Sr				
252 - 58/27 \$ \frac{\alpha}{\alpha}		100 100		60 J Vn Ch, Cl 50 J Vn Ch, Cl	Pa Pl Sr Fi Pl S				
			3	60 J Vn Ch, Cl	Pa Pl Sr				
				75 J Vn Ch, Cl	Fi PI Sr				
254			0	МВ					
			2	60 J Vn Ch, Cl 55 J Vn Ch, CL	Fi Pl S				
256 -		100/ \$100\$	7	MB 35 J Vn Ch, Cl BZ Vn CH, CL	Fi Wa S Pa Pl S				
- × × × × × × × × × × × × × × × × × × ×			1	55 J Vn Ch, Cl	Pa PI S				
258 –			0						
59/28		100 1008	0						
60/28 ₹ ₹		100 100	0						
DISCONTINUITY TYPE APERATURE INFILLING TYPE	INFILLING AMOUNT SHAPE	ROUGHNESS	DISCON	ITINUITY SPACING	WEATHERING	STRENGTH			
F - Fault J - Joint (Discontinuity) Tight (T)	ean (No) ained (Su) otty (Sp) Wa - Wavy Slickensided Smooth (S)	Surface appears and feels smooth gh (Sr) Asperities are distinguishable and can be felt Asperities are clearly visable, some ridges evident, surface feels abrasive	Extremely Wi Wide (W) Moderate (M) Close (C) Very Close (V Extremely Cl	2ft-6ft) 8in-2ft 2.4in-8in /C) 0.75in-2.4in		Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)			

Date Start: 9/23/18 End: 10/8/18 Location: Cupertino, California		Cascade Drilling Method: Core			LOG GT-	
Northing: 1857033.632 / Easting: 592478.831	Drill Bit Type/Size	e: HQ			heet No. 27 c	of 51
Surface Elevation: 1330 feet AMSL		. Loveday, S. Brinton, L. Roc	driguez	Total Depth: 50		
Bottom Elevation: 860 feet AMSL Azimuth: 045 / Inclination: 20	Prepared By: S. Checked By: J.			Groundwater Da	ata: ft bgs,	
Azimum. 0437 inclination. 20	Checked by. 3.	. van Feit		Discontinuiti	es	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery RQD % % & \& \& \& \& \& \& \& \& \& \& \& \& \&	Fractures per ft. Drawing	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
262 - 60/28 ₹ 82 2	EENSTONE BRECCIA,		1 1 0	55 J Vn Ch, Cl	Fi Pl S	
264 - 61/28 - 266 - ∑		100 \$100	0 4	45 J Vn Ch, Cl 45 J Vn Ch, Cl 75 J Vn Ch, Cl 80 J Vn Ch, Cl	Pa PI S Pa PI S Pa PI S Pa PI S	
268 - 61/29		100 8 1008	0			
- 62/29 \(\frac{\alpha}{\alpha} \) \(\frac{\alpha}{\alpha} \)		100 \$100\$	0			
DISCONTINUITY TYPE APERATURE INFILLING TYPE	INFILLING AMOUNT SHAPE	ROUGHNESS		TINUITY SPACING	WEATHERING	STRENGTH
F - Fault	Gemented (Cm) Use Jean (Wo) Was - wavy Was - wavy Was - wavy Was - wavy Stained (Su) Je Jean Paler Patid Filled (Pa) St - Stepped Ir - Irregular	Smooth (5) Surface appears and feels smooth	Extremely Wi Wide (W) Moderate (M) Close (C) Very Close (V Extremely Clo	2ft-6ft 8in-2ft 2.4in-8in /C) 0.75in-2.4in ose (Ex) <0.75in	Residuum (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8	/18 Drilling Co.:	Cascade	COPELO	G GT-1-2018-1
Location: Cupertino, California		70 / Drilling Method: Core		t No. 28 of 51
Northing: 1857033.632 / Easting:				
Surface Elevation: 1330 feet A Bottom Elevation: 860 feet Al		D. Loveday, S. Brinton, L. Rodrigue		
Azimuth: 045 / Inclination: 20		J. Van Pelt	Groundwater Data.	ft bgs,
			Discontinuities	
Elevation, ft MSL Depth, ft Dill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery RQD % Racfules Lactures Racfules Recovery Racfules Recovery Recove	Drawing Dip Type Width Type of Infilling	Surface Shape Comments Comments
272 - 62/29 \(\frac{1}{2}\)	METABASALT/GREENSTONE BREC	100 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75 J Vn Ch Fi	PI S
63/29		100 100 0		
276 - - - - - - - - - - - - - - - - - - -		0 0 100 1100		
278 -		1	70 J Vn Ch Fi	
- 64/3Q ≩ ²² 22	INFILLING TYPE INFILLING SHA	100 \$1008 0		
DISCONTINUITY TYPE APERATURE	AMOUNT SHALL	Slickoprided (Slk) Visual oxidence of poliching		MEATHERING STRENGTH
1- Faint (Discontinuity) F. Faint (Discontinuity) F. Fracture Zone S. Shear Zone V. Vein Sr. Shear Zone V. Vein Sheat Zone S. Shear Zone V. Vein S. Shear Zone V. Vein S. Shear Zone Shear Zon	Bi - Biotitie Mn - Manganese Clean (No) Ca - Calette No - Mone Port - Stained (Su) Fo - Chloride Sc - Calette No - None Port - Pretair Filled (Pa) Fo - Epidon C - Calette Port - Pretair Filled (Pa) Fo - Cypsum S - Si - Sit H - Healed Un - Unknown	and striations smooth (S) Surface appears and feels smooth Slightly Rough (Sr) Aspertites are distinguishable and can be felt Rough (R) Aspertities are clearly visable, Close (C Very Clc	e (M) 8in-2ft Modera) 2.4in-8in Highly se (VC) 0.75in-2.4in Comple	ly (W2) Very Weak (R1) vrately (W3) Weak (R2)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascade	CORE LOG GT-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling Method: Core	Sheet No. 29 of 51
Northing: 1857033.632 / Easting: 592478.831	Drill Bit Type/Size: HQ	
Surface Elevation: 1330 feet AMSL Bottom Elevation: 860 feet AMSL	Logged By: D. Loveday, S. Brinton, L. Rodriguez	
Azimuth: 045 / Inclination: 20	Prepared By: S. Clarke Checked By: J. Van Pelt	Groundwater Data: ft bgs,
Azimum. 0437 incimation. 20	Checked By. 3. Van Feit	Discontinuities
Elevatic Depth, 1 Dnill Tim Run No Weathe Index Strengtl Graphic	2488 2488	Dip Type Width Type of Infilling Surface Shape Roughness
METABASALT/GREE continued - 64/30 ≥ 282 - ≥ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100 \$100 1	60 J Vn Ch Fi Pi S
284	100 81008 0	80 J Vn Ch Fi Wa S 284-284.8' Retained for analysis
286 - - 65/31 \(\frac{\gamma}{\gamma} \\ \fra	100 \$100\$ 0	50 J Vn Ch Fi PI S 284.8-285.5' Retained for analysis
-288 -	0	
- 66/31 ≥ EV	100 81008 0	
E Foult	AMOUN I	ONTINUITY SPACING WEATHERING STRENGTH
Fz - Fracture Zone Very Narrow (Vn) < 0.05" Ca - Calcite No - None Sp Shear Sz - Shear Zone Narrow (N) 0.05-0.1" En - Enicleto Ca - Calcite Py - Pyrite Par Calcite Py - Calcite Py - Calcite Par	alined (Su) (Vf (Sp) P1 - Planer (Vf (Sp) P1 - Plan	2.4in-8in Highly (W4) Moderately Strong (R3)

Date Start: 9/23/18 End: 10/							\sim)DE	10	C	GT_	I-2018-1
Location: Cupertino, California		g: LF70 / Drilling	Method: Co	re			C				o. 30 of	
Northing: 1857033.632 / Easting Surface Elevation: 1330 feet		Type/Size: HQ	day, S. Brint	on I Dog	driguez	Tot	ח ופּ	epth: 50			J. JU U	
Bottom Elevation: 860 feet A		ed By: S. Clark		oπ, ⊾. NOC	arigu e Z			water Da			ogs,	
Azimuth: 045 / Inclination: 20		ed By: J. Van F					-uilu	aioi Di	<u></u>	- 11.1		
- O							D I	scontinuit	ies			
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description		Recovery %	8 8 8 8 % RQD	Fractures per ft.	Dip	Type	Width Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
292 - Fig. 128	METABASALT/GREENSTONE continued	BRECCIA,	100	9	0		BZ '	/n Ch	Fi	PI	S	
294			100	1003	3	50 50 70))	/n Ca (H) /n Ch /n Ch	Fi Fi	PI PI PI	888	
296 - - 67/32 \(\frac{1}{2}\)			100/	100	0	30		/n Ch		PI		
298 -					0	60	J	/n Ch	Fi	PI	S	
- 68/32 ≩ ⁸ ½			100	100	1							
DISCONTINUITY TYPE APERATURE	INFILLING TYPE INFILLING AMOUNT	SHAPE	ROUGHNESS		DISCO	IUNITNC	TY SP	ACING	W	/EAT	HERING	STRENGTH
F - Fault 0" F - Fault 0" F - Fault 0" F - Fauture Zone S - Stear 0" Vary Narrow (Vn) 0.05-0.1" 0" 0" 0" 0" 0" 0" 0"	BI - Bicettie CI - Clay - Wh Hangannes Clean (No) Wy Hydronte No. Nome No. No. No. No. No. No. No. No. No. No.	Wa - Wavy PI - Planer St - Stepped Ir - Irregular Wa - Wavy Sinckensider Smooth (S) Slightly Rou Rough (R) Very Rough	and striations Surface appears smooth igh (Sr) Asperities are dis and can be felt Asperities are cle some ridges evic feels abrasive	and feels stinguishable early visable, dent, surface	Extremely Wide (W) Moderate (Close (C) /ery Close Extremely	(M) e (VC)		>6ft 2ft-6ft 8in-2ft 2.4in-8in).75in-2.4in <0.75ir	Slightly Moder Highly Compl	y (W2 ately (W4) etely	2) (W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18	Drilling Co.: Cascade	CORE LOG GT-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling Method: Core	Sheet No. 31 of 51
Northing: 1857033.632 / Easting: 592478.831	Drill Bit Type/Size: HQ	
Surface Elevation: 1330 feet AMSL	Logged By: D. Loveday, S. Brinton, L. Rodrigu	
Bottom Elevation: 860 feet AMSL	Prepared By: S. Clarke Checked By: J. Van Pelt	Groundwater Data: ft bgs,
Azimuth: 045 / Inclination: 20	Checked By. J. Van Feit	Discontinuities
Elevatic Depth, Index Strengtl Graphic	Recovery RQD % SELECTION Recovery RQD % RQ	Bulling ade Comments
68/32 METABASALT/GREE continued	ENSTONE BRECCIA, 100 100 0	
302 - 68/33 ₹ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100 \$100 \$5	85 J Vn Ch Fi PI S BZ Vn Ch Fi PI S 40 J Vn Ch, Ca Fi PI S BZ Vn Ch Fi Ir S
304 - 69/33 ≥ 22	100 2100 0	65 J Vn Ch Fi Pl S
308 -	0	
70/33 \$\frac{\alpha}{\alpha}\frac{\alpha}{\alpha}\frac{\alpha}{\alpha}\frac{\alpha}{\alpha}	100/ \$1008	40 V Vn Ca Fi Pl S
DISCONTINUITY TYPE APERATURE INFILLING TYPE	INFILLING SHAPE ROUGHNESS D	SCONTINUITY SPACING WEATHERING STRENGTH
F - Fault Tight (T)	isean (No.) Wa - Wavy planted (Six) Pl - Planer artial Fillied (Pa) Islice (Fig.) Pl - Planer artial Fillied (Pa) Islice (Fig.) St - Stepped memted (Cm) Rough (R) Appertities are clearly visable, where the content of Corp.	rate (M) 8in-2ft Moderately (W3) Weak (R2)

Date Start: 9/23/18 End: 10/	3/18 Drilling	Co.: Cascade			COE	DE I OG G	T-1-2018-1
Location: Cupertino, California		g: LF70 / Drilling M	Method: Core		COR	Sheet No. 3	
Northing: 1857033.632 / Easting Surface Elevation: 1330 feet		t Type/Size: HQ	ay, S. Brinton, L. R	odriguoz	Total Donth	n: 500.0 feet	20131
Bottom Elevation: 860 feet A		ed By: S. Clarke	-	ouriguez	Groundwate		
Azimuth: 045 / Inclination: 20		ed By: J. Van Pe			Groundwat	Ci Data. It bgs,	
					Discor	ntinuities	
Elevation, ft MSL Depth, ft Dill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description		Recovery RQD % & そるる 8 そるる	Fractures per ft. Drawing	Dip Type Width	Type of Infilling Amount of Infilling Surface Shape Roughness	Comments
	METABASALT/GREENSTONE						
312 - 70/34 \(\frac{\text{R}}{2}\)	continued		100 8 100	1 0	60 J Vn C	h Fi Pl S	
71/34 ≶ ²² / ₂₂	315.4-315.9' calcite infilling		100/ 8 1008	0			
72/34			100 81008	0	55 J Vn C	h Fi Pl S	
318 - ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹			100' 81008	0			
73/35 \(\bigg\)			100				
	INFILLING TYPE INFILLING	<i>\</i>					
DISCONTINUITY TYPE APERATURE F - Fault Tight (T) 0"	AMOUNT AMOUNT	Slickoprided (S	ROUGHNESS Slk) Visual evidence of polishing		TINUITY SPACIN		
J - Joint (Discontinuity) Tight (T) 0"	Bi - Biotelie Mn - Managanese Clean (No) Ca - Calclet No - None Eps - Epiden Eps - Epiden Eps - Epiden Eps - Epiden Eps - Epiden Eps - Epiden Eps - Epiden Eps - Epiden Eps - Epiden Eps - Epiden Eps - Epiden Eps - Epiden Eps - Ep	PI - Planer Smooth (S)	and striations Surface appears and feels smooth (Sr) Asperities are distinguishable and can be felt Asperities are clearly visable, some ridges evident, surface feels abrasive	Extremely Wi Wide (W) Moderate (M) Close (C) Very Close (V Extremely Cl	2.4 (C) 0.75ir	>6ft Fresh (W1) 2ft-6ft Slightly (W2) in-2ft Moderately (W3) Lin-8in n-2.4in Completely (W5) <0.75in Residuum (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18	Drilling Co.: Cascade		CORE	1 OG G1	Γ-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling Method: Core			heet No. 33	
Northing: 1857033.632 / Easting: 592478.831	Drill Bit Type/Size: HQ				, 01 31
Surface Elevation: 1330 feet AMSL Bottom Elevation: 860 feet AMSL	Logged By: D. Loveday, S. Brinton, L. R Prepared By: S. Clarke	odriguez	Total Depth: 50		
Azimuth: 045 / Inclination: 20	Checked By: J. Van Pelt		Groundwater Da	ata: ft bgs,	
7 Elitati. 545 / Holinaton. 25	Checked By. V. Varri Cit		Discontinuitie	es	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Graphic Log	scription Recovery RQD % 유육운용 유육운동	Fractures per ft. Drawing	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
322 − 73/35 ₹ 8 2 2 2 3 2 4 − 3 2 4 − 3 3 2 4 − 3 3 2 4 − 3 3 2 4 − 3 3 2 4 − 3 3 2 4 − 3 3 2 4	INSTONE BRECCIA,	0 3 1 0	65 J Vn Ch 45 J Vn Ch 40 J Vn Ch, Ca 75 J Vn Ch, Ca	Fi Pl S	
74/35	100	2	30 J Vn Ch 25 J Vn Ch, Ca 30 J Vn Ch	Fi PI S Fi PI S	
	100 8100	0	60 J Vn Ch	Fi Pl S	
328 -		3	35 J Vn Ch 80 J Vn Ch 80 J Vn Ca, Ch	Fi PI S Fi PI S Fi PI S	
75/36 ≨ 82 8	100		70 J Vn Ch	Fi PI S/SIk	
	NFILLING SHADE POLICINIESS				
F. Fault	AMOUNT Slickongided (Slk). Vigual evidence of policibing		ITINUITY SPACING	WEATHERING	
Fz - Fracture Zone Very Narrow (Vn) < 0.05" Ca - Calcite No - None Sy - Shear Sz - Shear Zone Narrow (N) 0.05-0.1" En - Enicite Code Ca - Calcite No - None Py - Pyrite Par Calcite No - None Py - Pyrite Par Calcite No - None Py - Pyrite Par Pa	san (No) sinced (Su) PI - Planer trial Filiade (Pa) dd (Fil) St - Stepped Ir - Irregular Ir - Irregular Send (R) Vary Rough (Vr) Very Rough (Vr) Very Rough (Vr) Very Rough (Vr) Very Rough (Vr) Visual evidence of polishing and striations surface appears and feels of signify and can be felt Rough (R) Sightly Rough (Sr) Appertise and can be felt Rough (R) Very Rough (Vr) Very Roug	Extremely W Wide (W) Moderate (M) Close (C) Very Close (V Extremely Cl	2ft-6ft) 8in-2ft 2.4in-8in VC) 0.75in-2.4in	Fresh (W1) Slightly (W2) Moderately (W3) Highly (W4) Completely (W5) Residuum (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascade		CORE LO	OG GT_	1_2018_1
Location: Cupertino, California	Drill Rig: LF70 / Drilling Met	thod: Core		et No. 34 d	
Northing: 1857033.632 / Easting: 592478.831 Surface Elevation: 1330 feet AMSL	Drill Bit Type/Size: HQ Logged By: D. Loveday,	S. Brinton, L. Rodriguez			,, ,,
Bottom Elevation: 860 feet AMSL	Prepared By: S. Clarke	. 3. Brillion, L. Rounguez	Groundwater Data:		
Azimuth: 045 / Inclination: 20	Checked By: J. Van Pelt		Groundwater Data.	it bgs,	
	,		Discontinuities		
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log		covery RQD % % B & & & & & & & & & & & & & & & & &	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
332 - 75/36 ₹ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ENSTONE BRECCIA,	1 1 3 3	40 J Vn Ch I 10 J Vn Ch I 85 J Vn Ch I 20 J Vn Ch, Cl I	Fi Pl S Fi Pl S Fi Pl S Fi Wa S Fi Wa S	
3336 - 76/37 ₹ 22		0 100 0	мв	Fi Pl S	
338 - - - - - - - - - - - - - - - - - - -		1 3 3 100 100 100 100 100 100 100 100 10		Fi PI S	
DISCONTINUITY TYPE APERATURE INFILLING TYPE	INFILLING SHAPE RO	DUGHNESS DISCO	ONTINUITY SPACING	WEATHERING	STRENGTH
F - Fault J - Joint (Discontinuity) Tight (T)	ean (No) sined (Su) toty (Spd (PG) led (Fi) mented (Cm) Wa - Wavy PI - Planer st - Stepped ir - Irregular Silickensided (Silk) & Smooth (S) Silightly Rough (Sr) Rough (R) Very Rough (Vr) N	Visual evidence of polishing and striations Surface appears and feels Superfices are distinguishable Aspertities are distinguishable Close (C) Aspertities are dearly visable, some ridges evident, surface loss of the control of the	2ft-6ft Sligi M) 8in-2ft Mod 2.4in-8in High (VC) 0.75in-2.4in Com	sh (W1) yhtly (W2) derately (W3) hly (W4) mpletely (W5) siduum (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascad			CORE	l UC C	T-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling				heet No. 3	
Northing: 1857033.632 / Easting: 592478.83						30131
Surface Elevation: 1330 feet AMSL Bottom Elevation: 860 feet AMSL	Logged By: D. Love Prepared By: S. Clar	eday, S. Brinton, L. Rodri	riguez	Total Depth: 50		
Azimuth: 045 / Inclination: 20	Checked By: J. Van			Groundwater Da	ita: ft bgs,	
7 Zimati. 040 / Holination. 20	Onconced by: 0. Van			Discontinuitie	es	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery RQD %	Fractures per ft. Drawing	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
- 777/37 - 342 - ≨ 22 2	ALT/GREENSTONE BRECCIA,	100 100	0	BZ Vn Ch	Fi Pi S	
344 - 777/38		100	0	20 J Vn Ch	Fi Pi Sr	Driller dropped 0.1 ft
346 -		-	0			
78/38 ₹ 82 82 82 82 82 82 82 82 82 82 82 82 82		-	2	65 J Vn Ch 50 J Vn Ch 40 J Vn Ch, Cl	Fi PI Sr Fi PI Sr	
79/38 ≩ 🖁		100/ 100	0			
DISCONTINUITY TYPE APERATURE INFILLING T	AWOUNT	ROUGHNESS	DISCONT	TINUITY SPACING	WEATHERIN	NG STRENGTH
Fz - Fracture Zone S - Shear Zone V- Vein Narrow (Vn) - 0.05-d C - Calcit No Ch - Chlorite P - Foliation Con Ch - Chlorite P - Foliation Ch -	n - Manganese 7 - Mylonite Stained (Su) 9 - None Spotty (Sp) PI - Planer Slickensic	s) Surface appears and feels smooth ough (Sr) Aspertites are distinguishable and can be felt Aspertites are clearly visable, some ridges evident, surface feels abrasive Ext	ctremely Wide (W) oderate (M) lose (C) ery Close (V ctremely Clo	2ft-6ft 8in-2ft 2.4in-8in (C) 0.75in-2.4in	Fresh (W1) Slightly (W2) Moderately (W3) Highly (W4) Completely (W5) Residuum (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/				10/8/	18	Drilling	Co.: C	Cascad	e					<u>``</u>	DE	<u> </u>	<u></u>	GT .	1-2018-1
Location: C					502470 024				Method: C	ore			•					o. 36 o	
Northing: 185 Surface Eleva				eet A		Logged	Type/Siz		day, S. Brin	ton I Ro	ndriau	P7	Tota	l Dei	oth: 50			0. 00 0	
Bottom Eleva				et AM			ed By: S			itori, E. rte	Janga				ater Da			ogs,	
Azimuth: 045	/ Inclir	natio	n: 20)		Checke		J. Van F					0.00		ator B			J.	
Elevation, ft MSL Depth, ft	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery % 8 8 8	RQD % & & & &	Fractures per ft.	Drawing	QiQ	Dis Dis Nidth	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
-	79/38				METABASALT/GREE continued	ENSTONE	BRECCIA	λ,	100	3100	2				Ch		PI	Sik	
352 -											1				Ch, Cl	Fi		R	
	79/39	W1	R2-R3						100	100	0								
354 –											0								
356 -											7			J Vr Fz Vr J Vr	Ch, Ca Cl Cl, Ch	Fi Fi	PI Ir PI	Sr R	
-	80/39	W1	R2-R3						90	88	0								
358 -											0				Ch, Cl	Fi	PI Ir	SSS	
											0		00	J Vr	Ch, Cl	Fi	PI	S	
	81/40	N V	R2-R3						96	96									
DISCONTINUITY T	YPE	APER/	ATUR	E	INFILLING TYPE	INFILLING AMOUNT	SHAPE		ROUGHNES	S	DIS	SCONT	INUIT	/ SPA	CING	l v	VEAT	HERING	STRENGTH
F - Fault J - Joint (Discontinuity) Fz - Fracture Zone S - Shear Sz - Shear Zone V - Vein Fo - Foliation B - Bedding Joint MB - Mechanical Break Bz - Broken Zone	Narr Oper Wide	Narrow ow (N) n (O) o (W)	0.0	5-0.1" E 1-0.5" C >0.5" I	Cl - Clay My - Mylonite Sta - Calcite No - None Sta - Chlorite Py - Pyrite Proposed lean (No) tained (Su) potty (Sp) artial Filled (Pa) illed (Fi) emented (Cm)	Wa - Wavy Pi - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Rou Rough (R) Very Rough	smooth smooth Asperities are and can be fel Asperities are some ridges e feels abrasive Near-vertical ri surface	rs and feels distinguishable t clearly visable, vident, surface dges occur on	Wide (V Modera Close (Very Cl Extrem	ate (M) (C) lose (VC lely Clos	;) se (Ex	0.		Residu	y (Wi ately (W4) letely uum ((W3)) (W5) (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)	

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascade	CORE LOG GT-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling Method: Core	Sheet No. 37 of 51
Northing: 1857033.632 / Easting: 592478.831	Drill Bit Type/Size: HQ	
Surface Elevation: 1330 feet AMSL	Logged By: D. Loveday, S. Brinton, L. Rodrigue	
Bottom Elevation: 860 feet AMSL Azimuth: 045 / Inclination: 20	Prepared By: S. Clarke Checked By: J. Van Pelt	Groundwater Data: ft bgs,
Azimum. 0437 inclination. 20	Checked By. J. Van Feit	Discontinuities
Elevatic Depth, i Dnill Tin Run No Weathe Index Strengtl Graphic	24 2 2 2 2 4 2 2 2	Dip Type Width Type of Infilling Surface Shape Roughness
METABASALT/GREE continued	1 2	65 J Vn Ch Fi Pl S 55 J Vn Ch, Cl Fi Pl S 40 J Vn Ch, Ca, Cl Fi Pl S
362 - 81/40 ≥ 27 27 27 27 27 27 27 27 27 27 27 27 27	96 96 0	
366 - 82/40	0 100 100 0	MB 55 J Vn Ch, Cl Fi Pl S
368 - 82/41	6	BZ Vn Ch, Cl Fi Pl S 10 J Vn Ch, Cl Fi Pl S 60 J Vn Ch, Cl Fi Pl S
83/41 \(\bar{Q} \) \(\frac{Q}{Q} \) \(\frac{Q}{Q} \)	100 1100	
DISCONTINUITITIE AFERATORE INFILLINGTIFE	AMOUNT	CONTINUITY SPACING WEATHERING STRENGTH
F - Fault J - John (Discontinuity) Tight (T)	san (No) pinced (Si) pi - Planer ridal Fillida (Pa) loid (Fi) slid (Fin) slight (Pa) sligh	e (M) 8in-2ft Moderately (W3) Weak (R2) 1

	l: 10/8/18	Drilling Co.: Cascad			CORE	LOG GT-	1_2018_1
Location: Cupertino, Calif		Drill Rig: LF70 / Drilling				heet No. 38 o	
Northing: 1857033.632 / Ea		Drill Bit Type/Size: HC		I. Dadriausa			131
	eet AMSL	Logged By: D. Love Prepared By: S. Clar	eday, S. Brinton, I	L. Rodriguez	Total Depth: 50		
Azimuth: 045 / Inclination:		Checked By: J. Van			Groundwater Da	nta: ft bgs,	
					Discontinuitie	es	
Elevation, ft MSL Depth, ft Dnill Time (min) Run No./Box No. Weathering Index	Graphic Log	escription	% 9	60 % D 80 Tractures per ft.	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
-	METABASALT/GRE continued	ENSTONE BRECCIA,		1	60 J Vn Ch	Fi Pl S	
372 -			100	1	70 J Vn Ch	Fi PI S	
				1	50 J Vn Ch	Fi Pl S	
374 -				0			
- 84/41 -			100 11	000	60 J Vn Ch, Cl	Fi PI S	
376 -				1	45 J Vn Cl, Ch	Pa PI S	
378 -			100/ 11	1	60 J Vn Ch	Pa PI S	
				1	70 J Vn Ch, Cl	Fi PI S	
85/42 \$ 26			100	00			
DISCONTINUITY TYPE APERATU	RE INFILLING TYPE	INFILLING SHAPE	ROUGHNESS	DISCON	TINUITY SPACING	WEATHERING	STRENGTH
F - Fault J - Joint (Discontinuity) Fz - Fracture Zone S - Shear S - Shear Zone Very Narrow (Vn)	0" Bi - Biotitie Mn - Manganese CI - Clay My - Mylonite SC - Ca - Calcite No - None SC - Ch - Chlorite Py - Pyrite	AMOUNT Clean (No) Stained (Su) Spotty (Sp) PI - Planer STAFE Slickensic Smooth (S	ded (Sik) Visual evidence of polish and striations Surface appears and feel smooth ough (Sr) Aspertites are distinguish and can be felt Asperities are clearly vis some ridges evident, sur feels abrasive	hing Extremely Wi Wide (W) Moderate (M) Close (C) Very Close (V Extremely Cleans of the control	de (EW) >6ft 2ft-6ft 8in-2ft 2.4in-8in (C) 0.75in-2.4in	Fresh (W1) Slightly (W2) Moderately (W3) Highly (W4) Completely (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Sta					10/8/	18	Drilling		ascad						<u>.</u>	RF	. n	G	G	T-1-2018-1
Location						E00470 004		g: LF70 / D Type/Size		Method: C	ore									39 of 51
Surface					feet A	592478.831 MSI	Logged			day, S. Brin	ton I Ro	driau	97	Total	Der	th: 50			<u> </u>	000101
Bottom E					et AM			ed By: S.			itori, E. rte	ungu				ater Da			ogs,	
Azimuth			natio	n: 20	0		Checke		Van F					Orou	IIGW	ator Du	iu.	10.6	1	
							'								Disc	ontinuitie	s		H	
Elevation, ft MSL Depth, ft	Orill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	D	escription			Recovery	RQD % 8 8 8 8	Fractures per ft.	Drawing	qlQ	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
-		85/4				METABASALT/GRE continued	ENSTONE	BRECCIA,		100	100	1		20 .	Vn	Ch, Cl	Fi	PI	Sr	381, 15-381.9' Retained for analysis
382	-		W1	R3-R4								0		80 .	Vn	Ch, Cl	Fi	PI	Sr	
384	-	85/4	3							:100	100	2		75 . 70 .	Vn Vn	Ch Ch, Cl	Fi Fi	PI PI	SS	
386												1		40		Ch Ch, Cl	Fi		S	384.7-385.55' Retained for analysis
		86/4	W1	R3						100	100	1		35 K		CI, Ch CI, Ch	Fi Pa	PI PI	s s	
388												0		30 .		Cl, Ch, Ca	a Fi	PI	S	
		87/4	W F	83						100	100	5								
DISCONTINU	JITY T	YPE	APER.	ATUR	E	INFILLING TYPE	INFILLING AMOUNT	SHAPE		ROUGHNES	S	DI	SCONT	INUITY	SPAC	ING	v	VEAT	HERI	NG STRENGTH
F - Fault J - Joint (Discon Fz - Fracture Zo S - Shear Sz - Shear Zone V - Vein Fo - Foliation B - Bedding Joir MB - Mechanica Bz - Broken Zon	ntinuity) ne nt I Break	Tigi Ven Nan Ope	nt (T) Narrow Ow (N) n (O) e (W)	0.0	<0.05" (0	Bi - Biotitie Mn - Manganese Cl - Clay My - Mylonite Sa - Calcite No - None Sh - Chlorite Py - Pyrite In - Epidote Oz - Quartz	Clean (No) Stained (Su) Spotty (Sp) Partial Filled (Pa) Filled (Fi) Cemented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S)	d (Sik) Visual evidenc and striations Surface appea smooth igh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	e of polishing rs and feels distinguishable t clearly visable, vident, surface	Extrem Wide (V Modera Close (Very Cl	nely Wid W) ate (M)	e (EW)		>6ft 2ft-6ft 8in-2ft 2.4in-8in	Fresh Slightl Moder Highly Compl Residu	y (W2 ately (W4) letely	(W3)) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascade			CORE	LOG GT.	-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling N	Method: Core			heet No. 40	
Northing: 1857033.632 / Easting: 592478.831 Surface Elevation: 1330 feet AMSL	Drill Bit Type/Size: HQ Logged By: D. Loved:	ay, S. Brinton, L. Rod	lriguoz	Total Depth: 50		01 31
Bottom Elevation: 860 feet AMSL	Prepared By: S. Clarke	<u> </u>	iriguez	Groundwater Da		
Azimuth: 045 / Inclination: 20	Checked By: J. Van Pe			Groundwater Da	ata. It bys,	
	,			Discontinuitie	es	
Elevatic Depth, i Dill Tin Run No Weathe Index Strengtt Graphic		Recovery RQD % % 용목용용 용목용용	Fractures per ft. Drawing	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
- 87/43 METABASALT/GR	EENSTONE BRECCIA,	100 100	2	70 J Vn Ch	Fi Pl S	
392		100 100	0	5 J Vn Ch, Cl	Fi Pl Sr	
394 -			4	80 J Vn Ch 50 J Vn Ch 50 J Vn Ch 50 J Vn Ch 55 J Vn Ch, Cl	Fi Pi S Fi Pi S Fi Pi S	
396 -			0	35 J Vn Ch 35 J Vn Ch 45 J Vn Ch, Cl 50 J Vn Ch, Cl	Fi Pi S Fi Pi S Fi Pi S Fi Pi Sr	
398 -		100	4	25 J Vn Ch, Cl BZ Vn Ch, Cl 60 J Vn Ch, Ca	Fi Pl/Wa Sr Fi Ir Sr Fi Pl S	
89/45 ₹ ₽		100 100	3	VIII OII, Od		
DISCONTINUITY TYPE APERATURE INFILLING TYPE	AMOUNT	ROUGHNESS	DISCON	TINUITY SPACING	WEATHERING	STRENGTH
F. Falt F. F	Clean (No) Stained (Su) Spotty (Sp) PI - Planer Slickensided (Sp)	Surface appears and feels smooth (Sr) Asperities are distinguishable and can be felt Asperities are clearly visable, some ridges evident, surface feels abrasive	extremely Wi Vide (W) Moderate (M) Close (C) Pery Close (Vextremely Close	2ft-6ft 8in-2ft 2.4in-8in /C) 0.75in-2.4in	Fresh (W1) Slightly (W2) Moderately (W3) Highly (W4) Completely (W5) Residuum (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascad			CORE	l OG (GT-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling					41 of 51
Northing: 1857033.632 / Easting: 592478.83			dui a a —			410131
Surface Elevation: 1330 feet AMSL Bottom Elevation: 860 feet AMSL	Logged By: D. Love Prepared By: S. Clar	eday, S. Brinton, L. Rod	ariguez	Total Depth: 50		
Azimuth: 045 / Inclination: 20	Checked By: J. Van			Groundwater Da	ta: ft bg:	S,
Azimuti. 0407 incimation. 20	Officered by. 5. Vall			Discontinuitie	es	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery RQD % 응용용을 응용용	Fractures per ft. Drawing	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Rouchness	Comments
continued	ALT/GREENSTONE BRECCIA, D1' weakly cemented breccia, easily	100 100	0 0	35 J Vn Ch, Cl	Fi Pl S	
406 - 90/45 ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹		100 8100	1 0 1	 J Vn Ch, Cl J Vn Ch, Cl J Vn Ch, Cl J Vn Ch, Cl 	Fi PI S Fi PI S	406-406.7' Retained for analysis
90/46 ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹		100 100	1	45 J Vn Ch, Cl (Hl	L3) Fi PI S	S
DISCONTINUITY TYPE APERATURE INFILLING T	YPE INFILLING SHAPE	ROUGHNESS	DISCON	TINUITY SPACING	WEATHE	RING STRENGTH
F-Fault Discontinuity Fight (T)	n - Manganese Clean (No) Wa - Wavy (r - Mylonite Stained (Su) Stained (Su) Smooth (S	led (Sik) Visual evidence of polishing and striations (Sik) Surface appears and feels smooth smooth and can be felt and can be felt Aspertiles are distinguishable and can be felt experities are clearly visable, some ridges evident, surface feels abrasive	Extremely Wi Wide (W) Moderate (M) Close (C) Very Close (V Extremely Clo	ide (EW) >6ft 2ft-6ft 8in-2ft 2.4in-8in /C) 0.75in-2.4in	Fresh (W1) Slightly (W2) Moderately (W Highly (W4) Completely (W Residuum (W6	Extremely Weak (R0) Very Weak (R1) (3) Weak (R2) Moderately Strong (R3) Strong (R4)

	: 10/8/18	Drilling Co.: Cascac				ORE	1 06	CT_	1-2018-1
Location: Cupertino, Califo		Drill Rig: LF70 / Drilling			_ `			lo. 42 o	
Northing: 1857033.632 / Ea Surface Elevation: 1330	sting: 592478.831 feet AMSL	Drill Bit Type/Size: HC Logged By: D. Love	eday, S. Brinton,	I Podriguo	z Total	Depth: 50			71 31
	eet AMSL	Prepared By: S. Clark		L. Rounguez		ndwater Da		bgs,	
Azimuth: 045 / Inclination: 2		Checked By: J. Van			Grou	nawater D	ata. It	bgs,	
_						Discontinuit	es	-	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index	Graphic Log	escription	%	40 % 00 80 Practures per ft.	Drawing Dip	Width Type of Infilling	Amount of Infilling Surface Shape	Roughness	Comments
412 - - - - - - - - - - - - - - - - - - -	METABASALT/GRE continued	ENSTONE BRECCIA,		0 1 1 1 1000 0 4 4	65 ·	J Vn Ch, Cl J Vn Ci	Fi Pi Fi Pi Fi Pi Fi Pi Fi Pi	0 00	
416 - 92/46 			100	2 2 1100 1	40 . 35 .	J Vn Ch, Ca J Vn Cl, Ch	Fi Pi	s s	
92/47				0					
DISCONTINUITY TYPE APERATUR	RE INFILLING TYPE	INFILLING AMOUNT SHAPE	ROUGHNESS	DISC	ONTINUITY	SPACING	WEA	THERING	STRENGTH
F - Fault J - Joint (Discontinuity) Fz - Fracture Zone S - Shear Sz - Shear Zone V - Vein Narrow (N) 0.	0" Bi - Biotitie Mn - Manganese C Cl - Clay My - Mylonite S <0.05" Ca - Calcite No - None S Ch - Chlorite Py - Pyrite P 05-0.1" En - Epidote Qz - Quartz F	AMOUN	led (Sik) Visual evidence of polist and striations i) Surface appears and fee smooth ough (Sr) Asperities are distinguis and can be felt Asperities are clearly vis some ridges evident, su feels abrasive	shing Extremely Wide (W) Moderate Close (C) Very Clos Extremely	/ Wide (EW)	>6ft 2ft-6ft 8in-2ft 2.4in-8in 0.75in-2.4in <0.75in	Fresh (W1 Slightly (V Moderatel Highly (W- Complete) V2) y (W3) 4) y (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date S						10/8/	18	Drilling Co.:	Cascad						<u> </u>	DE	. n	C	GT.	1-2018-1
Location								Drill Rig: LF70			ore			C	O				o. 43 c	
	_						592478.831	Drill Bit Type/			ton I Do	ر بند اسام		Tatal	D				J. 4 5 C	,, ,,
Surface						et AM		Logged By: Prepared By:		eday, S. Brin	ilon, L. Ro	arigu				th: 50				
Azimut					_		<u>oc</u>	Checked By:						Groui	iawa	ater Da	ııa:	IL I	ogs,	
															Disc	ontinuitie	es			
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription		Recovery %	8 8 8 8 8 8 0 8 0 8 0 0	Fractures per ft.	Drawing	Dip	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
							METABASALT/GREI continued	ENSTONE BREC	CIA,			8		70 J	Vn Vn	Ch, Cl Ch, Cl	Fi Fi	PI Ir	SS	
														50 J	Vn	CI, Ch	Fi	PI	s	
. +	1											\square		55 J	Vn	Ch, Cl	Fi	PI	s	
42			93/47	W1	R2-R3					100	100	1		60 J	Vn	CI, Ch	Fi	PI	Sr	
42												1		35 J		Ch Cl, Ch	Fi Fi	PI	Sr Sr	
												5		35 J	Vn	Ch	Fi	PI	s	
_	_		94/47							100	92	8		70 J B2 55 J MI	Vn	Ch, Cl Ch, Cl Ch	Fi Fi	PI Ir PI	s s	
42	26 -											- 1		60 J	Vn	Ch	Fi	PI	S	
	-			W1	R2-R3							4		Fi	y Vn	Ch, Cl	Fi	lr	S	
42	28 -		94/48							100	92	6		BZ	Z Vn	Ch, Cl	Pa	PI	S	
	-		95/48	W1	R2-R3					100	100	4		55 J	- 1	1	Fi Pa	PI Ir	S Sr	
DISCONTI	INUI	TY TYPE		PER/	ATURI	E	INFILLING TYPE	INFILLING AMOUNT SHAP	E	ROUGHNES	S	DIS	SCONT	INUITY	SPAC	ING	v	/EAT	HERING	STRENGTH
F - Fault J - Joint (Dist Fz - Fracture S - Shear Sz - Shear Zc V - Vein Fo - Foliation B - Bedding , MB - Mechan Bz - Broken Z	one 1 Joint iical Br		1	Narrow w (N) (O)	0.	:0.05" C 5-0.1" E 1-0.5" C	I - Clay My - Mylonite S a - Calcite No - None S h - Chlorite Py - Pyrite P p - Epidote Qz - Quartz Fi	AWICON I lean (No) talined (Su) potty (Sp) arrial Filled (Pa) lilled (Fi) emented (Cm) Wa - Wavy PI - Planer St - Steppe	Smooth (S) Slightly Ro ed Rough (R)	smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	rs and feels distinguishable t clearly visable, vident, surface	Wide (V Modera Close (Very Cl	ate (M)	;)	0.7	>6ft 2ft-6ft 8in-2ft 2.4in-8in 5in-2.4in <0.75in	Fresh Slightl Moder Highly Compl Residu	y (W2 ately (W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascade		CORE	LOG GT.	1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling Method: Core			heet No. 44	
Northing: 1857033.632 / Easting: 592478.831 Surface Elevation: 1330 feet AMSL	Drill Bit Type/Size: HQ Logged By: D. Loveday, S. Brinton, L. F	Rodriguez	Total Depth: 50		51 01
Bottom Elevation: 860 feet AMSL	Prepared By: S. Clarke	touriguez	Groundwater Da		
Azimuth: 045 / Inclination: 20	Checked By: J. Van Pelt		Croundwater Dt	11 095,	
			Discontinuiti	es	
Elevation, ft MSL Depth, ft Dnill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	scription Recovery RQD % 유용용 유용용	80 Fractures per ft. Drawing	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
432 - 95/48 ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹		0 0 6	Fz Vn Cl, Ch 50 J Vn Ch, Cl	Fi Ir R	
436 - 96/49 \(\sum_{\text{\tint{\text{\tin\text{\tex	100 \$1008	1 1 3 3 0 0	30 J Vn Ch 65 J Vn Ch, Ch 20 J Vn Ch, Ch 40 J Vn Ch 60 J Vn Ch, Cl 75 J Vn Ch, Cl	Fi Pi Sr Fi Pi S S Fi Pi S Fi Pi S Fi Pi S Fi Fi Pi S	
DISCONTINUITY TYPE APERATURE INFILLING TYPE	INFILLING AMOUNT SHAPE ROUGHNESS	DISCON	ITINUITY SPACING	WEATHERING	STRENGTH
F - Fault J - Joint (Discontinuity) Tight (T)	ean (No) ained (Su) PI - Planer frial Filled (Pa) led (Fi) mented (Cm) Ir - Irregular Silckensided (Silk) Visual eriodence of polishing and strations and strations of surface appears and feets smooth (S) Surface appears and feets smooth (S) Surface appears and feets smooth (S) Surface appears and feets smooth (S) Fr - Irregular Very Rough (IV) Very Rough (IV)	Extremely Wi Wide (W) Moderate (M) Close (C) Very Close (\ Extremely Cl	2ft-6ft) 8in-2ft 2.4in-8in VC) 0.75in-2.4in	Fresh (W1) Slightly (W2) Moderately (W3) Highly (W4) Completely (W5) Residuum (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18 End: 10/8/18	Drilling Co.: Cascade		COPE		GT-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling Method	I: Core			45 of 51
Northing: 1857033.632 / Easting: 592478.831	Drill Bit Type/Size: HQ				450151
Surface Elevation: 1330 feet AMSL Bottom Elevation: 860 feet AMSL		Brinton, L. Rodriguez	Total Depth: 500		
Bottom Elevation: 860 feet AMSL Azimuth: 045 / Inclination: 20	Prepared By: S. Clarke Checked By: J. Van Pelt		Groundwater Da	ta: ft bgs	S,
Azimum 0437 inclination. 20	Checked by. J. Valifield		Discontinuitie	es	
Elevatic Depth, 1 Drill Tim Run No Weathe Index Strengti	escription Recove % 유유요	y % San Daw	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roudhness	Comments
METABASALT/GRE continued	ENSTONE BRECCIA,	1003 0			
442 − 97/50	100	0 2	60 J Vn Ch, Cl	Fi Pl S	
444 -		7	50 J Vn Ch, Cl 35 J Vn Ch BZ Vn Ch 70 J Vn Ch, Cl	Fi Pl Si Fi Wa S Fi Wa Si Fi Pl S	S 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
- 446 - 98/50 98/50	100%	0 0 4	Fz Vn Ch, Cl 50 J Vn Ch, Cl	Fi Ir R Fi Pl Si	
98/5	100	0 0 0	BZ Vn Ch	Fi Ir Sr	r
99/51 \(\bar{\Sigma}\)					
DISCONTINUITY TYPE APERATURE INFILLING TYPE	INFILLING SHAPE ROUGH	NESS DISCOI	NTINUITY SPACING	WEATHE	RING STRENGTH
Fz - Fracture Zone Very Narrow (Vn) <0.05" Cl - Clay My - Mylonitle S - Shear Sz - Shear Zone Narrow (N) 0.05-0.1" Ep-Goldot Py - Pyritle F - Ep-Goldot Py - Pyritle lean (No) tained (Su) potity (Sp) artial Filled (Pa) lited (Fi) emented (Cm) Ir - Irregular Silickensided (Silk) Visual and st smooth (S) Surface smooth Silightly Rough (Sr) Asperti	iations a papears and feels es are distinguishable be felt es are clearly visable, diges evident, surface Very Close (C)	2ft-6ft I) 8in-2ft 2.4in-8in (VC) 0.75in-2.4in	Fresh (W1) Slightly (W2) Moderately (W: Highly (W4) Completely (W: Residuum (W6)	Moderately Strong (R3) Strong (R4)	

Date Start: 9/23	3/18 E	End:	10/8/	18	Drilling Co.:	Cascac	de					_	<u>``</u>	DE		<u> </u>	<u>C</u>	T 1 2019 1
Location: Cup					Drill Rig: LF7			ore				•	,U					T-1-2018-1 6 of 51
Northing: 1857					Drill Bit Type												0. 4	00151
Surface Elevat			feet Al		Logged By:		eday, S. Bri	nton,	L. Ro	drigue				oth: 50				
Azimuth: 045 /		_		OL .	Prepared By Checked By:							iroر	ındw	ater Da	ata:	ft	bgs,	
7321111UH 1. UH 3 /		11. 20	Ť		Oncoreu by.	J. Vall							Disc	continuitie	es	_	士	
Elevation, ft MSL Depth, ft Drill Time (min)	Run No./Box No. Weathering Index	Strength Index	Graphic Log	Des	escription		Recovery % & & & &		RQD % 4 & 8	Fractures per ft.	Drawing	diO -	l ype Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
-	99/51 🕏	R1-R2		METABASALT/GREE continued friable material, like creating large broke	ely mechanical b		50		20	0		N	1B					
452 -	100/51 ≨	R1-R2		452-452.5' very wea	eak, friable mater	rial	100		0	>10			J Vn	Ch, Cl	Fi	PI	Ø	
454	101/51 ⋚	R1-R2		454-455.8' very wea	ak, friable matei	rial	100		0	>10			3Z					
456 -	102/51						100	3	31.8	1		70 N	V Vn	Ca	Fi	PI	R	
	W1	R1-R2								>10		E	J Vn SZ Vn	Ch, Cl Ch, Cl	Fi Fi		Sr Sr	
458 -	102/52						100	3	31.8	>10		E	SZ SZ SZ					
	103/52 ≶	R2		1			100	2	25.9									
DISCONTINUITY TYP	E APER	ATURI	E		INFILLING AMOUNT SHA		ROUGHNES			DIS	CONTI	NUIT	SPA	CING	V	VEA	THERIN	IG STRENGTH
F - Fault J - Joint (Discontinuity) Fz - Fracture Zone S - Shear Sz - Shear Zone V - Vein Fo - Foliation B - Bedding Joint MB - Mechanical Break Bz - Broken Zone	Tight (T) Very Narrow Narrow (N) Open (O) Wide (W)	0.0	<0.05" C	i - Biotitie	ean (No) ained (Su) otty (Sp) rital Filled (Pa) led (Fi) mented (Cm) Wa - Wa PI - Plan rts Filled (Pa) st - Step	er Slightly Re	and striation Surface appe smooth ough (Sr) Asperities ar and can be fe Asperities ar some ridges feels abrasiv	ears and for ears and for edistinguest eclearly verident, s e	eels iishable visable, surface	Wide (V Modera Close (V Very Cl	te (M)			>6ft 2ft-6ft 8in-2ft 2.4in-8in /5in-2.4in <0.75in	Fresh Slight Model Highly Comp Resid	ly (W rately / (W4 letely	2) (W3) () (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18	End: 10/8/18	Drilling Co.: Cascad	е		CODE	LOG GT-	1 2010 1
Location: Cupertino,		Drill Rig: LF70 / Drilling					
	32 / Easting: 592478.831	Drill Bit Type/Size: HQ		a alui ·		heet No. 47 o	101
	1330 feet AMSL 860 feet AMSL	Logged By: D. Love Prepared By: S. Clark	day, S. Brinton, L. R	odriguez	Total Depth: 50		
Azimuth: 045 / Inclina		Checked By: J. Van F			Groundwater Da	ata: ft bgs,	
7 Zimam. 040 / moina	111011. 20	Oncoked by. 0. van i			Discontinuiti	es	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No.	Strength Index Graphic Log	scription	Recovery RQD %	Fractures per ft. Drawing	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
103/52		NSTONE BRECCIA,	100 25.9	0	65 J Vn Ch, Cl	Pa Ir R	
104/52			92 48	0			
464 -	M1 P2-R1			0			
466 -			92 48	0			
				0	МВ	467.2'	Redrilled
468 - 105/58	F 22		65.2 35	0			
106/58			100 66	0	МВ		
		NFILLING AMOUNT SHAPE	ROUGHNESS	DISCON	TINUITY SPACING	WEATHERING	STRENGTH
F - Fault J - Joint (Discontinuity) F2 - Fracture Zone S - Shear S - Shear S - Shear S - Shear F0 - Foliation F0 - Foliation B - Bedding Joint MB - Mechanical Break Bz - Broken Zone Wide (W	0	an (No) Wa - Wavy Slickenside ined (Su) PI - Planer Smooth (S)	smooth ugh (Sr) Asperities are distinguishable and can be felt Asperities are clearly visable, some ridges evident, surface feels abrasive	Extremely Widde (W) Widde (W) Moderate (M) Close (C) Very Close (V Extremely Cl	2ft-6ft 8in-2ft 2.4in-8in /C) 0.75in-2.4in	Fresh (W1) Slightly (W2) Moderately (W3) Highly (W4) Completely (W5) Residuum (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18	Drilling Co.: Cascade	CORE LOG GT-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling Method: Core	Sheet No. 48 of 51
Northing: 1857033.632 / Easting: 592478.831	Drill Bit Type/Size: HQ	
Surface Elevation: 1330 feet AMSL Bottom Elevation: 860 feet AMSL	Logged By: D. Loveday, S. Brinton, L. Rodrigue Prepared By: S. Clarke	
Azimuth: 045 / Inclination: 20	Checked By: J. Van Pelt	Groundwater Data: ft bgs,
		Discontinuities
Elevation, ft MSL Depth, ft Dnill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	scription Recovery RQD % % 11 H H H H H H H H H H H H H H H H	Dip Dip Type of Infilling Type of Infilling Amount of Infilling Surface Shape Roughness
METABASALT/GREE continued	0 0 100 666 2	MB MB 55 V Vn Ca Fi Pl S Sr
474 - 106/54	100 66	473.7-474.1' Redrilled
476 -	0	55 J Vn Ch, Cl Fi Pl S 75 J Vn Ch Fi Pl S
- 107/54 ₹ 2	92 82 0	
108/54 ≩ 월	100/ 688 0	
DISCONTINUITY TYPE APERATURE INFILLING TYPE	NFILLING SHAPE ROUGHNESS DISC	CONTINUITY SPACING WEATHERING STRENGTH
F - Fault J - Joint (Discontinuity) Fz - Fracture Zone Very Narrow (Vn) <0.05°	san (No) pinced (si) pi - Planer trial Filliod (Pa) ed (Fi) stiff Filliod (Pa) ed (Fi) stantistic (Pa) ed (Fi)	e (M) 8in-2ft Moderately (W3) Weak (R2) 2.4in-8in Highly (W4) Moderately Strong (R3)

Loca	tion:	t: 9/23 Cup	ertin	o, C	alifo				g: LF70 / I		Method: C	ore			(C	OF					Γ-1-2018-1 9 of 51
	_	18570 levati				ting: :	592478.831 MSI	Logged	Type/Siz		day, S. Brir	iton I Ro	ndriau	67	Tota	al C)ent	th: 500			J. T .	30131
		evatio				et AM			ed By: S			11011, L. 110	Juligu					ter Dat			ogs,	
Azim	uth: (045 / I	nclir	atio	n: 20)			d By: J												J.,	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery % % & &	RQD % & 8 8 8	Fractures per ft.	Drawing	QiQ		Width	Type of Infilling	Di Bu	Surface Shape	Roughness	Comments
-	-						METABASALT/GREI continued	ENSTONE	BRECCIA	۸,	2 4 9 8	7400	1		35	J	Vn	Ch	Fi	PI	S	
	- 482 -		108/5	1 M	R2						100	68	2		70 75	J	Vn (Ch, Cl Ch, Cl	Fi Fi	PI PI	SS	
_	-												6			BZ	Vn (Ch	Fi	lr	Sr	
_	- 484 -		108/5	5							100	68	2		40 40	J J	Vn (Fi Fi	lr lr	s s	
-	- - 486 –												0			DZ.		oi, o			9	
-	- 488 – -		109/5		R3						100	100	0									
-	-		110/5	5 ×	R3				<u> </u>	I	100	96	0					T				
F - Fault J - Joint Fz - Frac S - Shear Sz - Shear V - Vein Fo - Folia B - Beddi MB - Med Bz - Brok	Discontinure Zone Ir Zone Ition Ing Joint Ing Joint Ing Jone Ing Zone	ireak	Tight Very Narro Oper Wide	(T) Narrow ow (N) I (O) (W)	0.4	0" E 0.05" C 5-0.1" E F 1-0.5" C	i - Biotitie Mn - Manganese C I - Clay My - Mylonite S a - Calcite No - None S p - Chlorite Py - Pyrite P p - Epidote Qz - Quartz F	INFILLING AMOUNT Ilean (No) Istained (Su) Ipotty (Sp) artial Filled (Pa) Illed (Fi) Illed (Fi)	SHAPE Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Roi Rough (R) Very Rough	smooth Asperities are and can be fel Asperities are some ridges e feels abrasive Near-vertical risurface	e of polishing rs and feels distinguishable t clearly visable, vident, surface dges occur on	Extrem Wide (\) Modera Close (Very C Extrem	ate (M) (C) lose (Vo nely Clo	le (EW C) se (Ex	<i>(</i>)	2. 0.75	>6ft 2ft-6ft 8in-2ft .4in-8in iin-2.4in <0.75in	Fresh Slightl Moder Highly Compl Residu	(W1) y (W2 ately (W4) etely ium ((W3) (W5) W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 9/23/18	Drilling Co.: Cascade		COPEI	OG GT	-1-2018-1
Location: Cupertino, California	Drill Rig: LF70 / Drilling Method: 0	Core		eet No. 50	
Northing: 1857033.632 / Easting: 592478.831 Surface Elevation: 1330 feet AMSL	Drill Bit Type/Size: HQ Logged By: D. Loveday, S. Bri	nton, L. Rodriguez	Total Depth: 500.		0131
Bottom Elevation: 860 feet AMSL	Prepared By: S. Clarke	Illon, L. Rodriguez	Groundwater Data		
Azimuth: 045 / Inclination: 20	Checked By: J. Van Pelt		Groundwater Data	i. it bys,	
			Discontinuities	 	
Elevatici Depth, Depth, Drill Tin Run No Weathe Index Strengt	scription Recovery % 只要要	88 88 % Practures Per fr. fr. Per fr. fr. Per fr. fr. Per fr. fr. Per fr. fr. Per fr. fr. Per fr. fr. Per fr. fr. Per fr. fr. Per fr. fr. Per fr. fr. Per fr. fr. Per fr. fr. Per fr. fr. Per	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
METABASALT/GREE continued		96 0			
492 -		0			
110/56	100	96	40 J Vn Ch	Fi PI S	
494 -		1	65 J Vn Ch	Fi PI S	
496 -		0			
111/56 ₹ 22 22 498 -	96	0			
	100	6	Fz Vn Ch, Cl	Fi Ir S	
	NEW LINE				
DISCONTINUITY TIPE AFERATORE INFILLING TIPE	NFILLING AMOUNT SHAPE ROUGHNE	nce of poliching	ITINUITY SPACING	WEATHERING	STRENGTH
Fz - Fracture Zone	otty (Sp) ridal Filled (Pa) ed (Fi) mented (Cm) Ir - Irregular PI - Planer dial Filled (Pa) Slightly Rough (Sr) Asperities a nd can be Rough (R) Asperities a some ridges feels abrasi	as aars and feels e distinguishable elt e clearly visable, e clearly visable, e vident, surface	2ft-6ft SI 8in-2ft M 2.4in-8in Hi VC) 0.75in-2.4in C	resh (W1) lightly (W2) loderately (W3) ighly (W4) ompletely (W5) esiduum (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date	Start	: 9/23/1	8 E	End: ′	10/8/	18	Drilling	Co.: (Cascade	Э				`∩DI	= 1	06	CT 1	-2018-1
		Cuper								Method: C	ore			JUKI				
					_	592478.831	Drill Bit										. 51 of	51
		levation		330 fe			Logged			day, S. Brir	nton, L. Ro	driguez	z Tota	I Depth:	500.	0 feet		
		evation:		60 fee	t AM	ISL	Prepare		S. Clark				Grou	undwater	Data	: ft b	gs,	
Azim	nuth: (045 / Inc	linatio	n: 20		1	Checke	d By: J	J. Van F	elt				Diagrani	muitic -			
Elevation, ft MSL	Depth, ft	Drill Time (min)	Weathering Index	Strength Index	Graphic Log		Description			Recovery %	RQD % 8 9 8 8	Fractures per ft.	Drawing Dip	Discontin Midth Midth	Type of Infilling	Amount of Infilling Surface Shape	Roughness	Comments
						Total depth = 5 Vibrating wire p grou	500 FT below biezometer in ted in neat c	nstalled 10	surface 0/8/2018	,								
-																		
_																		
neco:	ייי ייאודוא	Y TYPE	ADER	ATURE		INFILLING TYPE	INFILLING	SHAPE	T	ROUGHNES	.e.	Diec	ידיי יעודועסי	/ SDACINO		WEATH	EDING	STRENGTH
				AIURE			AMOUNT		Slickenside	(Slk) Visual evidend and striation				Y SPACING			LANG	
S - Shea Sz - Shea V - Vein Fo - Folia B - Bedd	ar Zone ation ing Joint	l,	Fight (T) Very Narrow Narrow (N) Open (O)	(Vn) <0.0 0.05-0 0.1-0	05" C 0.1" E 0.5" G	e - Iron Oxide Sd - Sand Sv - Gypsum Si - Silt	Stained (Su) Spotty (Sp) Partial Filled (Pa)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S)	Surface apper smooth gh (Sr) Asperities are and can be fe Asperities are	distinguishable	Wide (W) Moderate Close (C) Very Clos	(M)	2ft- 8in- 2.4in- 0.75in-2	-6ft SI -2ft Me -8in Hi 2.4in Ce	esh (W1) ightly (W2) oderately (V ighly (W4) ompletely (V esiduum (W	W3) W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5)
MB - Med	hanical Br	eak \	Vide (W)	>(0.5" H	l - Healed Un - Unknown Ii - Mica			Very Rough	(Vr) Near-vertical r surface	idges occur on		, 51036 (EX)	~U.	5	-ciaaaiii (Vi	,	Extremely Strong (R6)

Date Start: 10/10/18 End: 10/19/18	Drilling Co.: Cascad					\sim)DE	I 0		GI	Г-1-2018-2
Location: Cupertino, California Northing: 1857263.987 / Easting: 592386.067	Drill Rig: LF70 / Drilling		re		4						of 18
Surface Elevation: 939 feet AMSL	Drill Bit Type/Size: HC Logged By: T. Clar	k, L. Rodrigue	ez		To	tal De	epth: 17				0.10
Bottom Elevation: 881 feet AMSL	Prepared By: S. Clar		<u>-</u>				water Da			bgs,	
Azimuth: 271 / Inclination: -70	Checked By: J. Van	Pelt								Ĭ,	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery %	8 8 8 8 % RQD	Fractures per ft.	Drawing Dip		Width Scoutinuiti	Amount of Infilling	Surface Shape	Roughness	Comments
brown/dark gray, — firm to coarse sai — platform material — 0.6-1.4' limestone broken by hand, of grayish-green, fir moderately weath chloritized	sandy clay, dark reddish 10-20% coarse sands, 40-50% d, clays, moderate plasticity, FILL], similar to above, easily onsolidated //GREEENSTONE BRECCIA - e to coarse grained, slightly to ered, very weak to weak,	(////	18	>10							
6 - 20 2/1		6	0	>10							
DISCONTINUITY TYPE APERATURE INFILLING TYPE	INFILLING AMOUNT SHAPE	ROUGHNESS	T	DISC	CONTINU	TY SP	ACING	v	VEAT	HERING	STRENGTH
F. Fault	Slickopsis	smooth ough (Sr) Asperities are dis and can be felt Asperities are cle some ridges evid feels abrasive	and feels V stinguishable C arrly visable, lent, surface	Wide (W) Moderate Close (C) Very Clos	∌ (M))	·	>6ft 2ft-6ft 8in-2ft 2.4in-8in 9.75in-2.4in <0.75in	Fresh Slightl Moder Highly Comp Reside	lỳ (Warately (W4) letely	(W3)) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date	Star	:: 10/1	0/18	}	End	: 10/1	9/18	Drilling Co.:	Cascad	le				_	\bigcirc		<u> </u>	C	GT	1-2018-2
		Cup					-00000 007	Drill Rig: LF70 /			ore			C	Oi				lo. 2 of	
		18572 levati				ting: t	592386.067 SI	Drill Bit Type/Siz		<u>!</u> κ, L. Rodrig	I I E 7			otal	Deni	th: 17			IO. 2 OI	10
		evatio				et AM		Prepared By: \$			ucz					iter Da			ogs,	
Azim	uth: 2	271 / I	nclir					<u> </u>	J. Van I					n oui	IGVVC	iter Da	ш.	10.6	J95,	
٦															Disco	ontinuitie	s			
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription		Recovery %	8 8 8 8 % RQD	Fractures per ft.	Drawing	Up Type	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
_	-	10	3/1		\$2 \$2		METAVOLCANIC/GF continued	REENSTONE BREC	CIA,	50	0	>10								
_	12 -	15	4/1	W2	R4		CHERT - dark red, fir weathered, weak to n alteration		ematite	777	0	>10		0 V			Fi	PI	S	
_	-	10	5/1	w2	24 24		quartz vein			50	0	>10		10 ME V 55 J ME	Vn	Qz Cl carb.	Fi Fi	Wa Pl	S S/Sik	
_	- 14	30	6/1	W2	¥		black			70	0	>10		ME	3					
-	-											>10	ŧ	50 J 55 B 50 B	Т		Fi No No	Wa	SIk S	
-	-	35	7/1	W2	R4					100	21	>10	6	55 B 60 B	Vn	CI	Fi Fi Fi		s s	
	16 -											>10	6	15 J 60 J 55 J 80 J	Vn T T	Fe Ox Fe Ox	Su	PI PI PI	SIK Sr S	
	-	15	8/2	w ₂			LIMESTONE with che to medium grained, fr strong, hard, highly fr deformed bedding	esh to slightly weath	nered,	50	0	>10	3	Fz 35 J/F Fz	т	Ca, CI Qz Qz, Ca	Pa/F Fi Pa	PI	Sr Slk Slk	
-	18 –	35	9/2	W2	R4					87.5	0		6	ME 65 J	Vn	Ca	Fi/Pa	a Pl	Sr	
_	-			\times	\times							>10		ME	3					
_	-	20	10/2	W2	R4					100	0	>10		80 S 85 S		Cl, Ca Cl, Ca	Fi Fi	PI PI	S S	
DISCON	ITINUI	TY TYPE	4	APER/	ATURI			INFILLING AMOUNT SHAPE		ROUGHNES		DIS	CONTIN	UITY	SPAC	ING	W	/EAT	HERING	STRENGTH
F - Fault J - Joint (Fz - Fract S - Shear Sz - Shea V - Vein Fo - Folia B - Beddi MB - Mec Bz - Brok	r Zone ion ng Joint nanical B	reak	Narre Oper Wide	Narrow ow (N) n (O) (W)	0.05	0.05" C 5-0.1" E F 1-0.5" G >0.5" M	I - Clay My - Mylonite St a - Calcite No - None Sp h - Chlorite Py - Pyrite Pa p - Epidote Qz - Quartz Fil	ean (No) ained (Su) Wa - Wavy ained (Su) Pl - Planer ritrial Filiad (Pa) leid (Fi) St - Stepped Ir - Irregular	Smooth (S) Slightly Ro Rough (R) Very Rough	smooth smooth sugh (Sr) Asperities are and can be fe Asperities are some ridges feels abrasiv Near-vertical i surface	s ars and feels distinguishable It clearly visable, evident, surface diges occur on	Extreme Wide (W Moderat Close (C Very Clo Extreme	() ie (M) ic) ose (VC) ely Close	(Ex)	0.75	2ft-6ft 8in-2ft .4in-8in 6in-2.4in <0.75in		y (W2 ately (W4) etely uum ((W3) (W5) W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

		: 10/1				: 10/1	9/18	Drilling Co.: Cas	scade					· ^	DE	10	C	C	T-1-2018-2
Loca								Drill Rig: LF70 / Dri		ore			•	,0					
							592386.067	Drill Bit Type/Size:										10.	3 of 18
-		levati				et AM			Clark, L. Rodrigi	uez			Total	Dep	oth: 17	1.0 fe	et		
		evatio				et AM	SL	· , ,	Clarke				Grou	ndw	ater Da	ta:	ft I	bgs,	
Azim	uth: :	271 /	nclir	atio	n: -7	0		Checked By: J. V	'an Pelt					Dio	continuitie			Щ	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	scription	Recovery %	RQD % 8 8 8 8	Fractures per ft.	Drawing	Dip		of Infilling	Amount of Infilling		Roughness	Comments
-	-		10/2	W2	R5		LIMESTONE - light gr grained, locally with the	ray to white, very fine nin quartz veining, pyrite		0	>10			z Vn z Vn	No No CI, Sd	No Pa		s	
-	22 -										>10		F	z Vn	No	No	PI	Sr	
-	-	40	11/2	12	R4		22.5-27' moderate with dark gray to bl	quartz veining, brecciate ack matrix, silicified	ed 100	60	>10		F	z Vn	No	No	lr	Sr	
-	24 -	40	11/2	>	Ľ.						>10		M	В					
-	-										>10		Var. \	/ Vn	ı Qz	Fi	lr	R	25.6-25.8' Some washout
-		25	12/3		R4				93.3	47	7		35 .		No	No	Р	Sr	
-	28 -	21	13/3		R5				90.9	22	>10		N N N N N N N N N N N N N N N N N N N	B B B					
-	-		14/3	¥	Rs				75	0	>10		N N	B B					
			15/3	W	R4	oxdot			37.5	0			N N						
			\Box			Щ					Ш			\perp		\perp			
DISCO	ITINUI	TY TYP	<u> </u>	PERA	ATURI	E		NFILLING AMOUNT SHAPE	ROUGHNES		DIS	CONT	INUITY	SPA	CING	W	/EAT	HER	ING STRENGTH
F - Fault J - Joint (Fz - Fract S - Shear Sz - Shea V - Vein Fo - Folia B - Beddi MB - Mec Bz - Brok	r Zone tion ng Joint hanical B		1	Narrow w (N) (O)	0.1	0.05" Ci Ci 5-0.1" E _I Fe 1-0.5" G	I - Clay My - Mylonite Sta a - Calcite No - None Sp h - Chlorite Py - Pyrite Pal p - Epidote Oz - Quartz Fill	stan (No) wa - wavy sinned (Su) otty (Sp) rital Filled (Pa) led (Fi) mented (Cm) Wa - wavy Filled Filled Filled Palener Stig Rou Ir - Irregular	ckensided (Sik) Visual evidence and striations surface appear smooth ship they Rough (Sr). Aspertities are and can be fe appear and can be feel subrasive ty Rough (Vr) Near-vertical in surface	distinguishable It clearly visable, evident, surface	Extreme Wide (V Modera Close (Very Cle Extreme	V) te (M) C) ose (VC	c)	0.7	>6ft 2ft-6ft 8in-2ft 2.4in-8in 75in-2.4in <0.75in	Fresh Slightl Moder Highly Compl Residu	y (Wately (W4) etely	2) (W3) (W5)	Moderately Strong (R3)

Date	Star	t: 10/1	0/18		End	: 10/1	9/18	Drilling (Co.: C	Cascad	e					•)PF	10	<u></u>	G	T-1-2018-2
		Cup					592386.067				Method: C	ore			•	, (4 of 18
		levati				et AM		Logged	Type/Siz Bv: T		, L. Rodrigi	Jez		-	Tota	I De	epth: 17				
		evatio				et AM			d By: S								vater Da			bgs.	
Azim	uth: 2	271 / 1	nclir	atio	n: -7	0		Checke	d By: J	. Van F	Pelt									Ĭ	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	Dε	escription			Recovery	RQD %	Fractures per ft.	Drawing	0	Di Di	Volunti Scontinuiti Type of Infilling	Samount of Infilling	Surface Shape	Roughness	Comments
Ш		٥	м_	옹드	Š	9					8 6 4 2	8 8 8 8	투용	ă	qi	<u> </u>	\$ £	Ā	ิช	Ä	
- -	-		15/3	\bigvee	\bigvee		LIMESTONE with ch grained, fresh to sligt hard, moderately frac	ert, light gra ntly weather ctured	ay to tan, f red, strong	fine g,	37.5	0	4		1	ИΒ					
-	32 -			W1-W2	R4								8				'n No	No No	lr Fr	Sr Sr	
-	-		16/3								86.6	60	>10				'n No 'n No	No No		Sr Sr	Frequent mechanical breaks from drilling
-	34 -			\bigvee	\bigvee								>10				'n No	No		Sr	
-	-												>10			V N	'n Ca	Fi	PI	S	Mechanically broken rounded gravels
-	36 -	20	17/3	W1-W2	R4						80	13.3	>10		1	ΛΒ ΛΒ ΛΒ Ξz	г	No	PI	Sr	
-	-												>10		0	J \	'n Cl	Pa	lr	Sr	Some chatter on rig (mislatch) rig is having a hard time cutting through rock without breaking
-	-	12	18/3	W1-W2	R4						80	33.3	>10		25		'n No 'n No	No		Sr	may change bit
-	38 -			\times	\times								->10				'n Ch, Qzn Un, H		m Pl	s	
-	-	16	19/4	W1-W2	R4		small mineralized	vugs, pyrite	ı		100	27.3	>10		1	//B //B					Frequent mechanical breaks
		17	20/4		R4	片					100	85				//B					
DICCO			\Box	\n=-		₩	NEU L DIO TOTA	INFILLING	01:45-				<u> </u>			/B	NOIN'S	Τ.		L	
F - Fault J - Joint Fz - Frac S - Sheal Sz - Sheal V - Vein Fo - Folia B - Beddi MB - Mec Bz - Brok	Discontin ture Zone ar Zone tion ng Joint hanical B en Zone	uity) reak	Tight Very Narro Open Wide	(T) Narrow ow (N) I (O) (W)	0.05	0" B C 0.05" C C i-0.1" E Fi I-0.5" G H	i - Biotitie Mn - Manganese C I - Clay My - Mylonite S a - Calcite No - None S p - Chlorite Py - Pyrite P p - Epidote Qz - Quartz Fi	AMOUNT lean (No) tained (Su) potty (Sp) artial Filled (Pa) illed (Fi) emented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Rou Rough (R) Very Rough	and can be fell Asperities are some ridges de feels abrasive (Vr) Near-vertical risurface	e of polishing rs and feels distinguishable t clearly visable, vident, surface dges occur on	Extreme Wide (V Modera Close (I Very Cle Extreme	V) te (M) C) ose (VC ely Clos	e (EW c) se (Ex	(>6ft 2ft-6ft 8in-2ft 2.4in-8in 7.75in-2.4in <0.75in	Fresh Slightl Moder Highly Compl Residu	(W1) ly (W2) ately (W4) letely uum ((W3)) (W5) (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 10/10/18 End: 10/19/18	Drilling Co.: Cascade	CORE LOG GT-1-2018-2
Location: Cupertino, California	Drill Rig: LF70 / Drilling Method: Core	Sheet No. 5 of 18
Northing: 1857263.987 / Easting: 592386.067	Drill Bit Type/Size: HQ	
Surface Elevation: 939 feet AMSL	Logged By: T. Clark, L. Rodriguez	Total Depth: 171.0 feet
Bottom Elevation: 881 feet AMSL	Prepared By: S. Clarke	Groundwater Data: ft bgs,
Azimuth: 271 / Inclination: -70	Checked By: J. Van Pelt	Discontinuities
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Graphic Log	scription Recovery RQD % % % % % % % % % % % % % % % % % % %	Bullilu sss Comments
LIMESTONE with che		MB Down to replace bit CDLP at bay checking stock
- 20/4 M 4	100 85.8 >10	Fz Vn No Ir Sr CDLP back replacing bit
42	50 \$100 >10	MB V Vn Ca, Un Fi PI S Back drilling high mechanical breaks very low sample recovery drilf water is moderatly cloudy/opaque
141 22/4	88.9	35 V Vn Si, Ca, Cl Fi Pl Sr 80 V T Pl Sr 10 J T Pl Sr 80 Fz T Pl Sr Pl Sr Pl Sr
<u> </u>	>10	Fz T Ca, Cl Pa Ir S
44 - 10 23/4 \(\frac{\text{N}}{\frac{\text{N}}{2}}\) \(\frac{\text{N}}{2}\) \(\text{N	100	MB MB MB MB Fz T Ca Pa Ir Sr
46 - 20 24/4	90.5	MB Fz T Ca Fi Ir Rig chattering slow drilling to get run return water nearly clear chattered less near end of run 24
15 25/4	100 100 0	MB MB MB Rig chattering less reduced to near zero no obvious loss of returns cloudy
48 - 15 26/4	100/81008	MB
26/5	100// 100 2	- -
20 28/5 NH 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	55.5 0 50.5 100 100 2100	MB MB 35 MB J/V MB
DISCONTINUITY TYPE APERATURE INFILLING TYPE	NFILLING SHAPE ROUGHNESS DISCON	ITINUITY SPACING WEATHERING STRENGTH
F-Full F	AMOUNT an (No) an (No) grid (Pa) dr (Fi) mented (Cm) I'r irregular Bright Rough (R) For Rough (R)	Fresh (W1)

		t: 10/ ² Cup					19/18	Drilling		Cascad	e Method: Co	are.			C	0	RE	LC	G	i (ST-1-2018-2
-							592386.067		Type/Siz			n e									6 of 18
		levati				et AN		Logged	•••		k, L. Rodrigu	ez		-	Гotа	Dep	oth: 17	71.0 f	eet		
		evatio				et AN	ISL	Prepare	ed By: S					(Grou	ındw	ater Da	ata:	ft	bgs	,
Azim	uth: 2	271/	Inclir	natio	n: -7	0	1	Checke	ed By: J	. Van I	Pelt					Di-	4: :4:				1
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery %	RQD % & & & &	Fractures per ft.	Drawing	QiQ	Width	Type of Infilling	S Amount of Infilling	Surface Shape	Roughness	Comments
-	-	- 20	29/5	W1-W2	R4		LIMESTONE with che	ert, continu	led		100	333.3	>10		N	V Vn 1B 1B 1B	Са	Fi	PI	S	
-	52 -	20	30/5	W1-W2	R4						90	26.7	>10		50 10	iz Vn J Vn J Vn iz Vn	Un, Cl No Cl Ca Ca Ca	St. St.	o Ir	Sr Sr Sr Sr	
-	- 54 -												8		17 55 30 45	J T	No No No No CI	No No No Sp	PI PI PI	S/SI S	
_	-	18	31/5	W1-W2	R4		small vugs to 0.25	inches			100	0	>10		N N	1B 1B 1B 1B					Issues with pump on rig difficultly extracting run 32
-	56 -	37	32/5	W1-W2	R4						100	58.3	7		30 N	J Vn 1B 1B 1B 1B 1B 1B	Ca Qz	Sp	PI	Sr	Tripping out to check bit CDLP noted that they were working on getting a #10 bit to site ASAP Frequent mechanical breaks
-	- 30	15	33/5	3	R4						100	100	4	,	√ar.	1B 1B V Vn	Ca	Fi	i Ir	Sr	
-	58 -	15	35/5	W	R4		increased chert LIMESTONE with che bluish-gray to mediur mottling, fine grained white veining through	m bluish-gr , strong, ha	ay with wh	ite,	33.3	33.3	>10	,	/ar. F	z Vn	Ca, Qz	Pa	a Ir	s	
				W1-W2									>10				Ca/Qz, F	H Fi			
-	-	20	36/6	W1-W2	R4						100	0	>10								
DISCO	NTINUI	TY TYP	E ,	APER/	ATURI	E	INFILLING TYPE	INFILLING AMOUNT	SHAPE		ROUGHNESS		DI	SCONTI	NUITY	SPA	CING	Γ,	WEA.	THEF	RING STRENGTH
F - Fault J - Joint Fz - Frac S - Sheat Sz - Sheat V - Vein Fo - Folia B - Beddi MB - Mec Bz - Brok	(Discontinue Zone ar Zone ation and Joint Chanical Been Zone	reak	Tigh Very Narr Ope	t (T) Narrow ow (N) n (O)	(Vn) < 0.08 0.7	0" 0.05" 5-0.1" 1-0.5"	3i - Biotitie Mn - Manganese Cl Cl - Clay My - Mylonite St Ca - Calcite No - None Si Ch - Chlorite Py - Pyrite Pi Ep - Epidote Qz - Quartz F	lean (No) tained (Su) potty (Sp) artial Filled (Pa) illed (Fi) emented (Cm)	Wa - Wavy Pl - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Ro Rough (R) Very Rough	ed (SIk) Visual evidence and striations Surface appear smooth ugh (Sr) Asperities are d and can be felt Asperities are c some ridges ev feels abrasive h (Vr) Near-vertical rid surface	of polishing s and feels istinguishable learly visable, ident, surface ges occur on	Extrem Wide (I Modera Close (Very C Extrem	nely Wide W) ate (M) C) lose (VC nely Clos	(EW)) e (Ex)	0.7	>6ft 2ft-6ft 8in-2ft 2.4in-8in 75in-2.4in <0.75in	Fresh Slight Mode Highly Comp Resid	i (W1) tly (W rately y (W4) bletel luum) /2) y (W3 t) y (W5 (W6)	Extremely Weak (R0) Very Weak (R1)) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

		:: 10/1 Cup				: 10/1 rnia	9/18	Drilling (Cascad Drilling	e Method: C	ore			(CC	RE	LC)G	G	T-1-2018-2
							592386.067		Type/Siz								9	Shee	et N	lo.	7 of 18
Surfa	ace E	levati	on:	93	9 fe	et AM	SL	Logged	By: T	. Clark	, L. Rodrigu	ıez			Tota	l De	epth: 17	71.0 f	eet		
Botto	om El	evatio	n:	88	1 fe	et AM	SL	Prepare	d By: S	S. Clark	е				Gro	und	water D	ata:	ft	bgs,	,
Azim	uth: 2	271 /	nclir	natio	n: -7	0		Checke	d By: J	. Van F	Pelt									\perp	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery %	RQD %	Fractures per ft.	Drawing	QiD	Type	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
-	-	15	37/6	W2	R4		LIMESTONE with che	ert, continue	ed		60	100	>10			MB MB	No				Very poor recovery some redrill
-	62 -	15	38/6	W2	R4						60	1003	>10			МΒ					Rig continues to chatter varying degrees poor recovery
-	-	20	39/6	W2	R4						71.4	0	>10			MB MB Fz	'n Ca	Pε	a Ir	Sr	
-	64 –												>10		50	J MB	Г №	No) PI	s	Some redrill at top of extracted core
-	-	20	40/6	W1-W2	R4		increased chert, be	ecomes fres	sh		92.9	35.7	- 8		50	J	'n Ca 'n No 'n Ca	Sp Sp	PI	Sr Sr Sr	
-	66 -	20	41/6	W1	R4						81.25	18.75	>10			Fz \	'n Ca 'n Ca	St St	o Ir	Sc Sc	Mechanical breaks
-	68 -	20	42/6	W1	R4						100	0	>10			МВ	No				
-		3F	V3 IC	W1-W2	R4						000	8/16-7	5		85	MB J MB	'n Ca 'n Ca	St	ır	Sr Sr	
	-	35	43/6	W3-W4	R2 R3		69.8' brecciated wi	ith clay frac	ture infill		907	346.7	8			Fz \ MB BZ \ MB	'n Ca 'n Ca 'n Ca 'n Cl carb.	Sp Fi Fi	lr	s s s	
ISCO	NTINUIT	TY TYP		APER/	ATURE	\top		INFILLING	SHAPE		ROUGHNES	S	DIS	SCONT	INUIT	Y SP	ACING	Τ',	NEA1	HER	ING STRENGTH
F - Fault J - Joint Fz - Frac S - Shear Sz - Shear V - Vein Fo - Folia B - Beddi MB - Med Bz - Brok	(Discontin ture Zone ar Zone ation ing Joint chanical Bosen Zone	uity) reak	Tight Very Narro Oper Wide	t (T) Narrow ow (N) n (O)	(Vn) <1 0.05 0.1	0" B C 0.05" C 5-0.1" E Fi 1-0.5" G >0.5" M	i - Biotitie Mn - Manganese Cl I - Clay My - Mylonite St a - Calcite No - None Sp h - Chlorite Py - Pyrite Pa p - Epidote Qz - Quartz Fil	lained (Su) potty (Sp) artial Filled (Pa) lled (Fi) emented (Cm)	Wa - Wavy Pl - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Roi Rough (R) Very Rough	d (Sik) Visual evidenc and striations Surface appea smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive a (Vr) Near-vertical ri surface	e of polishing rs and feels distinguishable t clearly visable, vident, surface dges occur on	Extrem Wide (V Modera Close (Very Cl Extrem	ely Wid V) Ite (M) C) ose (VO	e (EW)	>6ft 2ft-6ft 8in-2ft 2.4in-8in 7.75in-2.4in <0.75in	Fresh Slight Mode Highly Comp	(W1) lly (W rately y (W4 lletely luum	2) (W3)) (W5) (W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 10/10/18 End: 10/19/18	Drilling Co.: Cascad	le		CC	JDE I		GT-1-2018-2
Location: Cupertino, California	Drill Rig: LF70 / Drilling					heet No.	
Northing: 1857263.987 / Easting: 592386.067	Drill Bit Type/Size: HC						0 01 10
Surface Elevation: 939 feet AMSL		k, L. Rodriguez			epth: 171		
Bottom Elevation: 881 feet AMSL Azimuth: 271 / Inclination: -70	Prepared By: S. Clark Checked By: J. Van			Ground	water Dat	ta: ft bgs	,
AZIMuth. 2717 Inclination70	Checked by. J. Van	Peil		D	iscontinuities	s	
Elevation, ft MSL Depth, ft Drill Time (min) Run No/Box No. Weathering Index Graphic Log	escription	Recovery RQ % %	rac Draw		Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
LIMESTONE with ch	ert, continued						
43/7 St. St. St. St. St. St. St. St. St. St.	vith clay	90 46	7 3	Fz	Vn Ca carb.	Fi lr Sr	Changed bit from #8 to #10 Tripping in casing starting next run with new bit
72 – 160 44/7 R fracture zone, 30%	% calcite grains (from veins),	64.7	>10	Fz	Vn Ca, Cl carl	b. Fi Ir Sr	chattery cloudy return water
1 40% limestone 30	0% clasts (carbonated, composted limestone		>10	MB	т	le Se	
74 - Sp LIMESTONE with ch	ert, medium gray to white,		>10	65 J	T Vn Ca, CI	Pa PI Sr	
Example 2	hered, weak to moderatly veak, hard, carbonaceous	90 27		75 J 85 Fz 60 V 45 J 95 MB	Vn Ca Vn Cl carb. Vn Ca, Cl Vn Ca, H Vn Ca Vn Ca Vn Ca Vn Ca Vn Ca, Cl	Sp Pl S Pa Ir Sr Fi Pl Sr Pl Sr Fi Pl Sr Sp Pl Sr Pa Ir Sr Pa Ir Sr Pa Ir Sr	Rig down for 10 minutes to put some poles on the gearbox
76 -			>10	75 J	Vn Ca Vn Ca, Cl carl	Pa PI S	
			5	MB	Vn Ca, Cl carl	b. Fi Ir Sr	
78 -			3				Note: mechanical breaks between run 45 and run 46 cone total was 0.6' added 0.3 RQDL to run 45 and run 46
17 46/7 \$\times \times \		100 9	>10	60 J	Vn Ca, FeO Vn Ca T No	Sp Pl Sr	
			>10	90 J Fz	I INO Vn Ca Vn Ca, CI Vn Ca, CI carl	No Ir Sr Sp PI Sr Sp Ir Sr b. Pa Ir Sr	
DISCONTINUITY TYPE APERATURE INFILLING TYPE	INFILLING AMOUNT SHAPE	ROUGHNESS	DISCON	ITINUITY SP	ACING	WEATHER	ING STRENGTH
Fz - Fracture Zone Very Narrow (Vn) < 0.05" Ca - Calcite Very Narrow (Vn) < 0.05" Ca - Calcite Very Narrow (Vn) < 0.05" Ch - Chlorite Py - Pyrite Fx - Chlorite Py - Pyrite Fx - Chlorite Py - Pyrite Fx - Chlorite Py - Pyrite Fx - Chlorite Py - Pyrite Fx - Chlorite Py - Pyrite Fx - Chlorite Py - Pyrite Py - Pyr	Clean (No) Wa - Wavy Slickensid Stained (Su) Spotty (Sp) PI - Planer Smooth (S	and striations Surface appears and feels smooth sugh (Sr) Asperities are distinguisha and can be felt Asperities are clearly visal some ridges evident, surfa feels abrasive	Wide (W) Moderate (M Close (C) Very Close (' Extremely C) VC)	2ft-6ft 8in-2ft 2.4in-8in 0.75in-2.4in	Fresh (W1) Slightly (W2) Moderately (W3) Highly (W4) Completely (W5) Residuum (W6)	Moderately Strong (R3) Strong (R4)

Date Start: 10/10/18	Drilling Co.: Cascad	de		CODE	LOGGT	1 2019 2
Location: Cupertino, California	Drill Rig: LF70 / Drilling	_			LOG GT- Sheet No. 9 of	
Northing: 1857263.987 / Easting: 592386.067	Drill Bit Type/Size: HC					10
Surface Elevation: 939 feet AMSL Bottom Elevation: 881 feet AMSL	Logged By: T. Clar Prepared By: S. Clar	k, L. Rodriguez		Total Depth: 1		
Azimuth: 271 / Inclination: -70	Checked By: J. Van			Groundwater D	ata: ft bgs,	
	Oncoked by. 0. van			Discontinuit	ies	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	escription	Recovery RQD %	Fractures per ft. Drawing	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
LIMESTONE with che	ert, continued			BZ Vn Ca, Cl	Pa Ir Sr	
- 46/7 N. 32 N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		100 9	>10	65 J Vn Ca, Cl BZ Vn	Fi PI Sr PI SIk	
			7	BZ Vn	lr Sr	
82 - 28 47/8 \$\tilde{\ti		96.1		60 J Vn Cl, Ca BZ Vn Ca	Pa PI S Sp Ir Sr	
			>10	35 S Vn Cl, Ca Vn Cl 25 J Vn Ca, Cl C	Fi PI S Sr PI Sr PI Sr PI Sr	
			>10	BZ Vn Ca, Cl	Pa Pl/lr Sr	
84 -				55 J Vn Ca, Cl c BZ Vn Ca 25 J Vn Cl, Ca	arb. Fi Pl S Pa Ir Sr Fi Pl Sr	
			>10	BZ Vn Ca	Fi lr Sr	
20 48/8 \$\frac{7}{2}\$.93.6	9	55 J Vn Ca, Cl 40 J Vn Cl, Ca 40 Sz Vn Cl, Ca 50 S Vn Cl, Ca J Vn Ca, Si J Vn Ca, Si J Vn Ca, Cl C	Pa PI S Pa PI S Fi Ir S Fi PI S Pa PI S S Fi PI S S P PI S S Fi PI S P PI S Fi PI S F	
86 - 20 48/8				Fz 45 J Vn Ca, Cl c		
			9	20 MB J J Vn Cl, Ca 15 J Vn Ca, Cl c	Pa Wa Sr Pa Pl S	
				40 J Vn Cl carb. 30 J Vn Ca	Fi PI S Pa PI Sr	
88 -			9	BZ Vn Cl carb. 25 J Vn Cl carb. 15 J Vn Cl carb. 60 J Vn Cl carb. BZ Vn Cl carb.	Pa Pl S Pa Pl S Fi Wa/Pl S	
			7	BZ Vn Ca 90 J T No	Pa Pl Sr No Pl Sr	
20 49/8 🕺 🕏		29.6	7	55 MB Vn Cl carb. 25 J Vn Cl carb. J Vn Cl carb. J Vn No 50 J Vn Cl carb. 40 J Vn Cl carb.	Fi Ir Sr PI Sr Sp PI Sr	
	INFILLING CHARE			35 J Vn Cl carb.		
DISCONTINUITY THE APERATURE INFILLING THE	AMOUNT SHAPE	ROUGHNESS ded (Slk) Visual evidence of polishing		ITINUITY SPACING	WEATHERING	STRENGTH
J - Joint (Discontinuity) Fz - Fracture Zone S - Shear Zone Narrow (Vn) 0.05-01 Narrow (N) 0.05-01	tained (Su) potty (Sp) Wa - wavy Smooth (S	and striations S) Surface appears and feels smooth Rough (Sr) Aspertities are distinguishable and can be felt c) Aspertites are clearly visable, some ridges evident, surface feels abrasive	Extremely W Wide (W) Moderate (M) Close (C) Very Close (\ Extremely Cl	2ft-6ft) 8in-2ft 2.4in-8in VC) 0.75in-2.4in	Slightly (W2) Moderately (W3) Highly (W4) Completely (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

_	e Star						19/18	Drilling (Cascad Drilling	e Method: Co	ore			(C) J					Г-1-2018-2
							592386.067	Drill Bit										Sh	eet	: N	o. 10	of 18
_	face E					et AN		Logged			, L. Rodrigu	iez		_				h: 171		et		
	tom El muth:					et AN ∩	SL	Prepared Checked						- 1	Gro	ounc	lwa	ter Dat	a:	ft I	ogs,	
المحاد	Tidui.	2/1/		latio	17			Checked	и Бу.). Vali i	GIL					Ę	Disco	ontinuities	<u> </u>	_	士	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery	RQD % 8 8 8 8	Fractures per ft.	Drawing	Dip	Type	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
						П	LIMESTONE with che	ert, continue	ed						55 45		- 1	CI carb.	Fi	PI PI	Sr Sr	
	 	-	49/8	W1-W2	R4-R5						100	29.6	2		55	MB MB MB		Cl carb., H		lr	R	
		1				Н							8			BZ	Vn	Ca	Pa	lr	Sr	
						Н	-								30	s	Vn	CI, H	Pa	w	Sr	
	92 -						stylolites, ~30 degr preferentially break	rees to core ks along sty	axis, lolites				6		30 50 35 80	Fz J J	Vn Vn Vn Vn Vn Vn	Ca Ca CI, Ca	Pa Pa Sp Pa No	PI PI	S S S S S	
	94 -	15	50/9	W1-W2	R4-R5						100	47	8		45 40 80	۷ ا	Vn Vn	Ca, H Cl carb.	No Fi Fi No Sp	PI PI PI	S S S S S	
	96 -	-											3		25 30	F	- 1	CI carb., H CI, Ca carb Ca	1 '	PI	R S	
													2		65	V/J	Vn	Ca	Fi	PI	Sr	
	-					H									65	J	т			PI	s	
				W1-W2	R4-R5								7		20	J	Vn	CI carb.	Fi Pa	PI	s	
				>	ď	H]								30	J Fz	Vn Vn	Ca, Cl Ca, Cl	Pa Sp		S	
	98 -	15	51/9			H	-				80	30			20		Vn Vn	Ca Ca, Cl	Sp Sp		Sr S	
						Ħ							6		40 40	J	- 1	Ca, Cl Ca, Cl	Fi Fi	PI PI	S Sr	
						H									50		Vn	Ca	Sp		s	
				<u> </u> -		H	99-101' brecciated oxidation along dis	l with clay in scontinuities	ifilling, iro	on					65			Ca Cl	Sp Pa	PI Ir	S Sr	
				W2	R2								>10		~40			CI, Fe Ox	Fi		Sr	
						片							\perp			عد	vii	CI, Ca, Fe	Pa	lr	Sr	
	ONTINUI	TY TYP	E /	APERA	ATURE		INFILLING TIFE	INFILLING AMOUNT	SHAPE	er ·	ROUGHNESS		DI	SCONTI	NUI	TY SF	PACI	NG	W	/EAT	HERING	STRENGTH
Fz - Fr S - Sho Sz - Sh V - Vei Fo - Fc B - Bec MB - M Bz - Br	nt (Discontinacture Zone par hear Zone n bliation dding Joint echanical E oken Zone	Break	Narr Oper Wide	Narrow ow (N) n (O)	0.05	0.05" (0.	Cl - Clay My - Mylonite St Ca - Calcite No - None Sp Ch - Chlorite Py - Pyrite Pa Ep - Epidote Qz - Quartz Fil	tained (Su) potty (Sp) artial Filled (Pa) illed (Fi) emented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Rou Rough (R) Very Rough	surface	s and feels distinguishable clearly visable, rident, surface liges occur on	Wide (Modera Close (Very C Extrem	ate (M) (C) lose (VC nely Clos	i) se (E:	x)	0.75	2ft-6ft 8 8in-2ft I 4in-8in I in-2.4in (<0.75in I	Fresh (Slightly Modera Highly Compl Residu	y (Wi ately (W4) etely uum ((W3) (W5) W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 10/10/18 End: 10/19/18	Drilling Co.: Casca	de			CC)PE	10	G	GT_1	I-2018-2
Location: Cupertino, California	Drill Rig: LF70 / Drilling			┙ '					. 11 of	
Northing: 1857263.987 / Easting: 592386.067	Drill Bit Type/Size: HC			+-	-1.5				. 1101	10
Surface Elevation: 939 feet AMSL		k, L. Rodriguez				epth: 17				
Bottom Elevation: 881 feet AMSL Azimuth: 271 / Inclination: -70	Prepared By: S. Clar Checked By: J. Van			Gro	ound	water Da	ata:	ft b	gs,	
Azimum. 2717 mamanon70	Checked by. 3. van	T elt			Di	scontinuiti	es			
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery RQE % % 유육윤윤 유육윤	Fractures	Drawing Dip		Width Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
	n chert, dark bluish-gray to ray, fine grained, fresh, strong, some bedding visible, ~30	80 30	>10	70 40		/n Ca /n Ca /n Ca, Cl ca	Pa Pa urb. Pa	Ir PI PI	Sr Sr S	
	axis, stylolites, carbonaceous,		6	25 70		/n Ca, Cl /n Cl	Pa Pa		Sr S	
102 -				75		/n Cl	Sp	PI	s	
				30	J	/n CI, Ca	Sp	PI	s	
			9	70 45	J /	/n Cl /n Cl	Sp Sp	PI PI	Sr Sr	
				40		/n Cl carb.	Pa		Sr	
20 52/10		100 68.9		55		/n Cl carb.	Pa		Sr	
104 -			4	50 35 70 25	7 / 8 / 7	/n Ca /n Ca, Cl ca /n Ca, Cl /n Cl	Pa ırb. Fi Fi Pa	인 인 인 Ir	S S S S S T	
106 -			0		MB MB MB	/n Ca	Pa	lr	105.5-1 analysis Sr	06.1' Retained for
				45		/n Cl carb.	Pa	" Pl	R	
			10		BZ \	/n Ca	Pa	Ir	Sr	
			7	70 40 55 35 75	J \	/n Ca /n Cl /n Ca /n Ca /n Cl	Pa Pa Pa Pa Pa	PI PI PI PI	Sr R Sr Sr Sr	
15 52/14 5 5		/100		70 20		/n Ca, Cl /n Ca, Cl	Fi Pa		Sr Sr	
-108 - 15 53/10 ≨ ½ ↓		100 48.9		60 55	J۱	/n Ca, Cl /n Ca /n Ca, Cl	Fi Pa	PI	Sr R	
			1	70	J	/n Ca, Cl	Fi	PI	s	
			6	60 40 35	J۱	/n CI /n Ca, CI /n Ca	Su Fi Pa		Sr Sr R	
DISCONTINUITY TYPE APERATURE INFILLING TYPE	INFILLING SHAPE	ROUGHNESS	DISCO	ONTINUI	TY SP.	ACING	w	EATH	ERING	STRENGTH
F - Fault J - Joint (Discontinuity) Tight (T)	AWOUN I DESCRIPTION BEAUTION BEAU	ided (Sik) Visual evidence of polishing and striations (S) Surface appears and feels smooth account (Sr) Asperties are distinguishabl and can be felt some ridges evident, surfact feels abrasive	Extremely Wide (W) Moderate (Close (C) Very Close Extremely	Wide (EV (M)	N)	>6ft 2ft-6ft 8in-2ft 2.4in-8in).75in-2.4in <0.75in	Fresh (Slightly Modera Highly Comple	W1) ((W2) itely (' (W4) etely (W3) W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Loca	tion:	:: 10/1 Cup	ertin	o, C	alifo				LF70 /		Method: Co	ore			C	0					T-1-2018-2 2 of 18
		18572 levati				ting: { et AM	592386.067	Drill Bit T			k, L. Rodrigu	107			Tota	Dor	oth: 17			J. I	2 01 10
		evatio				et AM		Prepared				162					ater Da			ogs,	
		271/					<u></u>	Checked		l. Van F					Gioc	IIUW	alei Da	ıa.	IL K	Jys,	
																Disc	ontinuitie	s		Ħ	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery % & & & &	RQD % & 8 8 8	Fractures per ft.	Drawing	qiQ	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
-			53/10	8	₽ <u>7</u>	H	LIMESTONE with che	ert, continue	:d		100//	48.9									
-			54/10		R4-R5						100	32.5	8		60 45 65 25 40	J Vn J Vn J T J Vn	CI carb. CI CI Ca, CI Ca Ca Cl carb.	Fi I Su Su Pa Su Su Fi	PI/Wa Ir PI PI PI PI PI	Sr Sr Sr Sr Sr Sr Sr	
-	- 112	20	54/11	W1							100	32.5	>10		30 45	J Vn z Vn J Vn	Ca Ca, Cl Ca	Fi Fi Su	PI Ir PI	s s s	
-	-				R2										55		CI Ca CI carb.	Fi Sp Fi	PI PI PI	S Sr S	
-	-				R4								10		70 :		Cl carb. Cl	Fi Fi Fi	PI PI PI	SSS	
-	114 -												>10		E	Z Vn		Fi Sp	PI Ir	S Sr	
- -	- 116 –												0			J Vn	Ca CI	Pa Fi	PI	S	
-	_	25	55/11	W1	R4-R5						100	38	1		60	J Vn	CI	Pa	PI	s	
-	-												7		60 40 60 Var	J Vn J Vn J Vn	CI No CI, Sd CI, Sd No Ca	Fi No Pa Pa No Pa	Ir PI Ir Ir Ir	Sr Sr Sr Sr Sr	
-	118 –												_		55	J Vn J Vn J Vn		Fi Pa Pa	PI PI PI	R Sr Sr	
	-												5		60	J Vn J Vn J Vn		Pa Pa Su	PI PI	Sr Sr Sr	
	-	5	56/11	W1	R4-R5						100	55.6	2			J Vn J Vn	graph. Cl	Su	Wa Pl		19,3-120.1' Retained for
						Ц.		IN IEU LIZZA					Ш				L			а	ınalysis
F - Fault J - Joint Fz - Frac S - Shea Sz - Shea V - Vein Fo - Foliz B - Beddi MB - Mec Bz - Brok	Discontin ture Zone ir Zone tion ng Joint hanical Bi en Zone	uity) reak	Tight Very Narro Oper Wide	Narrow ow (N) n (O)	(Vn) < 0.09 0.7	0" B 0.0.05" C 5-0.1" E 1-0.5" G >0.5" N	i - Biotitie Mn - Manganese Cl I - Clay My - Mylonite St a - Calcite No - None Sp h - Chlorite Py - Pyrite Pa p - Epidote Qz - Quartz Fi	lained (Su) pootty (Sp) Partial Filled (Pa) Iled (Fi) Semented (Cm)	SHAPE Wa - Wavy Pl - Planer St - Stepped r - Irregular	Smooth (S) Slightly Rou Rough (R) Very Rough	smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges er feels abrasive Near-vertical ric surface	e of polishing rs and feels distinguishable t clearly visable, vident, surface	Extrem Wide (V Modera Close (Very Cl Extrem	W) ate (M) C) lose (VO aely Clos	le (EW) C) se (Ex)	0.7	>6ft 2ft-6ft 8in-2ft 2.4in-8in 5in-2.4in <0.75in	Fresh (Slightly Modera Highly Compl Residu	(W1) y (W2 ately (W4) etely uum ((W3) (W5) W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date :	Start	t: 10/	10/18	3	End	: 10/1	9/18	Drilling Co.: Ca	ascade					<u> </u>	DE I	$\overline{}$	<u></u>	GT	1-2018-2
Locati								Drill Rig: LF70 / D		ore			C	U					
	_						92386.067	Drill Bit Type/Size										o. 13 c	OT 18
Surfa						et AM			Clark, L. Rodrigi	uez			Total	Dep	oth: 171.	0 fe	et		
Bottor						et AM	SL	Prepared By: S.				_	Grou	ndw	ater Data	a:	ft l	ogs,	
Azimu	ıth: 2	2/1/	Inclir	natio	n: -/	0		Checked By: J.	Van Pelt					Dior	continuities				
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	scription	Recovery	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Fractures per ft.	Drawing	QiD		Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
						Щ	LIMESTONE with che	ert, continued						1		1_	_		
	-	5	56/12	W1	R4		black carbonaceous	s bed, ~1-inch thick	100	55.6	3		60 J 45 J 55 J	Vn	CI carb. CI, Ca No	Fi	PI PI PI	Sr Sr Sr	
	-										4		50 B3			Pa		Sr/Slik Sr	
	22 -										1		50 B				PI	S	
	-					H					\vdash								
-	-	110	57/12	W1	R4				100	54	5		40 S 55 J	Vn	CI, Ca carb. CI, Ca	Fi	PI	SS	
1	24 -										6		60 J 55 J 60 J	Z Vn Vn Vn	CI, Sd CI	Pa Pa Pa	Ir Pl Pl	Sr R Sr Sr	
-	_												40 J	Vn	CI, Ca CI, Ca CI, Ca CI	Fi Pa	PI	S Sr	
	_										3		40 J			Fi Pa	PI PI	S R	
	26 -						black carbonaceous	s layer, ~1-inch thick			1		50 J	Vn	CI, Ca	Fi	PI	s	
	-										3		50 J	Vn	Cl carb.	Fi	PI	s	
1	28 –	15	58/12	W1	R4	H			100	70	Щ		40 J 75 J	Vn	CI		Wa	R Sr	
	-										0								
	-		58/13						100	70	2		60 J			Pa	PI PI	Sr	
DISCON	ΓINUI	TY TYP	E	APER	ATURI	E	INFILLING TYPE	NFILLING SHAPE	ROUGHNES	s	DI	SCONT	40 J NUITY	Vn SPA		Pa W		Sr HERING	STRENGTH
F - Fault J - Joint (D Fz - Fractu S - Shear Sz - Shear V - Vein Fo - Foliatie B - Bedding MB - Mechi Bz - Broker	iscontin re Zone Zone on g Joint anical Bi	uity)	Tigh	t (T) Narrow ow (N) n (O)	(Vn) < 0.09	0" Bi Cl :0.05" Ca Cl 5-0.1" Ep Fe 1-0.5" Gi	- Biotitie	ann (No) inited (Su) otty (Sp) rital Filled (Pa) ed (Fi) mented (Cm) Wa - Wavy inited - Planer rital Filled (Pa) St - Stepped Ir - Irregular	Slickensided (SIk) Visual evidence and striations Smooth (S) Surface appears smooth Slightly Rough (Sr) Asperities are	distinguishable tt clearly visable, svident, surface	Extrem Wide (V Modera Close (Very Cl	nely Wid W) ate (M)	e (EW)		>6ft F 2ft-6ft S 8in-2ft M 2.4in-8in H /5in-2.4in C	resh (lightly lodera lighly ompl esidu	(W1) y (W2 ately (W4) etely	2) (W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R6) Extremely Strong (R6)

Date	Start	t: 10/1	0/18	}	End	: 10/1	9/18	Drilling Co.:	Cascad	le					· ^	DE		C	C'	T-1-2018-2
		Cup						Drill Rig: LF70			ore				U					4 of 18
	_						92386.067	Drill Bit Type/Si							_				J. I	4 01 10
		levati evatio				et AM		Logged By: Prepared By:		k, L. Rodrigi	uez					th: 17				
		evaud 271 / 1				et AM	SL .	Checked By:					-	Grou	ndwa	ater Da	ta:	ft t	ogs,	
٨٧١١١	iutii. Z	2/1/	HCIII	latio	17			Checked by.	J. Vali i	- Git					Disc	ontinuitie	es			
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription		Recovery % & 9 8 8	RQD % & 4 & 8	Fractures per ft.	Drawing	QiD Type	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
						H	LIMESTONE with che	ert, continued												
-	_		58/13	W1	R4					100	70	0		м	В					
-	_											1		35 J	Vn	Cl carb.	Su	PI	Sr	
-	132 -				R4							3		75 J	Vn T	Ca No	Su No	PI PI	R Sr	
						片								50 J	Vn	Carb, graph?	Su	PI	Slk	
_	-					豆								40 J	Vn Vn	CI, Sd No	Fi No	PI Ir	Sr S	
-	-	25	59/13	W1						100	48.9	>10		30 3	Vn	Ca	Su	PI	s	
	134 -					井								25 J		Ca	Su	PI	S	
	_				R2							9		15 J	Vn	Cl. Ca	Su	PI	Sr	
-	-											>10		80 J 70 J 35 J	Vn Vn Vn	Ca Cl, Ca	Pa Pa Fi Pa	PI PI PI PI Ir	Sr Sr Sr S	
-	136 –													0 J 55 J 60 J	Vn Vn Vn	Ca Ca Ca	Pa Pa Pa	PI PI PI	S S S	
	_											10		70 J	Vn	Ca Cl	Pa Pa	PI PI Ir	S Sr Sr	Named automobile
-	-	50	60/13	W1	R4					100	48.1	$\mid - \mid$		25 J		CI Ca	Pa Pa	PI PI	l It	Cleaned out muck tank lightened bolts on gearbox due to vibration)
	-		. 5, 10	>	ш.	H					Ĭ	5		25 J			Fi	PI	Sr	
_	138 –													50 S 20 J B.	Vn	CI, Ca CI Ca	Fi Pa Pa	PI PI PI	Sr Sr	
-	_											8		M B 45	z vn	Ca Ca	Fi Pa	Ir Pl	R Sr	
	-					井								30 J	Vn	CI	Pa	PI	Slk	
_	_	40	61/14	W1	R4					100	33.3	9		40 J	Vn		Pa Fi	PI Ir	s R	
_						二		INFILLING SHAPE				$\perp \perp$		45 J			Fi	PI	s	
DISCOI F - Fault	TINUI	TY TYPI			ATURE		IN ILLINO I II L	AMOUNT STATE		ROUGHNES ed (Slk) Visual evidence			SCONTI		SPAC				HERIN	
F - Fault J - Joint Fz - Frac S - Shea Sz - Shea V - Vein Fo - Folia B - Bedd MB - Med Bz - Brok	ture Zone ar Zone ation ing Joint chanical Br		1	Narrow ow (N) n (O)	0.1	0.05" Ci Ci 5-0.1" E _I Fe 1-0.5" G	- Clay My - Mylonite Sta a - Calcite No - None Sp n - Chlorite Py - Pyrite Pai o - Epidote Oz - Quartz Fill	ean (No) ained (Su) planed (Su) potty (Sp) rittal Filled (Pa) led (Fi) St - Stepped ir - Irregular	Smooth (S)	and striations) Surface appear smooth sugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	distinguishable tclearly visable, evident, surface	Extrem Wide (V Modera Close (Very Cl Extrem	V) ite (M) C) ose (VC	;)	0.7	>6ft 2ft-6ft 8in-2ft 2.4in-8in 5in-2.4in <0.75in	Fresh Slightl Moder Highly Compl Residu	y (W2 ately (W4) etely	(W3) (W5)	Extremely Weak (R0) Vory Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 10/10/18 End: 10/19/	18 Drilling Co.: Casca	de			· ^	DE		_	CT	1-2018-2
Location: Cupertino, California	Drill Rig: LF70 / Drillin								o. 15 o	
Northing: 1857263.987 / Easting: 592					_				0. 15 0	1 10
Surface Elevation: 939 feet AMSL Bottom Elevation: 881 feet AMSL		k, L. Rodriguez	-			th: 17				
Azimuth: 271 / Inclination: -70	Prepared By: S. Clar Checked By: J. Van			Grou	ndwa	ater Da	ta:	ft	bgs,	
Azimum. 2717 inciniation70	Checked by. 3. Van				Disc	ontinuitie	es			
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery RQD % 8.8 % 9.8	Drawing	Oip	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
	MESTONE with chert, continued			10 V	/ Vn	Ca, H	Fi	PI	S	
	carbonaceous vein, ~1-inch thick, 40 degrees to core axis	100 33.3 5		30 S	S Vn z Vn	CI CI	Fi Fi	PI Ir	SSS	
142 -		1		М	В	Ca debris				
- 15 62/14 NA PAR PAR PAR PAR PAR PAR PAR PAR PAR PA		92.5		M M	z Vn B	CI, Ca CI, Ca	Pa Pa	PI Ir	S Sr	
		9		30 F.	B Vn Z Vn	CI, Ca CI, Ca	Pa Pa	Ir Ir	Sr Sr	
		0		М	В					
146 - 22		7			J Vn Z Vn	Ca Ca	Su			
- 30 63/14		98 72 2				Ca CI, Ca	Su	PI PI		
148		1		30 E				PI	s	
63/15		98 872		30 V		Ca, H	Fi			
DISCONTINUITY TYPE APERATURE IN	NFILLING TYPE INFILLING SHAPE	ROUGHNESS DIS	SCONT	INUITY	SPAC	ING	Ņ	VEAT	THERING	STRENGTH
F - Fault Tight (T)	odttie Mn - Manganese Clean (No) Wa - Wavy Stickens wy My - Hylyonite Stalined (Su) Wa - Wavy Stalined (Su) Pi - Pitaria Filled (Pa) Stalined (Pa) St Stepped Cemented (Cm) St Stepped St Stepped Cemented (Cm) St Intercular Intercul	smooth tough (Sr) Asperities are distinguishable and can be felt Asperities are clearly visable, some ridges evident, surface feels abrasive Extrem	V) ite (M) C) lose (VC	;)	0.7	2ft-6ft 8in-2ft 2.4in-8in	Fresh Slightl Moder Highly Compl Residu	y (Wately (W4) letely	(2) ((W3) () ((W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R6) Extremely Strong (R6)

Date Start: 10/10/18 End: 10/19/18	Drilling Co.: Casca	de			ODE	1066	ST-1-2018-2
Location: Cupertino, California	Drill Rig: LF70 / Drillin			C		heet No.	
Northing: 1857263.987 / Easting: 592386.							16 01 10
Surface Elevation: 939 feet AMSL Bottom Elevation: 881 feet AMSL		k, L. Rodriguez			Depth: 17		
Bottom Elevation: 881 feet AMSL Azimuth: 271 / Inclination: -70	Prepared By: S. Clar Checked By: J. Van			Grou	ndwater Da	ata: ft bgs	,
Azimuti. 2717 incination70	Checked by. J. Van	T GIL			Discontinuit	es	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery RQD % sample Life	per ft. Drawing	Oip Tvne	Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
- 15 64/15 \$ \$\frac{9}{4}\$	TONE with chert, continued	100 \$100 0	0	M M B	В	lr Sr	
	ks preferentially along bedding, ~40 ees to core axis	5	5	60 J		PI R	151.3-151.9' Retained for analysis
		4	4	55 J 90 J	Vn Cl, Ca Vn Ca	Fi Pl S Pa Pl Sr	
- 20 65/15 \(\frac{\partial}{2}{2}\)		100 72 2	2	50 J	Vn Cl	Su Ir R	
154 -		2	2	40 E		Pa Pi S	
156		2	2	40 B		Pa PI Sr Fi PI S	
16 66/15 \$ \$ \$ \$ \$		57.1	4	40 J (I	Z Vn Ca, Cl B) Vn Cl	Pa Ir S Su PI S	155.8-156.7' Retained for analysis
158 -		1	1		Vn Ca, Cl	Fi, PI S	
14 67/16 \$ \$ \$		100 53.4	3	30 J	Vn Cl	Su PI S Su PI S	
				-0 E	, i loa	Su PI S	
		>1	10	35 J 40 B	Vn Cl	Su Pl Sr Su Wa R Pl S	
	NC TYPE INFILLING SHAPE	<u> </u>		Ш_			
DISCONTINUITY TYPE	Mount Mn - Manganese Clean (No) Wa - Wavy Slickensi My - Mylonite Statined (Su) No - None Py - Pyrite Partial Filled (Pa) St - Stepped ded (Slik) Visual evidence of polishing and striations S) Surface appears and feels Sourface appears and feels Appertities are clearly visable, some ridges evident, surface feels abrosieve	remely Wickle (W) derate (M) se (C) y Close (V) remely Clo	le (EW)	>6ft 2ft-6ft 8in-2ft 2.4in-8in 0.75in-2.4in <0.75in	WEATHER Fresh (W1) Slightly (W2) Moderately (W3 Highly (W4) Completely (W5 Residuum (W6)	Extremely Weak (R0) Very Weak (R1)) Weak (R2) Moderately Strong (R3) Strong (R4)	

Date	Start	:: 10/1	0/18	}	End:	: 10/1	9/18	Drilling (Co.: C	Cascad	е						DE 1	_	C	GT 2	1 2010 2
		Cup					200000 007				Method: C	ore			C	UI				0. 17 o	1-2018-2
		18572 Ievati				ting: 5	592386.067 SI	Drill Bit			k, L. Rodrigu	IE7			Total	Deni	th: 17			0. 17 0	110
		evatio				et AM		Prepare									iter Da			ogs,	
Azim	uth: 2	271 /	Inclir	atio	n: -7	0		Checke		l. Van F										Ĭ.	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery %	RQD % & & & &	Fractures per ft.	Drawing	Dip		Type of Infilling	gu .	Surface Shape	Roughness	Comments
_						П	LIMESTONE with ch	ert, continue	ed			0400				+					
_	-		67/16	W1	R4-R5						100	53.4	2		40 B		Ca	Pa	PI Wa	S Sr	
-	162 –			W1	R4-R5								1		45 B	Т			PI	S	
															40 J	Vn	No	No	PI	s	
	_	21	68/16	W4-W5	R1-R2						71	38.7	7		40 J	Vn	CI	Sp	PI	Sr	
-				W4	R1	井									F	y Vn	CI, Sd	Fi	Ir	Sr	
-	-			\bigvee	\bigvee								>10		40 B	Vn	CI	Fi	PI	s	
-	164 –			/\	/\										F:	z Vn	CI, Sd	Fi	lr	Sr	
-	-			W4-W5	R2-R3								>10		20 J 30 J 0 J	Vn Vn Vn	Ca No Ca	Fi No Fi	PI Wa PI	Sr Sr Sr	
-	-	12	69/16	W1	R3-R4						82.8	13.8	8								
-	166 -				1						<i>Y/X/Y/V/</i> I I		>10		35 J	Vn	CI	Fi	PI	s	
				X	X								- 10		40 J	Vn	CI	Fi	PI	s	
	_			W1									1								
	168 –					\Box							\vdash		35 J	Vn	Ca	Pa	PI	Sr	
-	-	22	70/17	W1	R4						100	70	2		55 J	Vn	Ca	Su	PI	Sr	
-	-												7		55 J F: 10 J 30 J	Vn T	CI, Ca Ca, CI Ca	Su Fi Su	Ir PI PI PI	Sr Sr Sr Sr	
-						茸									35 J	Vn	Са	Su	Wa	Sr	
DISCO	ייי יואודו.	TY TVP		DED.	ATURE		INFILLING TYPE	INFILLING	SHAPE		ROUGHNES	********	חום	SCONTI						HERING	STRENGTH
F - Fault J - Joint Fz - Frac S - Sheat Sz - Sheat V - Vein Fo - Folia B - Beddi MB - Med Bz - Brok	Discontin ture Zone ir Zone tion ng Joint hanical Bi en Zone	uity) reak	Tight Very Narro Oper Wide	Narrow Ow (N) o (O)	(Vn) <0 0.05 0.1	0" Bi Cl 0.05" C: Cl i-0.1" Ep F6 H-0.5" G	- Biotitie Mn - Manganese C - Clay My - Mylonite S a - Calcite No - None S - Chlorite Py - Pyrite P - Epidote Qz - Quartz Fi	AMOUNT clean (No) ctained (Su) potty (Sp) artial Filled (Pa) illed (Fi) remented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Roi Rough (R) Very Rough	ed (Sik) Visual evidenc and striations Surface appea smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive n (Vr) Near-vertical ri surface	e of polishing rs and feels distinguishable t clearly visable, vident, surface dges occur on	Extrem Wide (V Modera Close (Very Cl Extrem	ely Wide V) ate (M) C) lose (VC ely Clos	e (EW)	2 0.75	>6ft 2ft-6ft 8in-2ft .4in-8in 5in-2.4in <0.75in	Fresh (Slightly Modera Highly Comple Residu	(W1) y (W2 ately (W4) etely ium (2) (W3) (W5) W6)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date	Start	: 10/1	0/18	;	End	: 10)/19/18	3			_	<u> </u>	g Co.:		Casca								4		7)E		C	C	T_1	-201	8 _2	
		Cup									_		ig: LF			_	ethod	: Coi	re				•		Jſ							0-2	
							: 5923	86.0	67				t Type) . 1	18 of	10		_
		levati					MSL				_		d By:		. Cla		. Rod	rigue	ez						÷	h: 17							_
		evatio 271 / I					MSL				-		ed By		. Clai								Gro	und	wat	ter Da	ta:	ft b	gs,				_
72111	iuiii. Z	27 1 / 1	HCIII	latioi	1/\	$\overline{\Box}$	_					HECK	eu by	/. J	. van	T		\top						D	isco	ntinuitie	s		ᅪ				_
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log				С	Descri	ption					ecove		RQE % & & &		Fractures per ft.	Drawing	Dip	Туре	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness		Commer	nts	
-	-		70/17	W1	R4		LIME	ESTC	ONE w	ith c	hert, o	contin	ued				100		70		8		40 40	J	T N	No	No No Su				casing out of hole for dovics		
							٧	Tota /ibrat	il depti ting wi	h = 1 ire p	l71 FT iezom	Γ belo neter i	w grou	und s ed 10	surface /21/20	e 118													·	VVVP TUII	ed encased	in grout	
											ILIP:	LUNG																					
- Fault		TY TYPI	_	APERA	ATURE				TYPE		AMC	DUNT		APE	Slickens		OUGH!	vidence o	of polishing	\perp		CONT			ACII			/EATI	HERII	NG		NGTH	J
- Joint z - Frac s - Shea z - Shea / - Vein o - Folia 3 - Bedd MB - Med			1	Narrow (ow (N) n (O)	0.05	5-0.1"	Bi - Biotiti CI - Clay Ca - Calci Ch - Chlo Ep - Epide Fe - Iron C Gy - Gyps H - Healed Mi - Mica	ite rite ote	Mn - Mang My - Mylo No - None Py - Pyrit Qz - Quart Sd - Sand Si - Silt Un - Unkno	onite e te tz	Clean (N Stained (Spotty (S Partial Fi Filled (Fi Cemente	(Su) Sp) illed (Pa) i)	Wa - Wa Pi - Piar St - Stej Ir - Irreg	aner epped	Smooth (Slightly I Rough (F Very Rou	(S) Rough (S	and stri Surface smooth r) Asperitie and can Asperitie some rice	ations appears es are dis be felt es are cle	and feels stinguishab early visable lent, surfaces es occur or	ole N	Vide (V Modera Close (I Very Cl	te (M)	C)		2.4 0.75i	2ft-6ft 8in-2ft 4in-8in in-2.4in	Fresh Slightl Moder Highly Compl Residu	y (W2 ately ((W4) etely	(W3) (W5)		Extremely Very Weak Weak (R2) Moderately Strong (R4) Very Strong Extremely S	(R1) Strong (R3) 1 (R5)	

Location				o, Cali		242.70	2	Drill Rig: Sonic	S	1-20	18-	1 S(ONI	C DRILLING LOG
Surface					eet AM)2	Drilling Co.: Cascade Drill Bit Type/Size: 6-inch Diameter Diamond	1			She	eet N	lo. 1 of 2
Bottom					eet AM	SL		Logged By: D. Loveday, B. Hathaway	-	asing				
Date S				nd: 9/2	20/18			Prepared By: S. Clarke Checked By: J. Van Pelt		/ater L zimuth				In alia ati any 00
Total D	лерит.	70.0	leet					Checked by. J. Van Peit	$\frac{1}{1}$	Zimuu				Inclination: 90
Elevation, ft MSL			ample	Geotech Sample		ing	Lithology/Symbol	Description				nistry		Remarks
Elevatio	Depth, ft	Tray#	Assay Sample	Geotech	Strength	Weathering		·		C3S	(%) OPO	Chert	Pyrite	i i i i i i i i i i i i i i i i i i i
-	1 - 2 -			h 0-5				SILTY GRAVEL (GM), light brown to greenish-gray, dry, predominatly fine to coarse greenstone gravels in sandy silty matrix [WEATHERED BEDROCK]		8427	7.52			Pulverized from drilling
- - - -	3 -		0-10	Geotech 0-5						8321	2.64			
-	5 -		Composite 0-10	10		W4-W5				5 8323	3.64	Waste	Waste	
-	7 - 8 -			Geotech 5-10						9 8325	3 3.61			<1 ft recovery
-	9 -							Grades with few limestone clasts		31 8359	5.03	ste	ste	
-	11 - 12 - 13 -			Geotech 10-15						8304 8261	3.22 1.04	Waste	Waste	
- - -	14 - 15 -		Composite 10-20	99 		4				8367 83	5.07 3	Waste	Waste	
-	16 - 17 -		Сотро	Geotech 15-20		W4				8325 8	4.11	>	>	
- - -	18 - 19 -			Geotec						8299	2.59			
-	20 - 21 - 22 -	←		0-25				METAVOLCANIC/GREENSTONE BRECCIA, light grayish-greet slightly weathered to fresh	n, -	8305	3.09	Waste	Waste	
-	23 -		0-30	Geotech 20-						8316	3.16			
- - - -	25 - 26 -		Composite 20-30	01	1	W2-W1				8318	3.51	Waste	Waste	
-	27 - 28 -		0	Geotech 25-30						9 8315	3.4	Φ	Φ	
	29 - 30 -			9		/				4 8319	1 3.62	Waste	Waste	
	31 -			Geotech 30-35		X				19 8314	23 3.4			
	33 - 34 - 35 -		Composite 30-40	Geot						8294 8319	2.43 2.23	Waste	Waste	
	36 - 37 -		Compo	า 35-40		W2-W1				8318 82	3.34 2	×	×	
	38 -			Geotech 35-40						8307	2.48			
(3) s	stant	ec	CLIEN	NT: I	Lehigh F	ermane	ente - H	eidelburg Cement Inc. PROJECT: SeeSaw Geologic Inve	estiga	ation	PRO	JECT	Γ NO .:	233001329

Location				o, Cali				Drill Rig: Sonic	Q1	_20·	12-	1 0) NII	DRILLING LOG
-	_				g: 1944)2	Drilling Co.: Cascade	اد	-20	10-			o. 2 of 2
Surfac					eet AM			Drill Bit Type/Size: 6-inch Diameter Diamond	_					0. 2 01 2
Botton					eet AM	ISL		Logged By: D. Loveday, B. Hathaway				N/A ft		
		/19/18 70.0 f		nd: 9/2	20/18			Prepared By: S. Clarke Checked By: J. Van Pelt		muth:				Inclination: 90
	Јорин.	70.01		ejdı			loqu	Greeked By. V. varri ek	7 (2.11	mui.		nistry		inclination. 90
Elevation, ft MSL	Depth, ft	Tray#	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol	Description		C3S	CaO (%)	Chert	Pyrite	Remarks
-	41 -			0-45				METAVOLCANIC/GREENSTONE BRECCIA, continued		8344	3.66	Waste	Waste	Evidence of calcium carbonate from veins
-	42 - 43 - 44 -		0-20	Geotech 40-45						8316	2.74			
-	45 <u>-</u> 46 –		Composite 40-50		1	W2-W1				8310	2.74	Waste	Waste	
-	47 - 48 -		ŏ	Geotech 45-50						8312	2.96			
-	49 - 50 -									8337	3.19	Waste	Waste	
-	51 - 52 -			Geotech 50-55						5 8324	5 2.46			
-	53 - 54 -		e 50-60	Geotec						335	3.35	ite	ite	
-	55 - 56 - 57 -	2	Composite 50-60	25-60						8335 8320	2.33 2.1	Waste	Waste	
-	58 – 59 -			Geotech 55-60		W2-W1				8348 83	3.19 2.			
-	60 - 61 -			35						8332 8	3.7	Waste	Waste	
-	62 - 63 -		0,	Geotech 60-65						8333	4.82			
-	64 – 65 -		Composite 60-70		$\frac{1}{}$					8317	2.71	Waste	Waste	
-	66 -		Com	Geotech 65-70		.w				8302	2.57			
-	68 - 69 - 70 -			Geof		W2-W1				8320	3.03	Waste	Waste	
	71 - 72 - 73 - 74 - 75 - 76 - 77 -							Total depth = 70 FT below ground surface Backfilled with neat cement on 10/6/2018						
	78 – 79 -	10 C	01 15.					idelburg Cement Inc. PROJECT: SeeSaw Geologic Inv						20000100-

Location					fornia			Drill Rig: Sonic	21.1	0019	2 2 6	:ONI	C DRILLING LOG
					g: 1944		31	Diffilling Co Cascade	J 1-2	-010			No. 1 of 6
Surfac					eet AM eet AM			Drill Bit Type/Size: 6-inch Diameter Diamond Logged By: D. Loveday, B. Hathaway	Cocir	a Dor	th: N/		10. 1 01 0
Date S				nd: 10		SL		Prepared By: S. Clarke			l: N/A		
Total [iu. iu	77710			Checked By: J. Van Pelt	Azim				Inclination: 90
	Jopan	200.0		e e			<u>8</u>	Oncorou By. V. Varri or	7421111		nemistr	y	inciliation. 90
Elevation, ft MSL	Depth, ft	Tray#	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol	Description	C3S	(%) OE')	Chert	Pyrite	Remarks
- - - - - -	2-3-4-		.e 0-10	Geotech 0-5				SILTY GRAVEL SOIL, brown, organics				e)	
-	5 - 6 - 7 - 8 - 9 -		Composite 0-10	Geotech 5-10	-	N4		SILT and GRAVEL, light brown, moist	8270	000	Waste	Waste	
- - - -	10 - 11 - 12 - 13 -		10-20	Geotech 10-15	-	W3-W4			8291	1.68	Waste	Waste	
-	15 - 16 - 17 - 18 - 19 -	1	Composite 10-20	Geotech 15-20	_			METABASALT/GREENSTONE BRECCIA, grayish green, slightly weathered to fresh	8276	1.08	Waste	Waste	Breccia pulverized by drilling
-	21 -		e 20-30	Geotech 20-25		W2			4 8323	27.2		te Waste	
-	25 - 26 - 27 - 28 -		Composite 20-30	Geotech 25-30	-	W2 W3			8325 8314	3.07	0	Waste Waste	
-	30 - 31 - 32 - 33 - 34 - 35 -		Composite 30-40	Geotech 30-35		W2			8355 83	387		Waste	
(0)	36 - 37 - 38 - 39 -	70.5	Composi	Geotech 35-40	l okist 5	W2-W1		eidelburg Cement Inc. PROJECT: SeeSaw Geologic Inves					20001055
	carit		OLIEľ	* 1.	Leriigii F	ciman	- III - II	Gladibarg Germent inc. FROJEGT. Seesaw Geologic inves	ugauor	P	OJE	, I NU.	233001329

Location					fornia	477.40		Drill Rig:	Sonic		S	1-20	18-2	2 S(ONIC	C DRILLING LOG
Surfac					g: 1944 eet AM		31		Cascade ize: 6-inch Diame	eter Diamond	1					o. 2 of 6
Botton			151	0.00 f	eet AM			Logged By:	D. Loveday, B. H		_		Depth			
Date S				nd: 10	/4/18			Prepared By:			_		evel: I			I
Total D	Depth:	200.0) feet			l		Checked By:	J. Van Pelt		J Az T	zimuth	n: N/A	4		Inclination: 90
ft MSL			ple	ample			ymbol				-		Chen	nistry	1	
Elevation, ft MSL	Depth, ft	Tray#	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol		Description			C3S	CaO (%)	Chert	Pyrite	Remarks
-	41 - 42 - 43 - 44 - 45 -		Composite 40-50	Geotech 40-45				METABASALT/GRE	ENSTONE BRECC	CIA, continued		8368	2.23	Waste	Waste	Moist
-	46 - 47 - 48 - 49 -		Composi	Geotech 45-50								8294	1.29	Waste	Waste	Inermittently moist
	50 - 51 - 52 - 53 - 54 -		20-60	Geotech 50-55		W1						8301	2.01	Waste	Waste	
-	55 - 56 - 57 - 58 - 59 -		Composite 50-60	Geotech 55-60	-							8326	2.1	Waste	Waste	Poor recovery ~ 20%
-	60 - 61 - 62 - 63 -	2	90-70	Geotech 60-65								8356	5.02	Waste	Waste	
	65 - 66 - 67 - 68 -		Composite 60-70	Geotech 65-70								8388	4.16	Waste	Waste	
-	70 - 71 - 72 - 73 - 74 -		Composite 70-80	Geotech 70-75	_	W1						8389 8351	3.5 3.44	Waste Waste	Waste Waste	Poor recovery ~ 20%
	76 - 77 - 78 - 79 -			Geotech 75-80								8329 8	2.86	Waste	Waste	
()) s	Stant	ec	CLIEN	IT:	Lehigh F	Permane	ente - He	eidelburg Cement Inc	PROJECT:	SeeSaw Geologic Inve	stiga	ation	PRO	JECT	NO.:	233001329

	Cupertin			477.40		Drill Rig: Sonic	S1	1-20	18-2	2 S(ONIC	C DRILLING LOG
Northing: 609204 Surface Elevation			g: 1944 eet AM		31	Drilling Co.: Cascade Drill Bit Type/Size: 6-inch Diameter Diamond	_					lo. 3 of 6
Bottom Elevation:			eet AM			Logged By: D. Loveday, B. Hathaway	Ca	asing I	Depth:			
Date Start: 9/27/1		nd: 10				Prepared By: S. Clarke			evel: N			
Total Depth: 200	.0 feet					Checked By: J. Van Pelt	Az	imuth	: N/A	١		Inclination: 90
t MSL	ple	ample			/mbol				Chem	nistry		
Elevation, ft MSL Depth, ft Tray #	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol	Description		C3S	CaO (%)	Chert	Pyrite	Remarks
_ - -	1		0,		L	METABASALT/GREENSTONE BRECCIA, continued						
81 - 82 - 83 - 84 - 85 -	Composite 80-90	Geotech 80-85										
- 86 - 87 - 88 - 89 - 90 -	Compos	Geotech 85-90										
91 - 92 - 93 - 94 -	Composite 90-100	Geotech 90-95										
96 - 97 - 98 - 99 -	Composi	Geotech 95-100		_								
-100 - \infty	100-110	Geotech 100-105		W1								
-105 - -106 - -107 - -108 - -109 -	Composite 100-110	Geotech 105-110										
-110 - -111 - -112 - -113 - -114 - -115 -	Composite 110-120	Geotech 110-115										
-116 - -117 - -118 - -119 -	Composit	Geotech 115-120										
♦ Stantec	CLIEN	NT: I	_ehigh F	ermane	ente - He	delburg Cement Inc. PROJECT: SeeSaw Geologic	c Investiga	tion	PRO	JECT	NO.:	233001329

	Cupertin			177 10	04	Drill Rig: Sonic	S	1-20	18-2	2 S(ONI	C DRILLING L	OG
Northing: 609204 Surface Elevation			eet AM		31	Drilling Co.: Cascade Drill Bit Type/Size: 6-inch Diameter Diamond						lo. 4 of 6	
Bottom Elevation:			eet AM			Logged By: D. Loveday, B. Hathaway	C	asing l	Depth:	N/A f	ft		
Date Start: 9/27/1	8 Eı	nd: 10	/4/18			Prepared By: S. Clarke			evel: N				
Total Depth: 200	.0 feet					Checked By: J. Van Pelt	Az	zimuth	: N/A	١		Inclination: 90	
ff MSL	eldi	ample		_	ymbol				Chen	nistry	ı	1	
Elevation, ft MSL Depth, ft Tray #	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol	Description		C3S	CaO (%)	Chert	Pyrite	Remarks	
	4	0	0)			METABASALT/GREENSTONE BRECCIA, continued		0	0	0	ш.		
-121 - -122 - -123 - -124 - -125 -	Composite 120-130	Geotech 120-125				TE LADAGAE MONEE TO THE BINEGOTA, COMMINGEN							
-126 - -127 - -128 - -129 -	Composii	Geotech 125-130											
131 -132 - 133 -134	Composite 130-140	Geotech 130-135											
-136 - -136 - -137 - -138 - -139 - -140 - 4	Composit	Geotech 135-140		W1									
-141 -142 -143 -144	Composite 140-150	Geotech 140-145		×									
-145 - -146 - -147 - -148 - -149 -	Composit	Geotech 145-150											
-150 - -151 - -152 - -153 - -154 - -155 -	Composite 150-160	Geotech 150-155											
- 156 - - 157 - - 158 - - 159 -	Composit	Geotech 155-160											
♦ Stantec	CLIE	NT: I	_ehigh F	ermane	ente - He	delburg Cement Inc. PROJECT: SeeSaw Geolog	gic Investiga	ation	PRO	JECT	NO.:	233001329	

Location					ifornia			Drill Rig: Sonic	9	1 20	140	2 64			ING LOG
Northin							31	Drilling Co.: Cascade		1-20	110-			o. 5 of 6	ING LOG
Surfac Bottom					feet AM feet AM			Drill Bit Type/Size: 6-inch Diameter Diamond Logged By: D. Loveday, B. Hathaway		Casing	Denth				
Date S				nd: 10				Prepared By: S. Clarke		Vater L					
Total D								Checked By: J. Van Pelt		zimuth				Inclination:	90
ft MSL			-ple	ample		0	ymbol				Cher	nistry			
Elevation, ft MSL	Depth, ft	Tray#	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol	Description		C3S	CaO (%)	Chert	Pyrite	Remarks	
		•					97/Z),	METABASALT/GREENSTONE BRECCIA, continued							
-	161 - 162 - 163 - 164 - 165 -		Composite 160-170	Geotech 160-165											
	166 - 167 - 168 - 169 -		Compos	Geotech 165-170											
-	171 - 172 - 173 - 174 -		Composite 170-180	Geotech 170-175											
-	176 - 177 - 178 - 179 -	5	Composit	Geotech 175-180		W1									
-	181 - 182 - 183 - 184 -		Composite 180-190	Geotech 180-185		>									
-	186 – 187 - 188 – 189 -		Composit	Geotech 185-190											
	190 - 191 - 192 - 193 - 194 -		Composite 190-200	Geotech 190-195											
	195 - 196 - 197 - 198 -		Composit	Geotech 195-200											
() 9	Stant	tec	CLIEN	NT:	Lehigh F	Perman	ente - He	idelburg Cement Inc. PROJECT: SeeSaw Geolog	gic Investio	gation	PRO	JECT	NO.:	233001329	

Locati	on:	Cupe	tino, C	alifornia			Drill Rig: S	Sonic							
	ng: 6092					81		Cascade		S 1	-201				C DRILLING LO
	ce Elevat			0 feet Al			Drill Bit Type/Siz								o. 6 of 6
	n Elevati			0 feet Al	MSL			D. Loveday, B. H	lathaway		sing D			t	
	Start: 9/2			10/4/18			Prepared By: S				ter Le				Γ
Total	Depth: 2	00.0 fe	et T		_		Checked By: J	J. Van Pelt		Azii	muth:	N/A			Inclination: 90
Elevation, ft MSL	Depth, ft		Geotech Sample	gth	Weathering	Lithology/Symbol		Description				Chemi		o.	Remarks
Elev	Depi	11ay #	gen	Strength	Weat	Litho					C3S	CaO (%)	Chert	Pyrite	
	201 -			l		1	Total depth = 200 Vibrating wire piezo	0 FT below groun							VWP fully encased in neat cement
	203														
.	204 -														
	205 -														
_	206 -														
	207 -														
_	208 -														
	209 -														
	210 -														
	211														
	212 -														
	213														
	214 -														
	215 -														
_	216 -														
	217 -														
-	218 -														
	219 -														
_	220 -														
	221 -														
	222 -														
	223														
_	224 -														
	225 -														
-	226 -														
	227 -														
-	228 -														
	229 -														
-	230 -														
	231 -														
-	232 -														
	233														
	234 -														
	235 -														
-	236 -														
	237 -														
-	238 -														
	239 -														
	1 1	_													
	Stante	CL	IENT:	Lehigh	Perman	ente - He	eidelburg Cement Inc.	PROJECT:	SeeSaw Geologic In	nvestigati	ion [PROJ	IECT	NO.:	233001329

Location	n:	Cu	pertin	o, Cali	ifornia			Drill Rig: Sonic	6,	1 20	140	2 6		ו וופח י	ING LOG
Northin							92	Drilling Co.: Cascade	3	1-20	110-			o. 1 of 4	ING LOC
Surface					feet AM			Drill Bit Type/Size: 6-inch Diameter Diamond	-	!	Danth			0. 1 01 4	
Bottom Date S				nd: 9/2	eet AM	ISL		Logged By: D. Loveday, B. Hathaway Prepared By: S. Clarke	_		Depth evel: l				
Total D				iu. 9/	20/10			Checked By: J. Van Pelt	_		n: N//			Inclination:	90
	, op			aldu			loqu	Charles of				nistry		momation.	
Elevation, ft MSL	Depth, ft	Tray#	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol	Description		C3S	CaO (%)	Chert	Pyrite	Remarks	
- - -	1 - 2 -			ch 0-5				SOIL, brown, organics SILT and GRAVEL, light gray		8212		Waste	Waste		
	3 - 4 - 5 -		Composite 0-10	Geotech 0-5						8235		Waste	Waste		
-	6 - 7 - 8 -		Сотро	Geotech 5-10				GREENSTONE boulders/pebbles, hard CLAY/GRAVEL zone							
-	9 -	-		о о б		\	<i>i</i>	SILT and CLAY, residual soil		8282	0.975	Waste	Waste		
	11 - 12 - 13 - 14 - 15 -		Composite 10-20	Geotech 10-15											
-	16 - 17 - 18 - 19 -		Com	Geotech 15-20		W3-W4		METAVOLCANIC/GREENSTONE BRECCIA, grayish-green to olive yellow		8321 8359	2.1 4.66	Waste Waste	Waste Waste		
-	20 - 21 - 22 - 23 -	_		Geotech 20-25						~					
-	24 - 25 - 26 -		Composite 20-30		_	W3-W4				8400	5.13	Waste	Waste		
-	27 - 28 - 29 - 30 -		0	Geotech 25-30		×									
	31 - 32 - 33 - 34 - 35 -		Composite 30-40	Geotech 30-35		W1-W2		grayish-green, slightly weathered to fresh		8327	2.6	Waste	Waste		
	36 - 37 - 38 - 39 -		Compos	Geotech 35-40		W1.				8294	1.45	Waste	Waste		
() s	tant	ec	CLIEN	IT:	Lehigh F	Perman	ente - He	idelburg Cement Inc. PROJECT: SeeSaw Geologic Inve	estiga	ation	PRO	JEC1	NO.:	233001329	

Location				o, Cali				Drill Rig: Sonic	S	1-20	18-	3 S	ONIC	C DRILL	ING LOG
Northing Surface					g: 1944 eet AM		92	Drilling Co.: Cascade Drill Bit Type/Size: 6-inch Diameter Diamond	-	,				o. 2 of 4	
Bottom E					eet AM			Logged By: D. Loveday, B. Hathaway		Casing	Depth				
Date Sta	rt: 9/	23/18	Er	nd: 9/2	26/18			Prepared By: S. Clarke	_	Vater L					
Total De	pth:	150.0	feet					Checked By: J. Van Pelt	Α	zimuth	n: N/A	4		Inclination:	90
ft MSL			əldı	ample			lodmy				Cher	mistry	1		
Elevation, ft MSL	Depth, ft	Tray#	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol	Description		C3S	CaO (%)	Chert	Pyrite	Remarks	
- 4	41 - 42 - 43 - 44 -		40-50	Geotech 40-45				METAVOLCANIC/GREENSTONE BRECCIA, continued		8313	2.66	Waste	Waste		
- 4	45 - 46 - 47 - 48 - 49 -		Composite 40-50	Geotech 45-50	_					8372	5.62	Waste	Waste		
- E	50 – 51 – 52 – 53 –	-	50-60	Geotech 50-55		W1-W2				8313	2.54	Waste	Waste		
- 5 - 5 - 5	55 - 56 - 57 - 58 -		Composite 50-60	Geotech 55-60						8332	2.33	Waste	Waste		
- 6 - 6	60 - 61 - 62 - 63 - 64 -	2	0-70	Geotech 60-65						1 8301	2.04	e Waste	e Waste		
- 6 - 6 - 6 - 6	65 - 66 - 67 - 68 -		Composite 60-70	Geotech 65-70	-			light olive brown, iron oxide staining		8301	2.33	Waste	Waste		
- 7 - 7 - 7 - 7	69 - 70 - 71 - 72 - 73 -	-	-80	Geotech 70-75	-	W2-W3				8521	12.62	Aggregate Clasts	Aggregate Clasts		
- 7 - 7 - 7	74 – 75 - 76 – 77 - 78 – 79 -		Composite 70-80	Geotech 75-80						09£8	4.23	Waste	Waste		
St St.	ante	ec	CLIEN	NT:	 _ehigh F	erman	ente - H	eidelburg Cement Inc. PROJECT: SeeSaw Geologic Inve	estig	ation	PRO	JECT	Γ NO.:	233001329	

Location:					fornia			Drill Rig: Sonic	9	1.20	110	3 61	ONII4	C DRILLING LOG
Northing:							92	Drilling Co.: Cascade	٦	1-20	, 10-			o. 3 of 4
Surface E Bottom El					eet AM eet AM			Drill Bit Type/Size: 6-inch Diameter Diamond Logged By: D. Loveday, B. Hathaway	10	asing	Depth			
Date Star				nd: 9/2				Prepared By: S. Clarke	_	√ater L				
Total Dep	pth: 1	50.0	feet					Checked By: J. Van Pelt	A	zimuth	n: N/A	4		Inclination: 90
ft MSL			əldı	ample			ymbol				Chen	nistry	<u> </u>	
Elevation, ft MSL		Tray #	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol	Description		C3S	CaO (%)	Chert	Pyrite	Remarks
- 82 - 83	32 -		06	Geotech 80-85				METAVOLCANIC/GREENSTONE BRECCIA, continued		8279	1.44	Waste	Waste	Poor recovery ~ 30% pulverized from drilling
- 86 - 87 - 88	35 - 36 -		Composite 80-90	Geotech 85-90	-	W2-W3				8284 8251	1.92 0.268	Waste Waste	Waste Waste	
- 90 - 97	90 -		90-100	Geotech 90-95										
- 96 - 97 - 98	98 -	e –	Composite 90-100	Geotech 95-100	-	W2-W3				8240	0.01	Waste	Waste	
-100 -100 -100 -100 -100	01 -		00-110	Geotech 100-105						8297	1.81	Waste	Waste	
- 108 - 108)6 -)7 -)8 -		Composite 100-110	Geotech 105-110	_	W2				.2 8322	6 2.7	te Waste	te Waste	
-1109 -1110 -1111 -1112	 10			Geotech 110-115 Ge						8322	2.76	Waste	Waste	Recovery <50%
-112 -114 -116 -117 -118	15 - 16 - 17 - 18 - 18 - 1		Composite 110-120	Geotech 115-120 Geotech		W3				8382	4.61	Waste	Waste	Recovery <50%
♦ Sta		c C	LIEN	IT: I	_ehigh F	Permane	ente - He	eidelburg Cement Inc. PROJECT: SeeSaw Geologic Inve	estig	ation	PRO	JECT	NO.:	233001329

ocation: orthing: 60922		Easting	g: 1944		92	Drill Rig: Sonic Drilling Co.: Cascade	S	1-20	18-			DRILLING LO
urface Elevation		54.00 f				Drill Bit Type/Size: 6-inch Diameter Diamond						o. 4 of 4
ottom Elevatio		04.00 f		ISL		Logged By: D. Loveday, B. Hathaway		asing			ft	
ate Start: 9/23		nd: 9/2	26/18			Prepared By: S. Clarke		Vater L				I
otal Depth: 15	0.0 feet	1	1			Checked By: J. Van Pelt	<u> </u>	zimuth	1: N/A	٩		Inclination: 90
H WSL	nple	Sample		Di Di	Symbol				Cher	nistry		
Elevation, ft MSL Depth, ft Trav #	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol	Description		C3S	CaO (%)	Chert	Pyrite	Remarks
121 - 122 - 123 - 124 -	120-130	Geotech 120-125				/IETAVOLCANIC/GREENSTONE BRECCIA, continued		8361 8361	3.95 4.44	Waste Waste	Waste Waste	
-125 - -126 - -127 - -128 - -129 -	Composite 120-130	Geotech 125-130		W2								
-130 - -131 - -132 - -133 - -134 -	30-140	Geotech 130-135						8391	4.53	Waste	Waste	
135 4 136 137 138 139	Composite 130-140	Geotech 135-140						8463	5.89	Waste	Waste	
-140 - -141 - -142 - -143 - -144 -	140-150	Geotech 140-145		W1-W2				3 8412	4.2	e Waste	e Waste	
-145 - -146 - -147 - -148 - -149 -	Composite 140-150	Geotech 145-150						8438 8318	7.45 4.49	Waste Waste	Waste Waste	
150 ————————————————————————————————————						Total depth = 150 FT below ground surface Vibrating wire piezometer installed on 10/9/2018		80		<u> </u>		VWP fully encased in grou

Location:				fornia			Drill Rig: Sonic	9	1_20	118_	<u> </u>) NII	C DRILLING LOG
Northing: 609						3	Drilling Co.: Cascade		1-20	, 10-			o. 1 of 4
Surface Elev Bottom Eleva				eet AM eet AM			Drill Bit Type/Size: 6-inch Diameter Diamond Logged By: D. Loveday, B. Hathaway	+	asing	Denth			0. 1 01 4
Date Start: 9			nd: 9/2		OL		Prepared By: S. Clarke	-	Vater L				
Total Depth:							Checked By: J. Van Pelt		zimuth				Inclination: 90
			ample			mbol					nistry		
Elevation, ft MSL Depth, ft	Tray#	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol	Description		C3S	CaO (%)	Chert	Pyrite	Remarks
- 1 - 2 -			h 0-5	X	X		SOIL, brown, some organics, moist		8783	23.23	Aggregate Clasts	Aggregate Clasts	Samples pulzerized by drilling
3 - 4 -		e 0-10	Geotech 0-5		W5				1 8748	17.72			
- 5 - - 6 -		Composite 0-10			W4		GREENSTONE, with limestone clasts		8504	8.11	Aggregate Clasts	Aggregate Clasts	
7 - 7 - 8 -		O	Geotech 5-10		W2-W3		LIMESTONE, gray to black, slightly to moderately weathered		8885	20.66			
9 -			ЭЭЭ		W2				9252	45.06	High Grade	High Grade	
- 11 - - 12 -			10-15	X	\times				9327	47.42			
13		-20	Geotech 10-15		.5		slightly weathered		9270	46.7			Poor recovery ~ 10%
- 14 - - 15 - - 16 -		Composite 10-20			ZM				9179	29.63	High Grade	High Grade	Poor recovery ~ 50%
- 17 - - 18 -		Ö	Geotech 15-20		W3		moderately weathered with calcite veins		9219	38.59			
- 19 - - 20 -	_		ЭЭЭ						9048	38.52	ep	-p	
- 21 - 22 -			20-25	X	X				9114	28.97	Medium Grade	Medium Grade	
23 -		20-30	Geotech 20-2		W3				9100	40.33			
- 25 - 26 -		Composite 20-30	0	1	10		METAVOLCANIC/GREENSTONE BRECCIA, highly weathered	l	8646	22.6	Aggregate Clasts	Aggregate Clasts	
- 27 - 28 -		ŏ	Geotech 25-30		W5				8250	0.37	4	•	
- 29 - 30 -			Gec				grades with less weathering to moderately weathered		8415	8.65	asts	asts	000
- 31 - 32 -			30-35						8671	17.98	Aggregate Clasts	Aggregate Clasts	Poor recovery <20%
33 -		30-40	Geotech 30-35		W3				8561	15.87	₹	∢	
- 35 - 36 -		Composite 30-40	40	1					8566	10.66			
37] 38]		J	Geotech 35-40						8337	2.97			
39			Ğe						8404	5.57			
Stant	ec	CLIEN	NT:	Lehigh F	erman	ente - He	eidelburg Cement Inc. PROJECT: SeeSaw Geologic Inve	estig	ation	PRO	JECT	NO.:	233001329

Locatio			ıpertin					Drill Rig: Sonic	6	1_20	112_	1 50) NII	^ DBII I	ING LOG
Northing: 6092659.117 / Easting: 1944812.88 Surface Elevation: 1541.00 feet AMSL								Drilling Co.: Cascade	S1-2018-4 SONIC DRILLING LO Sheet No. 2 of 4					IIVG LOG	
Bottom Elevation: 1391.00 feet AMSL								Drill Bit Type/Size: 6-inch Diameter Diamond Logged By: D. Loveday, B. Hathaway	Casing Depth: N/A ft						
Date S				nd: 9/2				Prepared By: S. Clarke	Water Level: N/A ft						
Total Depth: 150.0 feet								Checked By: J. Van Pelt Azimu			n: N/A	4		Inclination:	90
ft MSL			eldi	ample			ymbol				Chen	nistry			
Elevation, ft MSL	Depth, ft	Tray#	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol	Description		C3S	CaO (%)	Chert	Pyrite	Remarks	
-	41 -			145				METAVOLCANIC/GREENSTONE BRECCIA, continued		8450	9.49	Waste	Waste		
- - -	42 -		-50	Geotech 40-45		W3				8417	5.63				
-	44 - 45 - 46 -		Composite 40-50			W4				8262	69.0	Waste	Waste		
-	46 - 47 - 48 -		Š	Geotech 45-50		W1-W2		LIMESTONE, gray to gray brown, fresh to slighly weathered		8286	0.84				
-	49 -			Gec				METAVOLCANIC/GREENSTONE BRECCIA, grayish-green to brown, fresh to moderately weathered		8228					
- - - -	51 - 52 - 53 - 54 - 55 - 56 -			50-55		W1-W2				8170		Waste	Waste		
			20-60	Geotech 50-55		5				8191					
-			Composite 50-60	09-	3	/3				0 8187		Waste	Waste		
-	57 - 58 -			Geotech 55-60		W2-W3				5 8200					
-	59 - 60 -	2								38 8215		ste	ste		
-	61 - 62 - 63 -			Geotech 60-65						8332 8238	4.85	Waste	Waste		
- - -	64 -		Composite 60-70	Geol		W2				8354 83	4.73 4.	Waste	Waste		
-	66 – 67 –		Compo	1 65-70						8276 83	1.25 4	×	×		
	68 – 69 –			Geotech 65-70						8237 8		Waste	Waste		
	70 - 71 -			0-75	X	X				8205					
	72 - 73 - 74 -)-80	Geotech 70-75		,				8243	90.0				
	75 - 76 -		Composite 70-80	0	_	W2				8240	0.01				
	77 - 78 -		ď	Geotech 75-80						8190		Waste	Waste		
	79 -									8199					
() s	stant	ec	CLIEN	NT:	_ehigh F	Permane	ente - He	eidelburg Cement Inc. PROJECT: SeeSaw Geologic Inve	stiga	ation	PRO	JECT	NO.:	233001329	

Location: Cupertino, California Northing: 6092659.117 / Easting: 1944812.88								Sonic		S1-2018-4 SONIC DRILLING LOG						
Surface Ele				eet AM		3		Cascade ize: 6-inch Diame	eter Diamond	Sheet No. 3 of 4						
Bottom Ele	vation:	139	91.00 f	eet AM			Logged By:	D. Loveday, B. H		Casing Depth: N/A ft						
Date Start:			nd: 9/2	22/18			Prepared By:			Water Level: N/A ft					T	
Total Depth: 150.0 feet							Checked By: J. Van Pelt			Az	zimuth	: N/A	Α		Inclination: 90	
ft MSL		Assay Sample	ample			symbol						Chen	nistry			
Elevation, ft MSL Depth, ft	Tray#		Geotech S	Strength	Weathering	Lithology/Symbol		Description			C3S	CaO (%) Chert Pyrite	Pyrite	Remarks		
- 81 - 82	-		80-85				METAVOLCANIC/G	REENSTONE BRE	CCIA, continued		8314	1.88				
- 83 - 84		80-90	Geotech 80-85								8339	1.73				
- 85 - 86	- - -	Composite 80-90	Geotech 85-90								1 8330	2.37	Waste	Waste		
- 87 - 88 -	- - -				W3						26 8291	73 0.89			Poor recovery <10%	
- 89 - 90 -	1 - -			_							8361 8326	4.04 2.73	Waste	Waste		
92 -	- - -	0	Geotech 90-95		W4						8422 83	6.39 4	×	X		
- 94 - - 95	- - - -	Composite 90-100	95								8412	6.11	Waste	Waste		
- 96 - - 97 - 98 -	-	Com	Geotech 95-100								8363	3.75				
- 99 - 100 -	3				W2						8357	4.23	Waste	Waste		
-101 -102 -	-		100-105								8435	5.32				
-103 -104	- - -	100-110	Geotech 100-								36 8316	14 2.78	Waste	Waste		
-105 -106 -	1	Composite 100-110	05-110		W3						8319 8306	3.57 3.04				
-108 -109	-		Geotech 105-110		W1-W2						8315 83	3.37 3				
-110 - -111	-		0-115	-							8326	3.11	Waste	Waste		
-112 - -113 -114 -		Composite 110-120	Geotech 110-115							8348	3.96					
-115 -116 -	- - - -		mposite 11	120	_	W						3 8321	3.24	Waste	Waste	
-117 -118 -	- - -		Geotech 115-120								97 8296	1.92				
Star	tec	CLIEN		ehiah F	Parmar	anto Li	eidelburg Cement Inc	DDO IECT:	SeeSaw Geologic Inve	etico	8297	2.47	JECT	NO :	222001220	
Stal	Lec	CLIEN	41. I	Lenign F	ermane	ente - He	sidelpung Cernent Inc	. PROJECT:	Seesaw Geologic Inve	suga	เนบเา	PKU	JEUI	NU.:	233001329	

Locati				o, Cali				Drill Rig: Sonic	S1	-20	18_	4 50) NII												
Northing: 6092659.117 / Easting: 1944812.88 Surface Elevation: 1541.00 feet AMSL								Drilling Co.: Cascade	S1-2018-4 SONIC DRILLING LO Sheet No. 4 of 4																
Bottom Elevation: 1391.00 feet AMSL								Drill Bit Type/Size: 6-inch Diameter Diamond Logged By: D. Loveday, B. Hathaway	Casing Depth: N/A ft																
		/20/18		nd: 9/2		IOL		Prepared By: S. Clarke	Water Level: N/A ft																
		150.0						Checked By: J. Van Pelt		muth:				Inclination: 90											
	ample						ymbol			Chemistry				Trompage.											
Elevation, ft MSL	Depth, ft	Tray#	Assay Sample	Geotech Sample	Strength	Weathering	Lithology/Symbol	Description		C3S	CaO (%)	Chert	Pyrite	Remarks											
-	121 -			0-125				METAVOLCANIC/GREENSTONE BRECCIA, continued		8323	3.13	Waste	Waste												
-	122 - 123 - 124 -	-130	Composite 120-130	Geotech 120-125						8325	3.08														
-	125 -									8295	2.17	Waste	Waste												
-	- 127 - - 128 -			Com	Com	Geotech 125-130						8305	2.72												
-	129 - 130 -								Geot						8321	2.46									
-	131 - 132 -		130-140	130-135		W				8338	2.41	Waste	Waste												
-	133 - 134 -			Geotech 130-135						11 8332	3.37	ste	ste												
-	135 - 136 - 137 -	4	Composite 130-140	135-140						8332 8341	3.41 3.1	Waste	Waste												
-	138 - 139 -			Geotech 135-140						8329 8	4.33														
-	140 - 141 -	-	Composite 140-150	0-145	Geotech 140-145					8284	1.55	Waste	Waste	Poor recovery <10%											
-	142 - 143 - 144 -			Geotech 14						8310	2.99														
-	145 - 146 -			mposite 14	09	05	05					-	-	_		_	_					8297	2.01	Waste	Waste
-	147 - - 148 -		Ö	Geotech 145-150		W				8296	1.89														
-	149 - 150 -			Gec						8338	3.63	Waste	Waste												
-	151 - 152 - 153 - 154 - 155 - 156 - 157 -							Total depth = 150 FT below ground surface Backfilled with neat cement on 10/8/2018																	
	159		OI :=:					idelburg Cement Inc. PROJECT: SeeSaw Geologic Inv	# C																

Photograph ID: 1

Photo ID:

GT-1-2018-1 0-9.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments: 0-9.5' Interval

Photograph ID: 2

Photo ID:

GT-1-2018-1 9.5-19.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

9.5-19.5' Interval

Photograph ID: 3

Photo ID:

GT-1-2018-1 19.5-29.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

19.5-29.5' Interval

Photograph ID: 4

Photo ID:

GT-1-2018-1 29.5-39.5'

Survey Date:

10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

29.5-39.5' Interval

Photograph ID: 5

Photo ID:

GT-1-2018-1 39.5-49.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

39.5-49.5' Interval

Photograph ID: 6

Photo ID:

GT-1-2018-1 49.5-62.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

49.5-62.5' Interval

Photograph ID: 7

Photo ID:

GT-1-2018-1 61-72'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments: 61-72' Interval

Photograph ID: 8

Photo ID:

GT-1-2018-1 72-85'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

72-85' Interval

Photograph ID: 9

Photo ID:

GT-1-2018-1 83.5-94.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

83.5-94.5' Interval

Photograph ID: 10

Photo ID:

GT-1-2018-1 94.5-103.4'

Survey Date:

10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

94.5-103.4' Interval

Photograph ID: 11

Photo ID:

GT-1-2018-1 103.4-112.7'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

103.4-112.7' Interval

Photograph ID: 12

Photo ID:

GT-1-2018-1 112.7-121.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

112.7-121.5' Interval

Photograph ID: 13

Photo ID:

GT-1-2018-1 121.5-130.4'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

121.5-130.4' Interval

Photograph ID: 14

Photo ID:

GT-1-2018-1 130.4-139.4'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

130.4-139.4' Interval

Photograph ID: 15

Photo ID:

GT-1-2018-1 139.4-148.7'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

139.4-148.7' Interval

Photograph ID: 16

Photo ID:

GT-1-2018-1 148.7-157.6'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

148.7-157.6' Interval

Photograph ID: 17

Photo ID:

GT-1-2018-1 157.6-167.2'

Survey Date: 10/21/2018

Photo Location: GT-1-2018-1 (See Saw)

Comments:

157.6-167.2' Interval

Photograph ID: 18

Photo ID:

GT-1-2018-1 167.2-176.2'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

167.2-176.2' Interval

Photograph ID: 19

Photo ID:

GT-1-2018-1 176.2-184.9'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

176.2-184.9' Interval

Photograph ID: 20

Photo ID:

GT-1-2018-1 184.9-194.1'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

184.9-194.1' Interval

Photograph ID: 21

Photo ID:

GT-1-2018-1 194.4-202.9'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

194.4-202.9' Interval

Photograph ID: 22

Photo ID:

GT-1-2018-1 202.9-212.1'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

202.9-212.1' Interval

Photograph ID: 23

Photo ID:

GT-1-2018-1 212.1-221.4'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

212.1-221.4' Interval

Photograph ID: 24

Photo ID:

GT-1-2018-1 221.4-230.4'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

221.4-230.4' Interval

Photograph ID: 25

Photo ID:

GT-1-2018-1 230.4-239.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

230.4-239.5' Interval

Photograph ID: 26

Photo ID:

GT-1-2018-1 239.5-249.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

239.5-249.5' Interval

Photograph ID: 27

Photo ID:

GT-1-2018-1 249.5-257.6'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

249.5-257.6' Interval

Photograph ID: 28

Photo ID:

GT-1-2018-1 257.6-266.7'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

257.6-266.7' Interval

Photograph ID: 29

Photo ID:

GT-1-2018-1 266.7-274.7'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

266.7-274.7' Interval

Photograph ID: 30

Photo ID:

GT-1-2018-1 274.7-289.0'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

274.7-289.0' Interval

Photograph ID: 31

Photo ID:

GT-1-2018-1 289.0-292.2'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

289.0-292.2' Interval

Photograph ID: 32

Photo ID:

GT-1-2018-1 292.2-300.6'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

292.2-300.6' Interval

Photograph ID: 33

Photo ID:

GT-1-2018-1 300.6-309.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

300.6-309.5' Interval

Photograph ID: 34

Photo ID:

GT-1-2018-1 309.5-317.6'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

309.5-317.6' Interval

Photograph ID: 35

Photo ID:

GT-1-2018-1 317.6-326.1'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

317.6-326.1' Interval

Photograph ID: 36

Photo ID:

GT-1-2018-1 326.1-334.6'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

326.1-334.6' Interval

Photograph ID: 37

Photo ID:

GT-1-2018-1 334.6-343.2'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

334.6-343.2' Interval

Photograph ID: 38

Photo ID:

GT-1-2018-1 343.2-350.8'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

343.2-350.8' Interval

Photograph ID: 39

Photo ID:

GT-1-2018-1 350.8-359.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

350.8-359.5' Interval

Photograph ID: 40

Photo ID:

GT-1-2018-1 359.5-368.2'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

359.5-368.2' Interval

Photograph ID: 41

Photo ID:

GT-1-2018-1 368.2-375.8'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

368.2-375.8' Interval

Photograph ID: 42

Photo ID:

GT-1-2018-1 375.8-383.0'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

375.8-383.0' Interval

Photograph ID: 43

Photo ID:

GT-1-2018-1 383.0-390.7'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

383.0-390.7' Interval

Photograph ID: 44

Photo ID:

GT-1-2018-1 390.7-399.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

390.7-399.5' Interval

Photograph ID: 45

Photo ID:

GT-1-2018-1 399.5-409.1'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

399.5-409.1' Interval

Photograph ID: 46

Photo ID:

GT-1-2018-1 409.1-417.7'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

409.1-417.7' Interval

Photograph ID: 47

Photo ID:

GT-1-2018-1 417.7-426.5'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

417.7-426.5' Interval

Photograph ID: 48

Photo ID:

GT-1-2018-1 426.5-435.4'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

426.5-435.4' Interval

Photograph ID: 49

Photo ID:

GT-1-2018-1 435.4-440.9'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

435.4-440.9' Interval

Photograph ID: 50

Photo ID:

GT-1-2018-1 440.9-447.8'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

440.9-447.8' Interval

Photograph ID: 51

Photo ID:

GT-1-2018-1 447.8-456.2'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

447.8-456.2' Interval

Photograph ID: 52

Photo ID:

GT-1-2018-1 456.2-463.4'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

456.2-463.4' Interval

Photograph ID: 53

Photo ID:

GT-1-2018-1 463.4-473.7'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

463.4-473.7' Interval

Photograph ID: 54

Photo ID:

GT-1-2018-1 473.7-483.0'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

473.7-483.0' Interval

Photograph ID: 55

Photo ID:

GT-1-2018-1 483.0-491.2'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

483.0-491.2' Interval

Photograph ID: 56

Photo ID:

GT-1-2018-1 491.2-500'

Survey Date: 10/21/2018

Photo Location:

GT-1-2018-1 (See Saw)

Comments:

491.2-500' Interval

Photograph ID: 1

Photo ID:

GT-1-2018-2 0-16.8'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments: 0-16.8' Interval

Photograph ID: 2

Photo ID:

GT-1-2018-2 16.8-26'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

16.8-26' Interval

Photograph ID: 3

Photo ID:

GT-1-2018-2 26-37.4'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments: 26-37.4' Interval

Photograph ID: 4

Photo ID:

GT-1-2018-2 37.4-48.3'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

37.4-48.3' Interval

Photograph ID: 5

Photo ID:

GT-1-2018-2 48.3-58'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

48.3-58' Interval

Photograph ID: 6

Photo ID:

GT-1-2018-2 58-69.5'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

58-69.5' Interval

Photograph ID: 7

Photo ID:

GT-1-2018-2 69.5-80.6'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

69.5-80.6' Interval

Photograph ID: 8

Photo ID:

GT-1-2018-2 80.6-91.0'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

80.6-91.0' Interval

Photograph ID: 9

Photo ID:

GT-1-2018-2 91.0-101.4'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

91.0-101.4' Interval

Photograph ID: 10

Photo ID:

GT-1-2018-2 101.4-110.8'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

101.4-110.8' Interval

Photograph ID: 11

Photo ID:

GT-1-2018-2 110.8-120.1'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

110.8-120.1' Interval

Photograph ID: 12

Photo ID:

GT-1-2018-2 120.1-129.7'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

120.1-129.7' Interval

Photograph ID: 13

Photo ID:

GT-1-2018-2 129.7-138.6'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

129.7-138.6' Interval

Photograph ID: 14

Photo ID:

GT-1-2018-2 138.6-148'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

138.6-148' Interval

Photograph ID: 15

Photo ID:

GT-1-2018-2 148-156.7'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

148-156.7' Interval

Photograph ID: 16

Photo ID:

GT-1-2018-2 156.7-167.5'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

156.7-167.5' Interval

Photograph ID: 17

Photo ID:

GT-1-2018-2 167.5-171'

Survey Date: 10/20/2018

Photo Location:

GT-1-2018-2 (See Saw)

Comments:

167.5-171' Interval

Photograph ID: 1

Photo ID:

S-1-2018-1 0-40'

Date Taken:

10/4/2018

Photo Location:

S-1-2018-1 (See Saw)

Comments:

0-40' Interval

Photograph ID: 2

Photo ID:

S-1-2018-1 40-70'

Date Taken:

10/4/2018

Photo Location:

S-1-2018-1 (See Saw)

Comments:

40-70' Interval

Photograph ID: 1

Photo ID:

S-1-2018-1 0-10'

Date Taken: 10/3/2018

Photo Location: S-1-2018-1 (See Saw)

Comments: 0-10' Interval

Photograph ID: 2

Photo ID:

S-1-2018-1 11-20'

Date Taken: 10/3/2018

Photo Location:

S-1-2018-1 (See Saw)

Comments:

11-20' Interval

Photograph ID: 3

Photo ID:

S-1-2018-1 20-30'

Date Taken: 10/3/2018

Photo Location: S-1-2018-1 (See Saw)

Comments: 20-30' Interval

Photograph ID: 4

Photo ID:

S-1-2018-1 32-40'

Date Taken: 10/3/2018

Photo Location:

S-1-2018-1 (See Saw)

Comments:

32-40' Interval

Photograph ID: 5

Photo ID:

S-1-2018-1 40-50'

Date Taken: 10/3/2018

Photo Location: S-1-2018-1 (See Saw)

Comments: 40-50' Interval

Photograph ID: 6

Photo ID:

S-1-2018-1 54-62'

Date Taken: 10/3/2018

Photo Location:

S-1-2018-1 (See Saw)

Comments:

40-50' Interval

Photograph ID: 7

Photo ID:

S-1-2018-1 66-68'

Date Taken: 10/3/2018

Photo Location: S-1-2018-1 (See Saw)

Comments: 66-68' Interval

Photograph ID: 1

Photo ID:

S-1-2018-2 0-40'

Date Taken:

10/4/2018

Photo Location:

S-1-2018-2 (See Saw)

Comments:

0-40' Interval

Photograph ID: 2

Photo ID:

S-1-2018-2 40-80'

Date Taken:

10/4/2018

Photo Location:

S-1-2018-2 (See Saw)

Comments:

40-80' Interval

Photograph ID: 1

Photo ID:

S-1-2018-2 2-10'

Date Taken: 10/4/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 2-10' Interval

Photograph ID: 2

Photo ID:

S-1-2018-2 10-18'

Date Taken: 10/4/2018

Photo Location:

S-1-2018-2 (See Saw)

Comments:

10-18' Interval

Photograph ID: 3

Photo ID:

S-1-2018-2 18-26'

Date Taken: 10/4/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 18-26' Interval

Photograph ID: 4

Photo ID:

S-1-2018-2 26-36'

Date Taken: 10/4/2018

Photo Location:

S-1-2018-2 (See Saw)

Comments:

26-36' Interval

Photograph ID: 5

Photo ID:

S-1-2018-2 36-40'

Date Taken: 10/4/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 36-40' Interval

Photograph ID: 6

Photo ID:

S-1-2018-2 40-48'

Date Taken: 10/4/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 40-48' Interval

Photograph ID: 7

Photo ID:

S-1-2018-2 48-56'

Date Taken: 10/4/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 48-56' Interval

Photograph ID: 8

Photo ID:

S-1-2018-2 50-60'

Date Taken: 10/4/2018

Photo Location:

S-1-2018-2 (See Saw)

Comments: 50-60' Interval

Photograph ID: 9

Photo ID:

S-1-2018-2 60-70'

Date Taken: 10/4/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 60-70' Interval

Photograph ID: 10

Photo ID:

S-1-2018-2 70-80'

Date Taken: 10/4/2018

Photo Location:

S-1-2018-2 (See Saw)

Comments: 70-80' Interval

Photograph ID: 11

Photo ID:

S-1-2018-2 80-90'

Date Taken: 10/22/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 80-90' Interval

Photograph ID: 12

Photo ID:

S-1-2018-2 90-100'

Date Taken: 10/22/2018

Photo Location:

S-1-2018-2 (See Saw)

Comments: 90-100' Interval

Photograph ID: 13

Photo ID:

S-1-2018-2 100-110'

Date Taken: 10/22/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 100-110' Interval

Photograph ID: 14

Photo ID:

S-1-2018-2 110-120'

Date Taken: 10/22/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 110-120' Interval

Photograph ID: 15

Photo ID:

S-1-2018-2 120-130'

Date Taken: 10/22/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 120-130' Interval

Photograph ID: 16

Photo ID:

S-1-2018-2 130-140'

Date Taken: 10/22/2018

Photo Location: S-1-2018-2 (See Saw)

0-1-2010-2 (See Sa

Comments: 130-140' Interval

Photograph ID: 17

Photo ID:

S-1-2018-2 140-150'

Date Taken: 10/22/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 140-150' Interval

Photograph ID: 18

Photo ID:

S-1-2018-2 150-160'

Date Taken: 10/22/2018

Photo Location: S-1-2018-2 (See Saw)

Comments:

150-160' Interval

Photograph ID: 19

Photo ID:

S-1-2018-2 160-170'

Date Taken: 10/22/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 160-170' Interval

Photograph ID: 20

Photo ID:

S-1-2018-2 170-180'

Date Taken: 10/22/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 170-180' Interval

Photograph ID: 21

Photo ID:

S-1-2018-2 194-200'

Date Taken: 10/22/2018

Photo Location: S-1-2018-2 (See Saw)

Comments: 194-200' Interval

Photograph ID: 1

Photo ID:

S-1-2018-3 0-40'

Date Taken:

10/4/2018

Photo Location:

S-1-2018-3 (See Saw)

Comments:

0-40' Interval

Photograph ID: 2

Photo ID:

S-1-2018-3 40-80'

Date Taken:

10/4/2018

Photo Location:

S-1-2018-3 (See Saw)

Comments:

40-80' Interval

Photograph ID: 3


Photo ID:

S-1-2018-3 80-120'

Date Taken: 10/4/2018

Photo Location: S-1-2018-3 (See Saw)

Comments: 80-120' Interval

Photograph ID: 4

Photo ID:

S-1-2018-3 120-152'

Date Taken:

10/4/2018

Photo Location:

S-1-2018-3 (See Saw)

Comments:

120-152' Interval

Photograph ID: 1

Photo ID:

S-1-2018-3 0-10'

Survey Date: 10/4/2018

Photo Location: S-1-2018-3 (See Saw)

Comments: 0-10' Interval

Photograph ID: 2

Photo ID:

S-1-2018-3 16-23'

Survey Date: 10/4/2018

Photo Location:

S-1-2018-3 (See Saw)

Comments:

16-23' Interval

Photograph ID: 3

Photo ID:

S-1-2018-3 23-34'

Survey Date: 10/4/2018

Photo Location: S-1-2018-3 (See Saw)

Comments: 23-34' Interval

Photograph ID: 4

Photo ID:

S-1-2018-3 34-50'

Survey Date: 10/4/2018

Photo Location:

S-1-2018-3 (See Saw)

Comments:

34-50' Interval

Photograph ID: 5

Photo ID:

S-1-2018-3 50-63'

Survey Date: 10/4/2018

Photo Location: S-1-2018-3 (See Saw)

Comments: 50-63' Interval

Photograph ID: 6

Photo ID:

S-1-2018-3 63-78'

Survey Date: 10/4/2018

Photo Location:

S-1-2018-3 (See Saw)

Comments:

63-78' Interval

Photograph ID: 7

Photo ID:

S-1-2018-3 78-90'

Survey Date: 10/4/2018

Photo Location: S-1-2018-3 (See Saw)

Comments: 78-90' Interval

Photograph ID: 8

Photo ID:

S-1-2018-3 92-100'

Survey Date: 10/4/2018

Photo Location: S-1-2018-3 (See Saw)

Comments: 92-100' Interval

Photograph ID: 9

Photo ID:

S-1-2018-3 100-110'

Survey Date: 10/4/2018

Photo Location: S-1-2018-3 (See Saw)

Comments: 100-110' Interval

Photograph ID: 10

Photo ID:

S-1-2018-3 111-121'

Survey Date: 10/4/2018

Photo Location:

S-1-2018-3 (See Saw)

Comments:

111-121' Interval

Photograph ID: 11

Photo ID:

S-1-2018-3 121-132'

Survey Date: 10/4/2018

Photo Location: S-1-2018-3 (See Saw)

Comments: 121-132' Interval

Photograph ID: 12

Photo ID:

S-1-2018-3 132-142'

Survey Date: 10/4/2018

Photo Location: S-1-2018-3 (See Saw)

Comments: 132-142' Interval

Photograph ID: 13

Photo ID:

S-1-2018-3 142-150'

Survey Date: 10/4/2018

Photo Location: S-1-2018-3 (See Saw)

Comments: 142-150' Interval

Photograph ID: 1

Photo ID:

S-1-2018-4 0-40'

Survey Date:

10/4/2018

Photo Location: S-1-2018-4 (See Saw)

Comments: 0-40' Interval

Photograph ID: 2

Photo ID:

S-1-2018-4 40-80'

Survey Date: 10/4/2018

Photo Location:

S-1-2018-4 (See Saw)

Comments:

40-80' Interval

Photograph ID: 3

Photo ID:

S-1-2018-4 80-120'

Survey Date:

10/4/2018

Photo Location: S-1-2018-4 (See Saw)

Comments: 80-120' Interval

Photograph ID: 4

Photo ID:

S-1-2018-4 120-150'

Survey Date:

10/4/2018

Photo Location:

S-1-2018-4 (See Saw)

Comments:

120-150' Interval

Photograph ID: 1

Photo ID:

S-1-2018-3 2-10'

Date Taken: 10/4/2018

Photo Location: S-1-2018-4 (See Saw)

Comments: 2-10' Interval

Photograph ID: 2

Photo ID:

S-1-2018-3 12-24'

Date Taken: 10/4/2018

Photo Location:

S-1-2018-4 (See Saw)

Comments:

12-24' Interval

Photograph ID: 3

Photo ID:

S-1-2018-3 24-35'

Date Taken: 10/4/2018

Photo Location: S-1-2018-4 (See Saw)

Comments: 24-35' Interval

Photograph ID: 4

Photo ID:

S-1-2018-3 35-46'

Date Taken: 10/4/2018

Photo Location:

S-1-2018-4 (See Saw)

Comments:

35-46' Interval

Photograph ID: 5

Photo ID:

S-1-2018-3 46-58'

Date Taken: 10/4/2018

Photo Location: S-1-2018-4 (See Saw)

Comments: 46-58' Interval

Photograph ID: 6

Photo ID:

S-1-2018-3 58-70'

Date Taken: 10/4/2018

Photo Location:

S-1-2018-4 (See Saw)

Comments:

58-70' Interval

Photograph ID: 7

Photo ID:

S-1-2018-3 72-80'

Date Taken: 10/4/2018

Photo Location: S-1-2018-4 (See Saw)

Comments: 72-80' Interval

Photograph ID: 8

Photo ID:

S-1-2018-3 84-94'

Date Taken: 10/4/2018

Photo Location:

S-1-2018-4 (See Saw)

Comments: 84-94' Interval

Client: Lehigh Hanson Project: Lehigh Southwest Cement
Site Name: See Saw Site Location: Santa Clara County, CA

Photograph ID: 9

Photo ID:

S-1-2018-3 94-100'

Date Taken: 10/4/2018

Photo Location: S-1-2018-4 (See Saw)

Comments: 94-100' Interval

Photograph ID: 10

Photo ID:

S-1-2018-3 100-110'

Date Taken: 10/4/2018

Photo Location:

S-1-2018-4 (See Saw)

Comments:

100-110' Interval

Client: Lehigh Hanson Project: Lehigh Southwest Cement
Site Name: See Saw Site Location: Santa Clara County, CA

Photograph ID: 11

Photo ID:

S-1-2018-3 110-120'

Date Taken: 10/4/2018

Photo Location: S-1-2018-4 (See Saw)

Comments: 110-120' Interval

Photograph ID: 12

Photo ID:

S-1-2018-3 120-130'

Date Taken: 10/4/2018

Photo Location:

S-1-2018-4 (See Saw)

Comments:

120-130' Interval

Client: Lehigh Hanson Project: Lehigh Southwest Cement
Site Name: See Saw Site Location: Santa Clara County, CA

Photograph ID: 13

Photo ID:

S-1-2018-3 130-140'

Date Taken: 10/4/2018

Photo Location: S-1-2018-4 (See Saw)

Comments: 130-140' Interval

Photograph ID: 14

Photo ID:

S-1-2018-3 140-150'

Date Taken: 10/4/2018

Photo Location:

S-1-2018-4 (See Saw)

Comments: 140-150' Interval

December 12, 2018

STANTEC 1340 Treat Blvd., Suite 300 Walnut Creek, CA 94597

Subject: Borehole Geophysical Logging Survey

Lehigh Quarry

Cupertino, California

NORCAL Job No: NS185080

Attention: Jennifer Van Pelt

This report presents the findings of a borehole geophysical investigation performed by NORCAL Geophysical Consultants, Inc. at Lehigh Quarry. This investigation was part of a geotechnical slope stability analyses in support of Lehigh's continued mining operations, reclamation of the North Quarry, and mitigation of the historic landslide in the North Quarry. The survey was performed during two separate mobilizations on October 6 and 7, and on October 20, 2018 by NORCAL Professional Geophysicist William J. Henrich (PGp 893). Logistical support and safety information were provided onsite by Mr. Bryan Hathaway of STANTEC.

The purpose of the geophysical logging was to delineate the distribution of in-situ fractures and provide orientations (dip direction, dip angle) of significant discontinuities.

1.0 SITE DESCRIPTION

Our work concerned geophysical logging at two borehole locations situated on pioneered roads excavated at separate elevations along the western pit area, and one location below the crest of the topographic high west to northwest of the North Quarry pit. The distribution of the geophysically logged boreholes is shown on the Location Map in Figure 1 below. Locally, this site is underlain by highly weathered to moderately weathered, weak, poorly consolidated metamorphosed volcanic rock (metavolcanic) and limestone belonging to Franciscan Formation Complex. The limestone occurs with thinly interbedded chert and shale lenses.

NORCAL Geophysical Consultants, A Terracon Company . 321 Blodgett Street . Cotati, CA 94931 P (707) 796 7170 • F (707) 796 7175 • norcalgeophysical.com • terracon.com

П

П

2.0 SCOPE

Geophysical borehole logging was conducted in a total of three boreholes labeled as GT-1-2018-1, GT-1-2018-2 and S-1-2018-2. The geophysical logging methods consisted of optical (OPTV) and acoustic (BHTV) televiewer and caliper (Borehole Diameter). The scope of work included a report detailing analysis methods and presentation of results.

Figure 1. Location Map of Geophysically Logged Boreholes at Lehigh Quarry.

3.0 BOREHOLE CONDITIONS

Two geotechnical exploratory boreholes labeled with the prefix "GT" were advanced with a HQ-coring method to depths ranging from 173- to 496-ft bgs. The HQ open bore diameter was approximately 4.0 inches. Inclinations of the boreholes were 70 degrees from horizontal. GT boreholes contained a shallow (30- to 50-foot deep) larger diameter (hwt. ID= 4.25 inches) steel conductor casing to prevent caving due to decomposed or highly weathered bedrock. Acoustic televiewer logging was conducted in the fluid-filled section of each borehole. Optical logging was conducted in the air-filled portion. Borehole GT-1-2018-1 was geophysically logged in five different stages. Staging means that the HQ rod (with casing shoe) was advanced to total depth then pulled back just short of an elevation in the rock formation that had in previous logging attempts, collapsed or was suspected of collapsing. This exposed the lower open rock section for geophysical logging at a reduced rock fall hazard.

Borehole S-1-2018-2 was a vertically drilled test boring advanced with a 6-inch diameter sonic drilling method to total depth of 200-ft below ground surface. Water was added to the borehole to accommodate the acoustic televiewer logging. However, water levels tended to drop rapidly, such that only the lower 80 feet of the borehole was acoustically logged. As a coincidence, the upper air-filled section was surveyed via optical (OPTV) logging. Caliper logging results indicate that the borehole diameter for most of the open borehole section was substantially greater (several inches) than the sonic drill bit thus indicating highly weathered, weak rock conditions.

4.0 GEOPHYSICAL LOGGING EQUIPMENT AND METHODOLOGY

We conducted geophysical borehole logging using a digital *MICROLOGGER2* System manufactured by **Robertson Geologging**, **Ltd**. This system consisted of the following components:

- control console,
- computer,
- motorized cable winch,
- Televiewer (acoustic and optical) probes
- 3-arm caliper probe

4.1 Televiewer

Complete descriptions of the televiewer methodology, data acquisition and data analysis procedures are presented in Appendix A.

4.2 Caliper

Caliper logs are a measure of the borehole diameter versus depth. The tool was used both as a survey technique to assess the relative consolidation of bedrock and provide depth specific borehole diameter measurements to a computer program that calculates discontinuity dip angle. The caliper tool consists of three interconnected mechanical arms that are spring loaded against the borehole wall. The horizontal deflections of the arms gauge the borehole diameter in units of inches with depth. The logging measurement was made in the up-hole direction at a speed of approximately 12-ft per minute. The data sampling rate for this instrumentation was every 0.2-ft.

5.0 RESULTS

Caliper and televiewer field logs are presented in Appendix B. The field logs show two televiewer logging runs. The purpose of the side-by-side multiple log displays is to show the consistency of the orientation (magnetic north) of common borehole features. Repeatability in orientation is an indication of the stability of the downhole compass. Using the better of the two image logs, specific interpreted log plots (Televiewer Analysis of Dips) from the televiewer logging are presented in Appendix C. Supporting numerical tables (Discontinuity Tables) that tabulate depth, dip angles, dip azimuths, aperture thickness where applicable and fracture classification are presented in Appendix D. The orientation trends with the discontinuity data can be represented as stereographic pole projections. The data manipulation and projection type are explained in the last section of Appendix A. Pole projections for each borehole are presented in Appendix E.

6.0 INTERPRETATION

6.1 Discontinuity Classifications

All discontinuities subjected to orientation analysis were classified as fractures or foliations. We subdivided or classified the fractures (synonymous with joints) based on the observable characteristics such as relative aperture width, discontinuity sinusoidal trace continuity and frequency of occurrence. Discontinuity classifications are discussed in more detail in Appendix A. However, not all visible discontinuities on the televiewer images were chosen for orientation analysis because some were either too fragmented or faint to reasonably circumscribe with an interpretative sinusoid.

6.2 Directional Discontinuity Trends

Polar projection plots (*GT* series boreholes only) presented in Appendix E show the results of contouring the distribution of poles on the projection plane. Graphically, the approximate center of the highest enclosed contours (shaded red) represent directional trends in the sampled set of interpreted discontinuities. The following Table 1 shows directional trends for each "GT" borehole based on contour intensity. The term "primary" means this population trend garnered a greater concentration of poles compared to apparent secondary trends with lower pole concentrations on the pole projection plot.

Table 1. Directional Trends Indicated by Contouring Pole Distribution

Borehole ID	Directional Trends (Dip Direction, Dip Angle) Primary	Directional Trends (Dip Direction, Dip Angle) Secondary	Comment
GT-1-2018-1	N060°, 35°	N247°, 72°	Weak primary and secondary fracture trends, poles to planes mostly scattered
GT-1-2018-2	N180°, 35°	1	Dominate attitude of foliation planes

Due to the limited amount of discontinuity features, discontinuity data from S-1-2018 was not subject to stereo graphic analysis. The paucity of discontinuity data was probably related to the highly weathered nature of the rock. Rock that is extensively deformed fails to maintain observable discrete fractures or former planar structures such as foliation.

7.0 STANDARD OF CARE

The scope of NORCAL's services for this project consisted of using geophysical methods to characterize the subsurface. The accuracy of our findings is subject to specific site conditions and limitations inherent to the techniques used. We performed our services in a manner consistent with the standard of care ordinarily exercised by members of the profession currently employing similar methods. No warranty, with respect to the performance of services or products delivered under this agreement, expressed or implied, is made by NORCAL.

Thank you for the opportunity to participate on this project.

Sincerely,

NORCAL Geophysical Consultants, Inc.

William J. Henrick

Professional Geophysicist PGp 893

Bonald J. Kike

Donald J. Kirker

Professional Geophysicist PGp 997

No. 893
No. 893
No. 893
No. 893
No. 893
No. 997
No. 997
No. 997

WJH/DJK/tlt Enclosures:

Appendix A: Borehole Imaging Televiewer Surveying and Data Processing

Appendix B: Field Logs Televiewer and Caliper Survey, Boreholes GT-1-2018-1, GT-1-2018-2, S-1-2018-2

Appendix C: Interpreted Televiewer Plots, Boreholes GT-1-2018-1, GT-1-2018-2, S-1-2018-2

Appendix D: Discontinuity Tables, Boreholes GT-1-2018-1, GT-1-2018-2, S-1-2018-2

Appendix E: Polar Projections, Boreholes GT-1-2018-1, GT-1-2018-2, S-1-2018-2

Appendix A:

Borehole Imaging Televiewer and Data Processing

APPENDIX A

BOREHOLE TELEVIEWER SURVEY

1.0 BOREHOLE TELEVIEWERS

1.1 METHODOLOGY

Televiewers are downhole tools that are used to produce radial images of the interior of a borehole. The images are composited sequentially using computer software to produce continuous color images. These images are like unfolded, or unwrapped, cylinders displayed on a two-dimensional surface. The "unwrapped" radial images are referenced to magnetic north by an on-board magnetic compass. In addition, an on-board three-axis magnetic inclinometer determines the inclination and azimuth of the borehole.

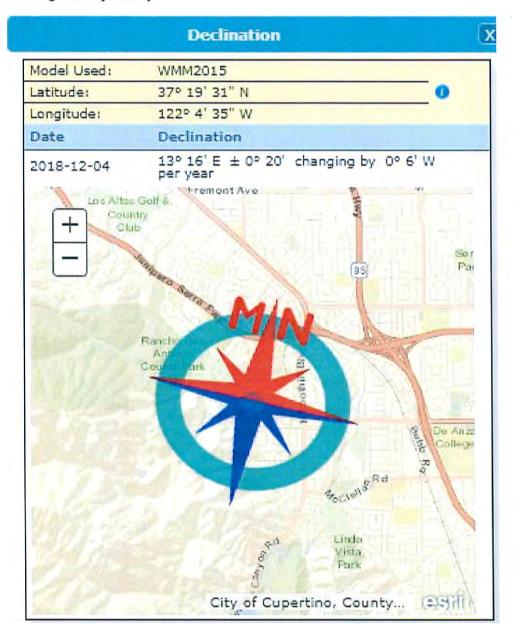
Televiewer images can be used to detect bedrock discontinuities (joints, fractures, bedding planes, geologic contacts, etc.) in boreholes and determine their frequency, depths and orientations. Interpretable discontinuities appear as thin sinusoidal forms that stretch across the image. Interactively fitting lines to these sinusoids provides data that computer software uses to determine the orientation and dip of the discontinuities. The midpoint or half amplitude of the sinusoid is taken as the depth of the discontinuity.

There are two types of televiewers; optical and acoustic. Optical televiewers (OPTV) use a digital optical sensor to produce radial images to a vertical resolution as fine as 0.004 feet and a radial resolution to 720 pixels. However, they can only be used in dry holes or in water filled holes with sufficient clarity to create an interpretable high resolution image. Acoustic televiewers (BHTV) require a water column to act as a medium for the transmission and reception of acoustic signals. The water does not have to be optically clear. In operation the BHTV transmits an ultrasonic signal into the borehole fluid and detects ultrasonic energy that is reflected from the borehole wall. Sidewall borehole images are created by measuring variations in the two-way travel time of the ultrasonic pulses as well as variations in the amplitude of the reflected signals.

1.2 DATA ACQUISITION

Prior to Televiewer logging we checked the correct operation of the onboard tool compass of bearing direction against the readings provided by a Brunton Compass. This procedure involves setting the probe vertically in a jig with a bar situated in the south (magnetic) direction and recording a time-drive record so that the bar forms a straight line down the center of the waterfall image. Alternately, we incline the probe (greater

than 45 degrees from vertical) in an arbitrary direction and compare the bearing displayed in test mode to the bearing indicated on the Brunton compass face. Variations of 1 to 2 degrees in azimuth between the tool display and Brunton Compass bearing confirms the tools compass is operating satisfactory.


Where boreholes maintained a shallow static fluid level or in situations where we could add water continuously to bring the fluid to the tip of the conductor casing, image logging was accomplished with the acoustic method. We acquired acoustic BHTV data at a rate of approximately 1000 two-way pulses times per second. The tool was raised/lowered at a rate of 4.5-ft per minute. This resulted in a BHTV depth sample interval of 0.006 ft. Two logs were acquired in each borehole; both of these were in the up direction. This allowed us to demonstrate the tools compass stability by comparing the orientations of common features between the two logging runs.

1.3 DATA ANALYSIS

We used the computer program *WELLCAD* (Version 5.1, ALT, and Luxemburg) to display BHTV images and to calculate the orientations of interpreted discontinuities (e.g. fractures, joints, bedding). Corrections for the magnetic declination in the survey area required adding 13.2 degrees to the magnetic compass bearings in order to orient the borehole images to true north (see Figure 1-A). Since borehole diameter is a major reduction parameter in determining dip magnitude, we input caliper log measurements. In each borehole, discontinuity analyses were performed interactively on sections of the unwrapped optical or acoustic amplitude images as viewed on a computer monitor. An interpretable discontinuity on a two-dimensional unwrapped borehole televiewer log appears as a recognizable sinusoidal trace that usually extends across the full width of the borehole image. The sinusoidal shape is a manifestation of planar discontinuities intercepting a three-dimensional cylindrical borehole. Planar discontinuities can be geologic features that include discrete fractures or joints, bedding planes and planar intrusions such as veins and geologic contacts.

Figure A-1: Magnetic Declination Illustration from NOAA, 2018 for Lehigh Quarry Vicinity

The traces of discontinuities identified on the image logs were fitted with a bendable sinusoid overlying the trace, as shown in Figure A-2. This provided data that were used by **WELLCAD** to calculate a plane representing the orientation of the discontinuity in terms of dip direction and dip magnitude. This process was repeated for every significant discontinuity until the entire

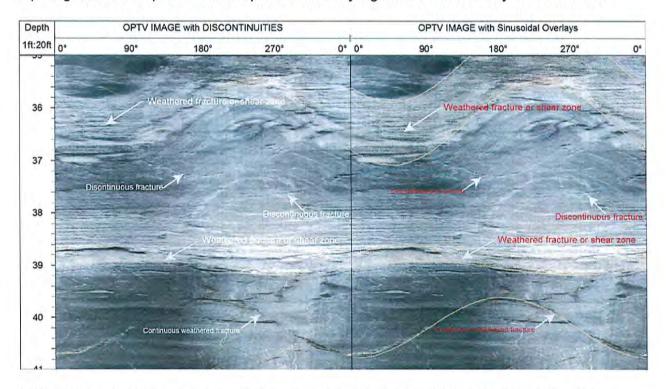


Figure A-2: Sample OPTV section showing observable discontinuity traces left) versus the same image right) with the addition of interpreted sinusoidal overlays (brown and teal colored traces).

borehole was interpreted. At this stage, the apparent dip direction and dip magnitude of the identified discontinuities were converted to true geographic dip azimuth and dip magnitude by factoring the borehole tilt (inclination) and azimuth at the depth of the discontinuity.

Based on observations of the core, discussions with the on-site geologist, and our own experience identifying planar features in acoustic televiewer images, we classified discontinuity features into three categories as follows:

1) "Probable Open fractures or joints". These have characteristics that are relatively wide (measureable >> 1mm) apparent apertures, continuous sinusoidal traces across the circumference of the borehole wall and show relief/breakage along the borehole wall. This relief is usually shown as diameter enlargements on the caliper log.

- 2) "Thin, hairline, discontinuous-irregular fractures/joints". These features have faint traces (indicative of very small apertures 1 mm or less) that are generally discontinuous or incomplete across the full 360 degrees span of the image and irregular especially if the dip angles are greater than 60 degrees.
- 3) "Foliation or bedding". These features appear as closely spaced, thin, sometimes wavy traces that trend in the same dip direction.

We did not tabulate (interpret) cemented or highly discontinuous or fragmented fractures.

1.4 PRESENTATIONS

Complete Field Logs showing the two complete BHTV logging runs referenced to magnetic North are presented in Appendix B. Interpreted, unwrapped televiewer plots referenced to true geographic North are presented in Appendix C. Each of these plots in Appendix C are several pages long, with header information presented at the top of the first page only. Each plot contains several columns of information described, from left to right, as follows:

COLUMN 1 – DEPTH AXIS

The depth axis indicates the relative vertical distance below the ground surface. Ground surface was set equal to zero feet. Depth values are positive and increase in the downward direction.

COLUMN 2 - TELEVIEWER IMAGE

This is an unwrapped false color (BHTV) image representing the interior of the borehole wall. On the BHTV images the relationship between color and signal amplitude is indicated by the color bar at the top of the header. Dark shades (blue) indicate relatively low amplitude and the brighter shades (yellow) indicate relatively high amplitudes. BHTV images are oriented relative to true North as indicated by the azimuth information presented in the header where North, East, South and West correspond to 0°, 90°, 180° and 270°, respectively. The diameter of the borehole is indicated by the white dashed line superimposed on the image. Solid and dashed color lines superimposed on sinusoidal fracture/joint traces depict interpreted discontinuities. The colors of the lines relate to the fracture/joint classification as follows, red = open, teal = "thin", irregular/discontinuous fractures and joints and green = foliations or bedding. Note, that due to the wide apparent thickness of some weathered fracture/joints and weathered zones, we expanded the line trace into a broader hachured sinusoidal section.

COLUMN 3 - DIPS PLOT

The Dips Plot indicates the dip of discontinuities and their direction of maximum dip. These parameters are indicated by small symbols called "tadpoles" which consist of colored circles or squares with a straight line (tail) extending from them. The position of the tadpole indicates the degree of dip, from 0° on the left to 90° on the right, according to the scale shown at the top of the column. The direction that the tail is pointing indicates the direction of dip where straight up is true north and 90° to the right indicates due east. The tadpole symbol colors relate to the three classifications of fractures and joints. A Discontinuity Legend in the sub-header related the colors to the classification. The numerical values of dip azimuth and dip angle are also presented in discontinuity tables presented at the end of this appendix.

COLUMN 4 - CORE PLOT

This plot is a graphic rendering of the OPTV/BHTV image into a 3-D core based on amplitude variations. This is basically what the image shown in Column 2 would look like if it was rewrapped to form a cylinder where the vertical center line of the cylinder represents true north (0°), the right edge represents west (270°) and the left edge represents east (90°). South (180°) is out of view behind the core. Although the color spectrum of the core is the same as that used for the BHTV image, the core reconstruction tends to compress the amplitude spectrum into a darker range. This has the effect of making the core appear to be reddish rather than yellow. Planes drawn through the interpreted discontinuities illustrate the relative dip and dip direction of the discontinuities.

COLUMN 5 - BOREHOLE DEVIATION

This plot indicates the azimuth and tilt of the borehole. The solid blue line represents the dip direction, from 0° to 360°, according to the header scale labeled "Azimuth". The dotted green line represents the angle of the borehole from true vertical according to the header scale labeled "Tilt". This scale ranges from 0° to 4°.

1.5 DISCONTINUITY TABLES

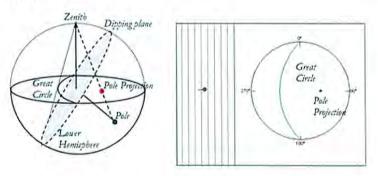
The dip azimuth and dip angle of all interpreted discontinuities from the televiewer analysis plots (5) are tabulated in Appendix D. The tables present 5 column headers listed left to right as follows: Depth, Dip Azimuth, Dip Angle, Corrected Aperture and Discontinuity Classification. A brief description of the meaning of these terms is presented below.

Depth – relates to the center of discontinuity's sinusoid in feet below ground surface.

Dip Azimuth – dip direction of the discontinuity in degrees from true North.

Dip Angle – inclination of the plane of the discontinuity in degrees from horizontal.

Corrected Aperture – true thickness of fracture/joint corrected for dip measured in tenths of inches.


In this survey, we used this processing to indicate the true thickness of weathered/altered fractures and joints.

Discontinuity Classification – number designating classification type of fracture/joint (see Legend for explanation).

1.6 POLAR PROJECTIONS

The polar projection (stereo-nets) diagram is used to summarize the structural orientation information contained in our televiewer analysis of dips (see Dips Log). A polar projection plot displays each pair of orientation data (i.e. dip angle and dip direction) as a single point on the projection plane. Points on the projection plane are referred to as pole projections. We used the equal angle mode to populate directional data on to the projection plane. The following diagram illustrates how 3-dimensional data (e.g. dipping fracture plane) plot on an equal angle polar projection.

Equal Angle

The horizontal distance from the center of the projection plane to the pole projection represents the dip angle. The azimuth is determined by extrapolating a line from the same center through

the pole projection outward until it intersects the bearing indicated on the Great Circle. Note that projection of the poles in the lower hemisphere plot in opposite direction of dip direction. Projected poles from the upper hemisphere plot in the direction of dip. The equal angle projection is used to represent high angle populations.

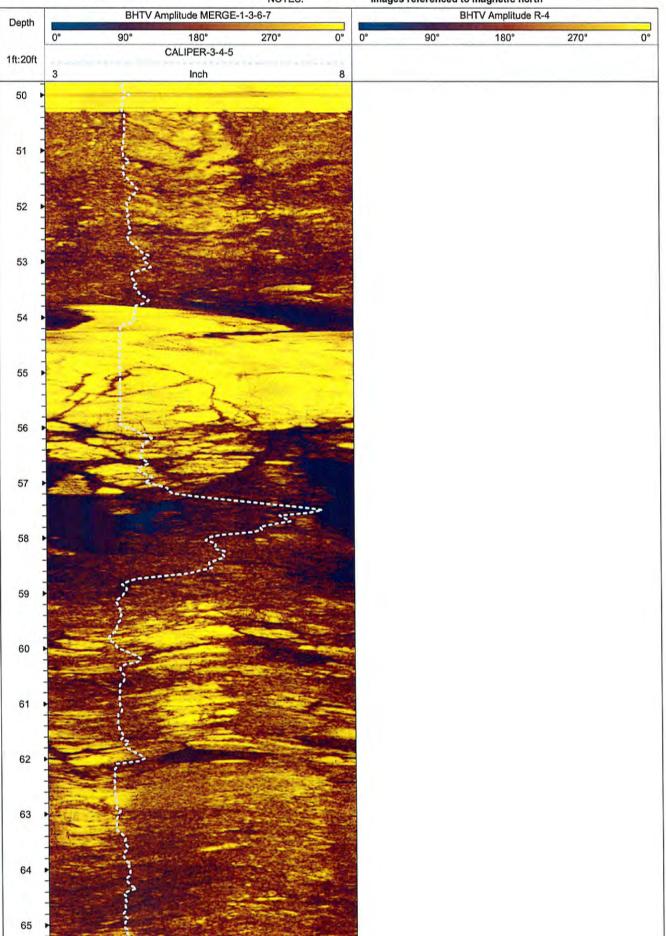
The purpose of the polar projection is to determine directional trends in orientation data. Trends in orientation data are represented by contouring pole density distribution on the projection plane. We used the Kamb algorithm to produce contours. The contours represent standard deviations away from the expected density of a random sample drawn from a standard distribution. Kamb's algorithm reduces the effect of sample size on contours allowing comparison of data sets with different sample sizes.

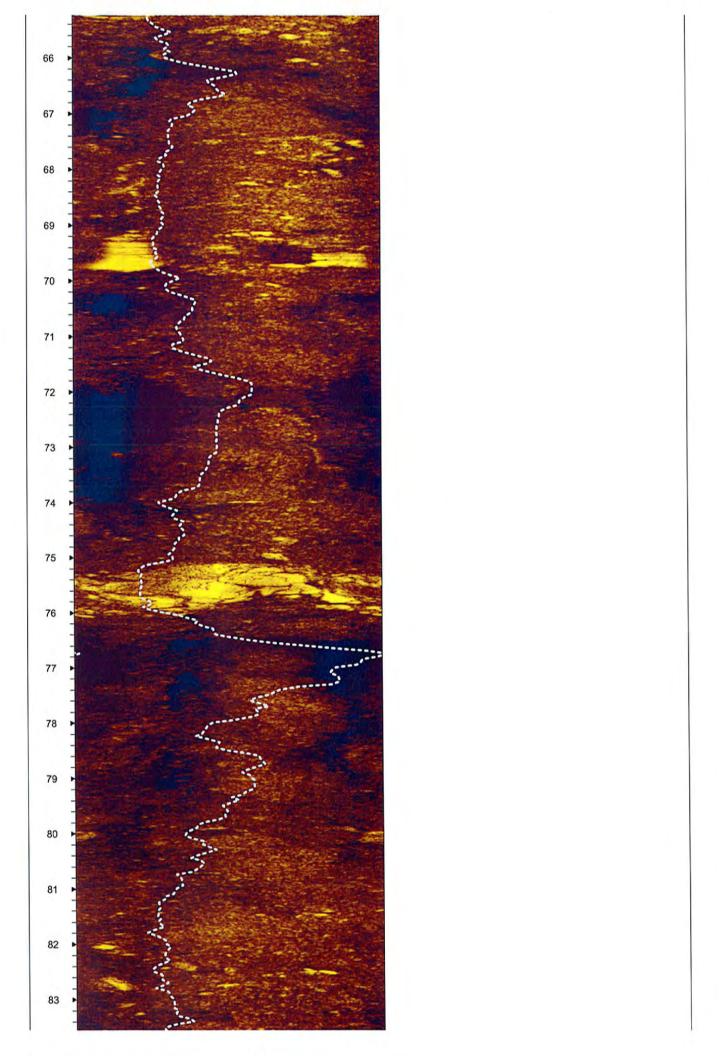
Polar projections for each dip analyzed borehole are presented in Appendix E. These plots where generated using the log computer analysis program WELLCAD, Version 5 (ALT, Luxembourg) show Dips Plots from televiewer analysis on left side and an expanded upper hemisphere polar projection on the right. All discontinuity classes are represented. A legend at the base of the projections shows the symbol classification and the associated number of poles within each class. The legend shows the average dip angle and dip azimuth for each discontinuity classification. Color shading on the projection relates to magnitude of contour values (deviations from a random sample) where the red shades indicate areas on the projection as high pole density and pale yellow shades indicate low pole density.

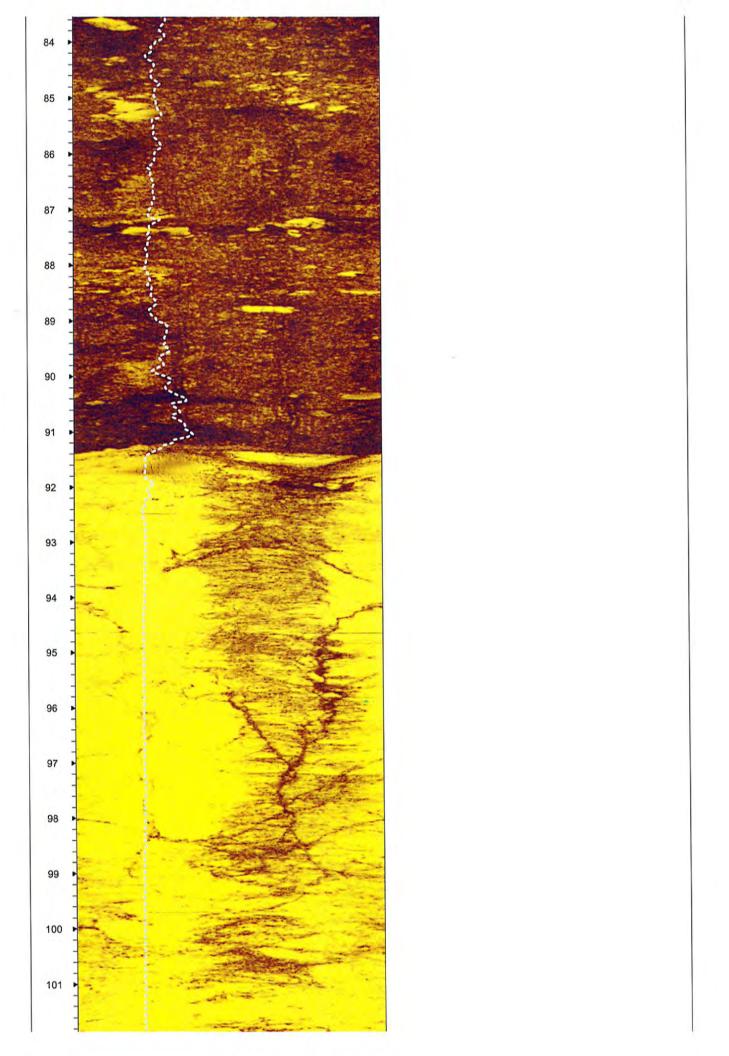
Appendix B:

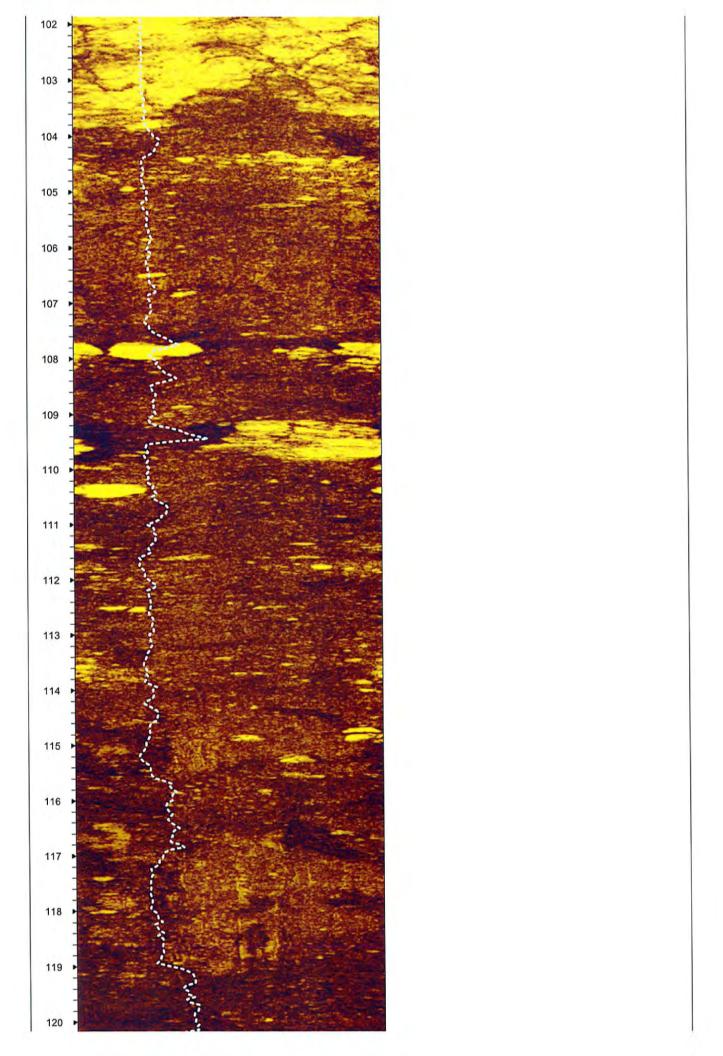
Field Logs Televiewer and Caliper

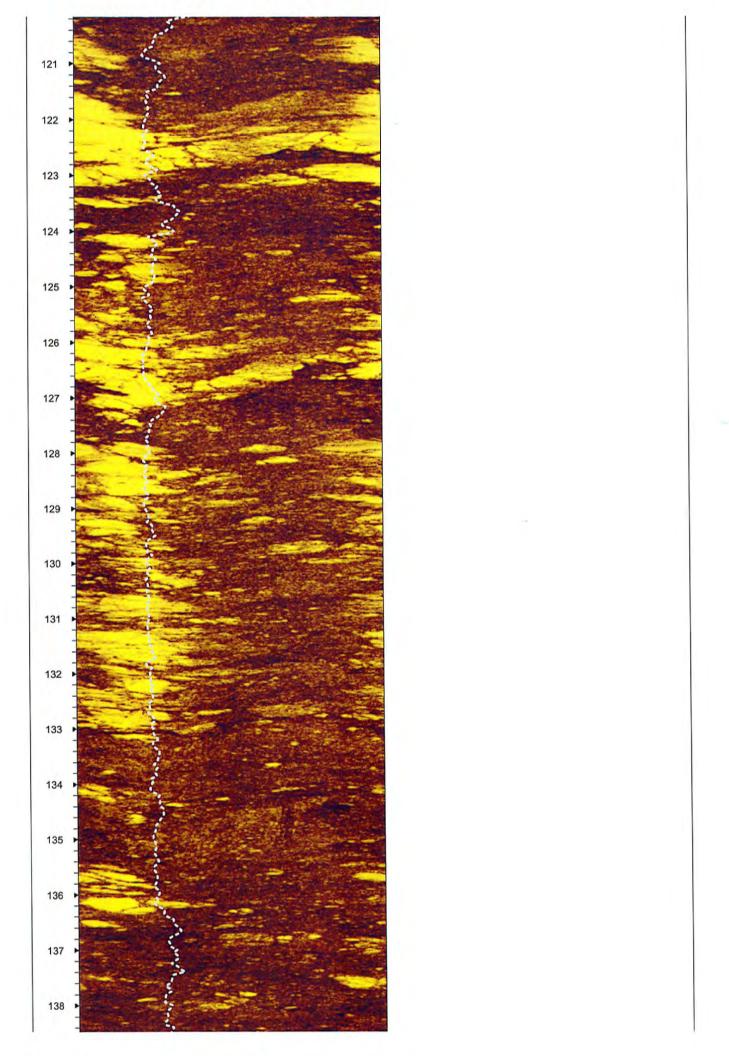
Boreholes GT-1-2018-1, GT-1-2018-2, S-1-2018-2

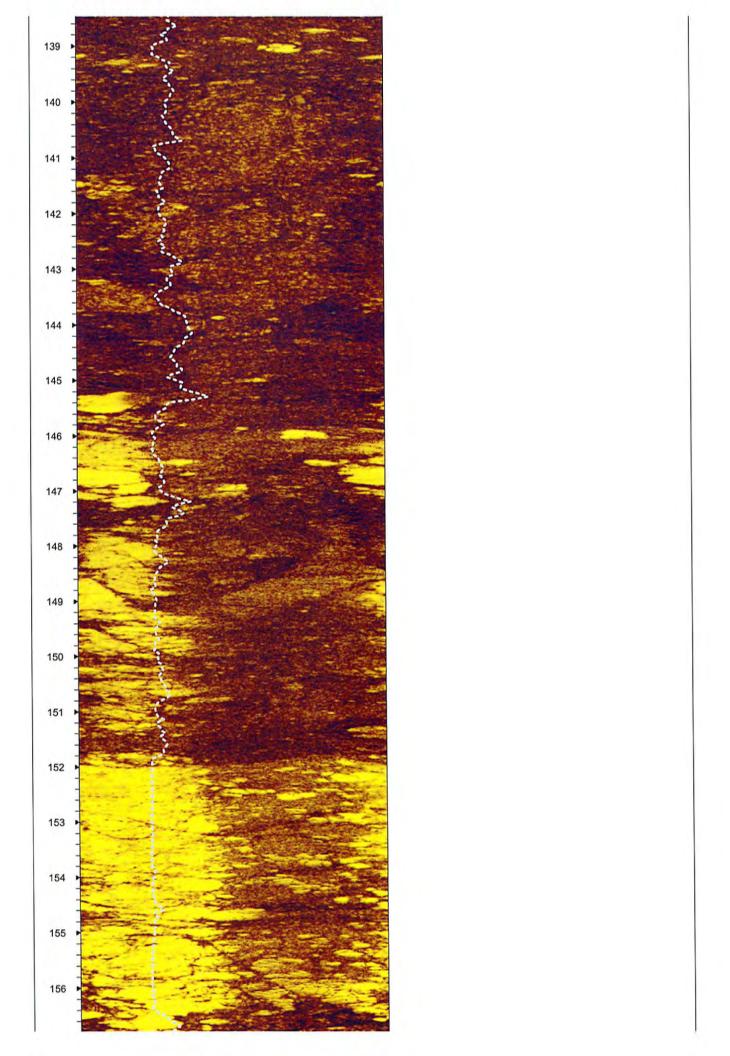

ACOUSTIC TELEVIEWER AND CALIPER LOGS (MERGED)

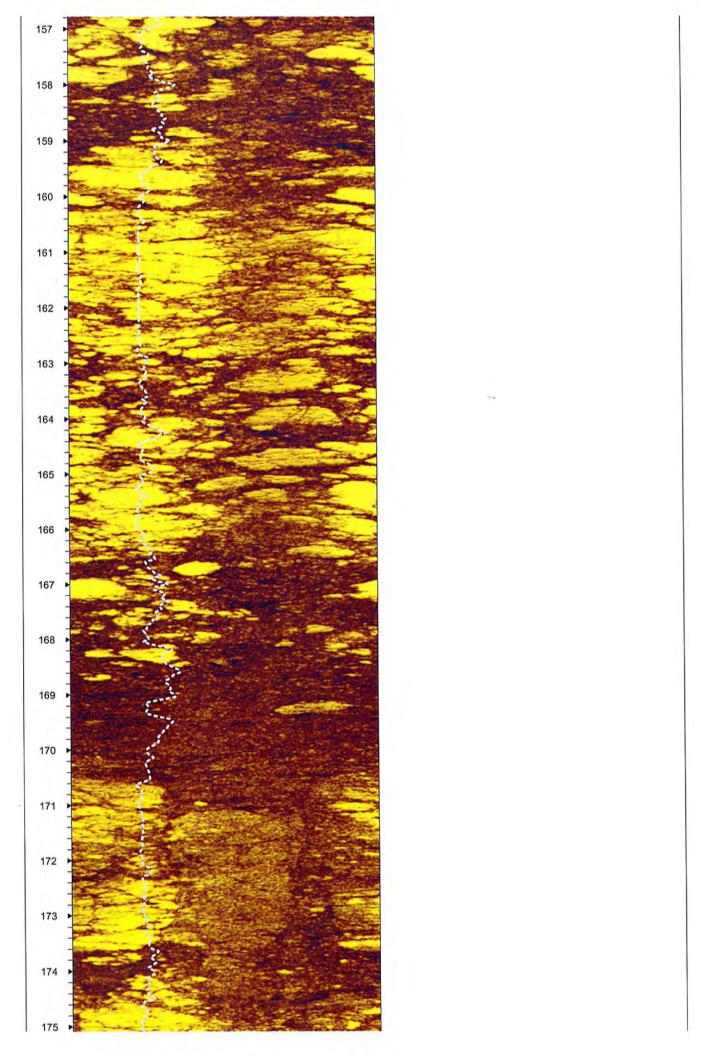

COMPANY: STANTEC
WELL ID: GT-1-2018-1
FIELD: LEHIGH QUARRY
COUNTY: SANTA CLARA

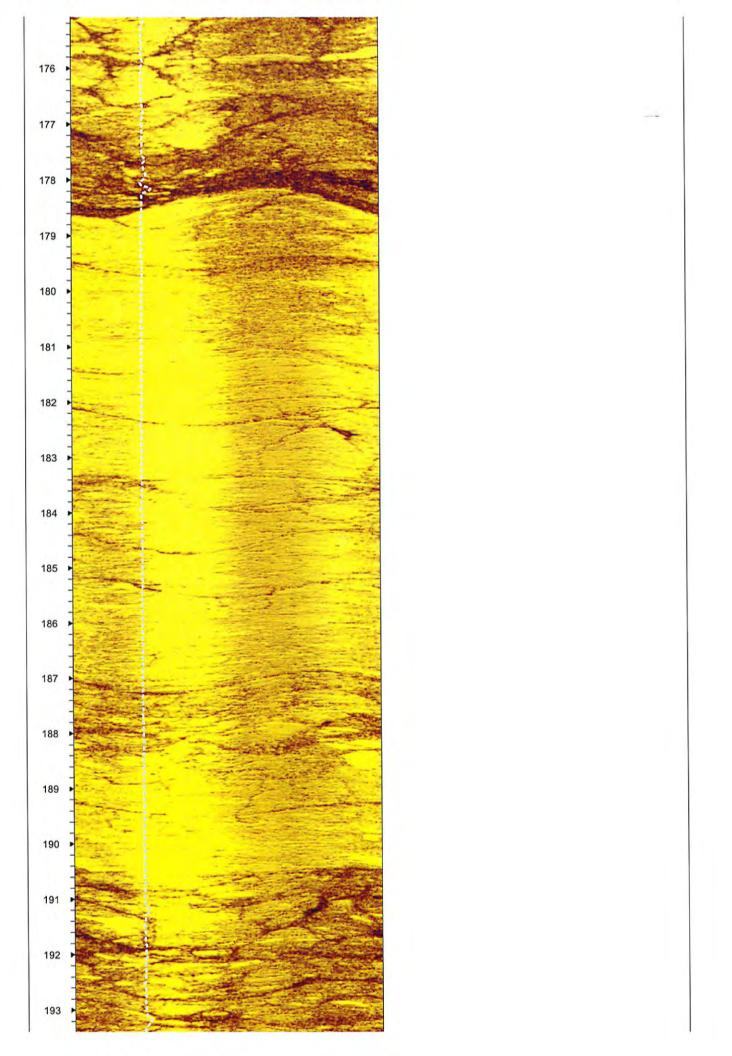

DATE: Oct. 6 & 7, 2018 CASING: Hwt to 50.3-ft bgs JOB NO. NS185080 STATE: CA

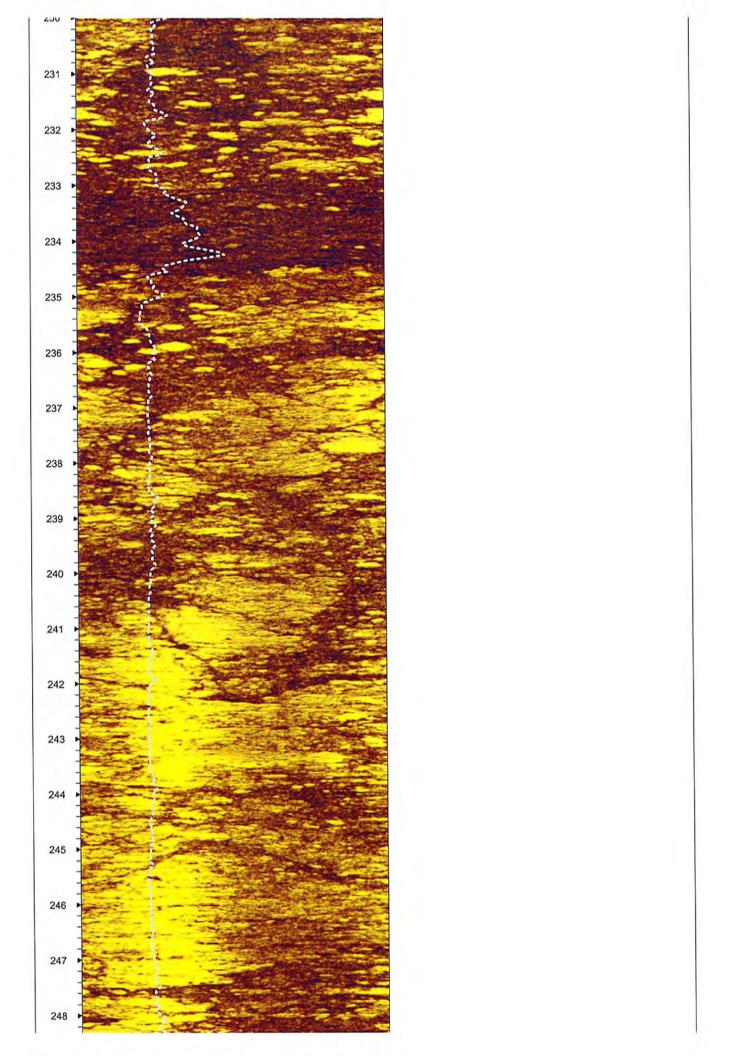

NOTES:

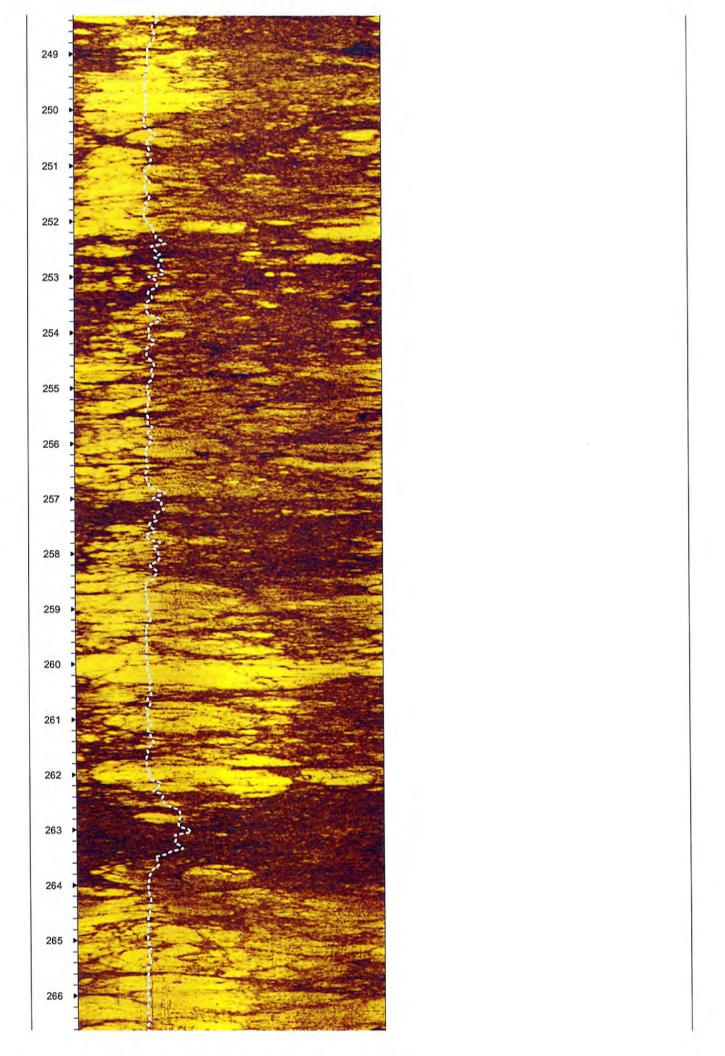

Images referenced to magnetic north

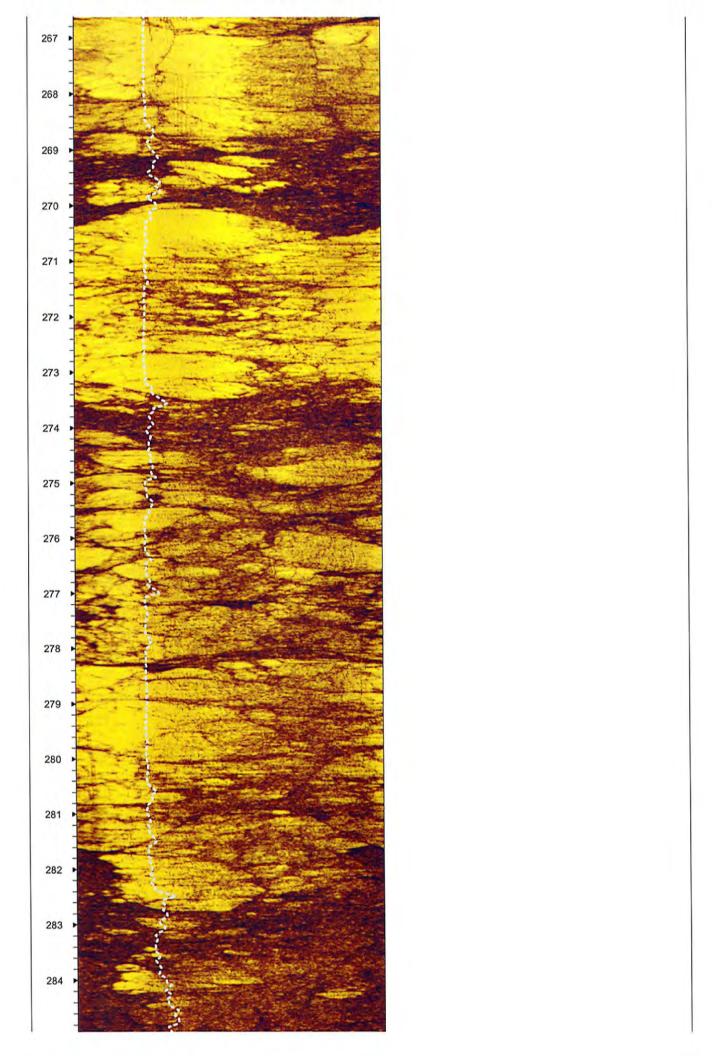


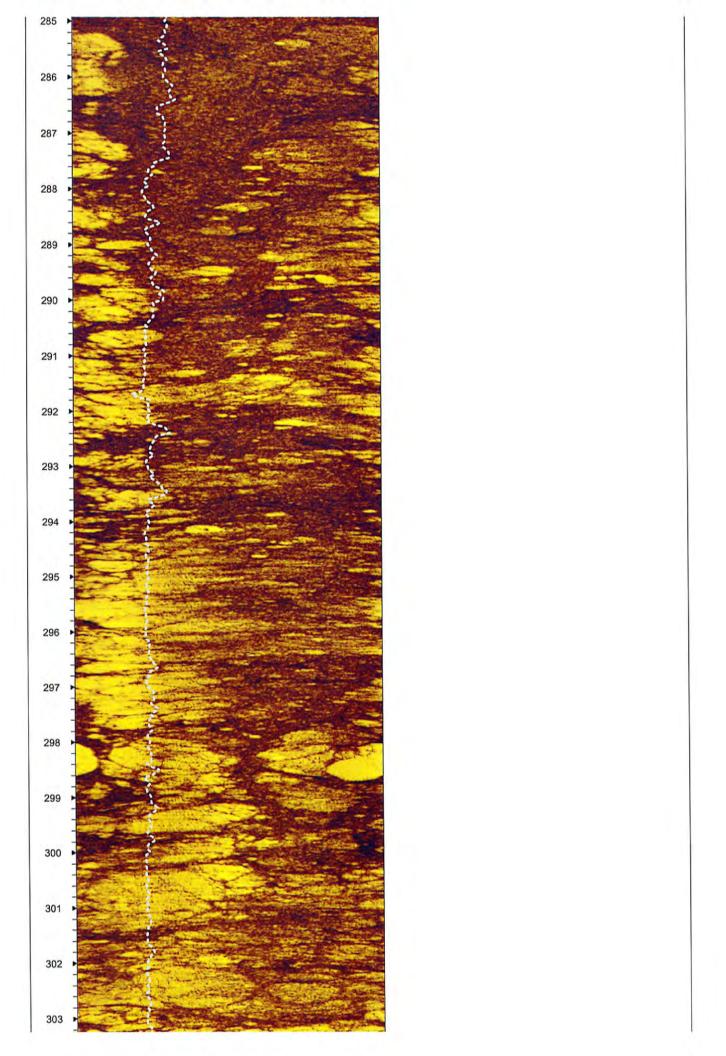


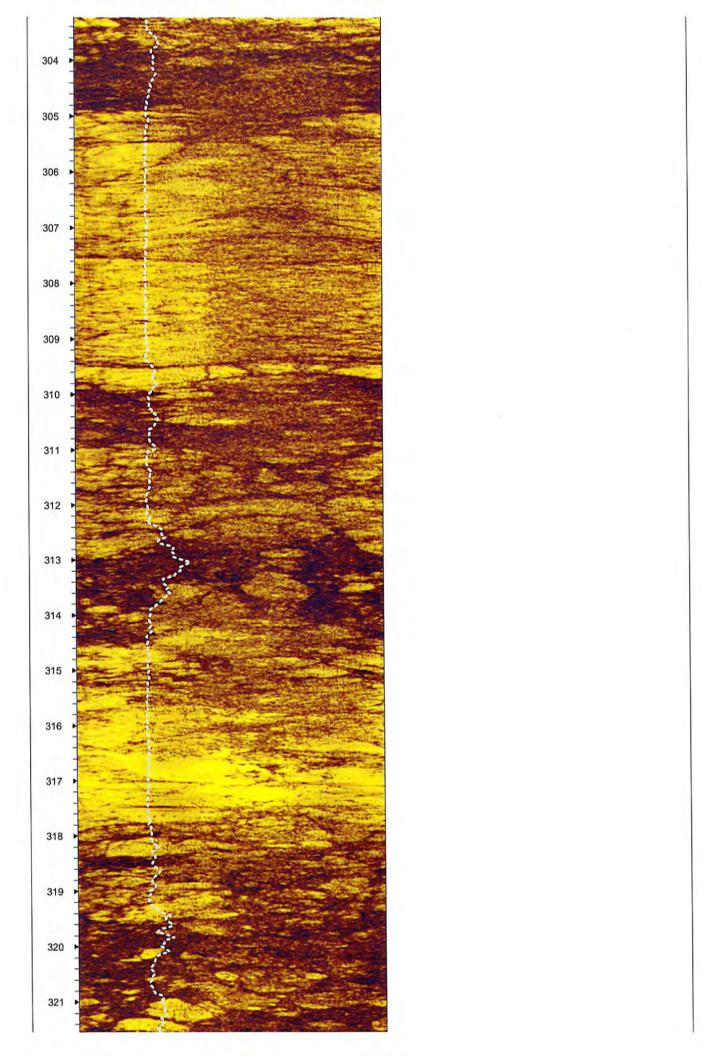


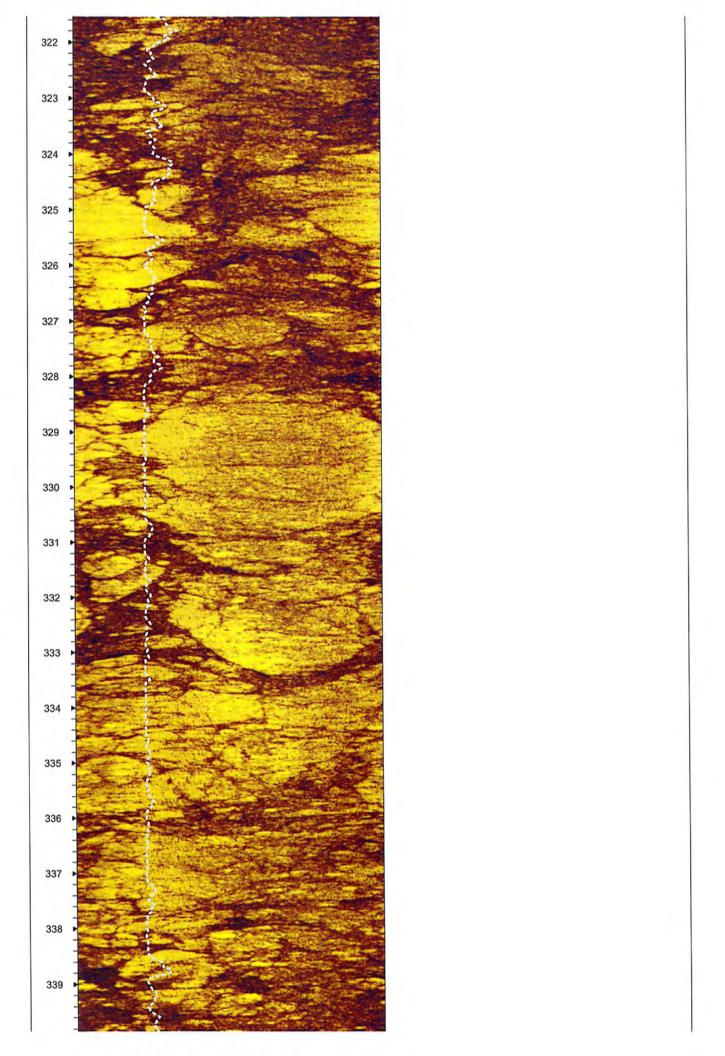


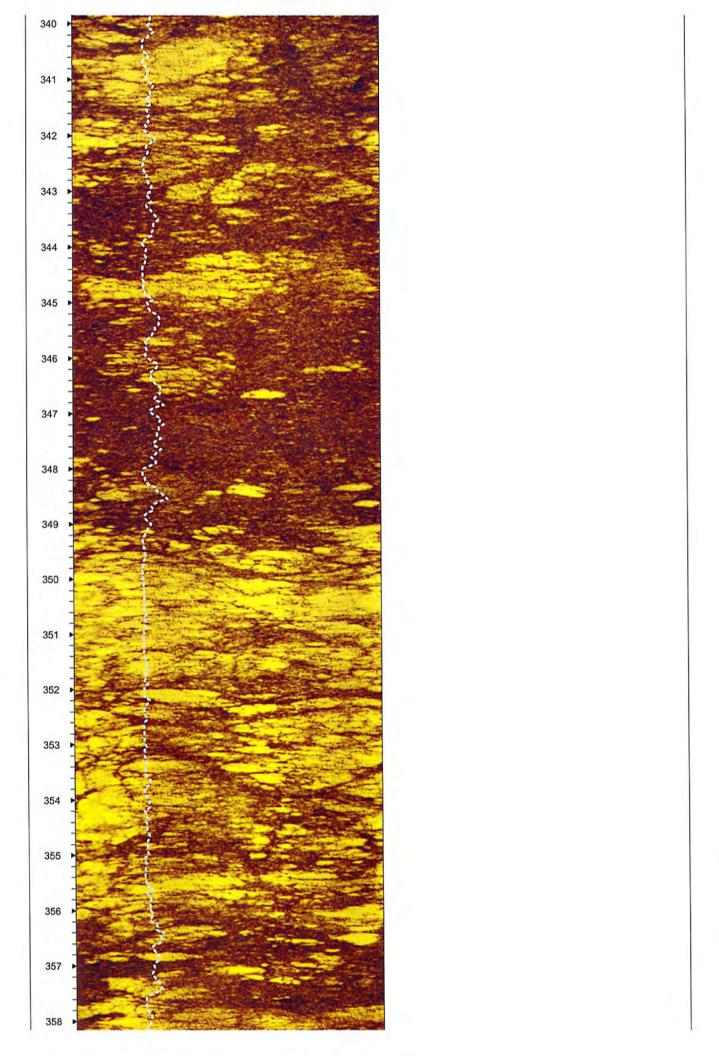


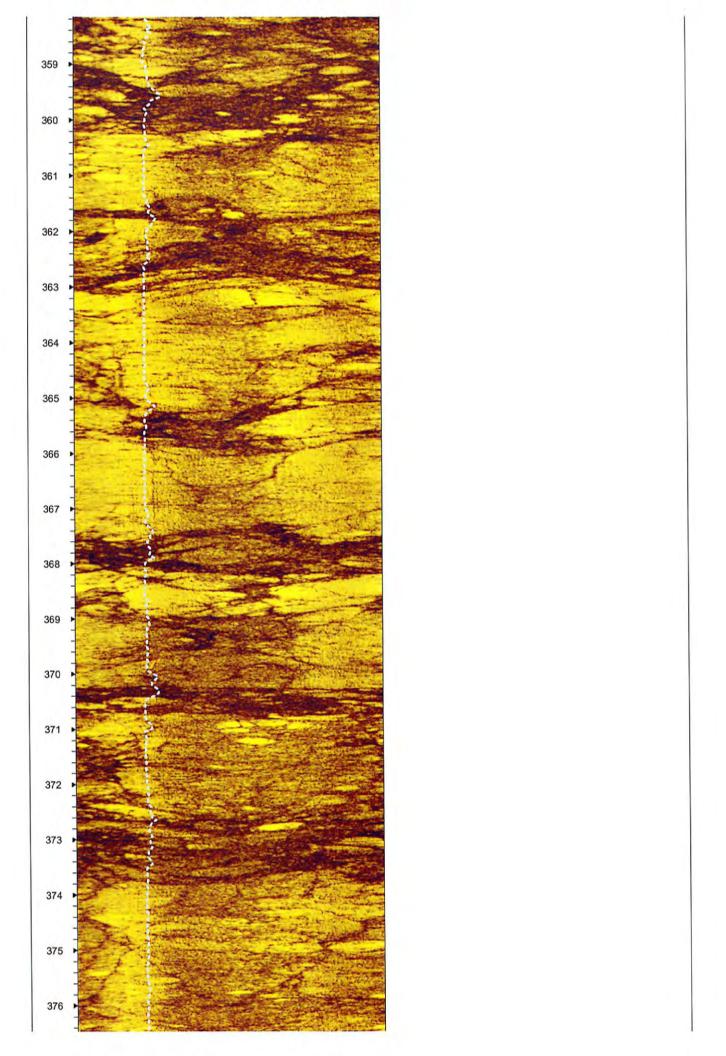


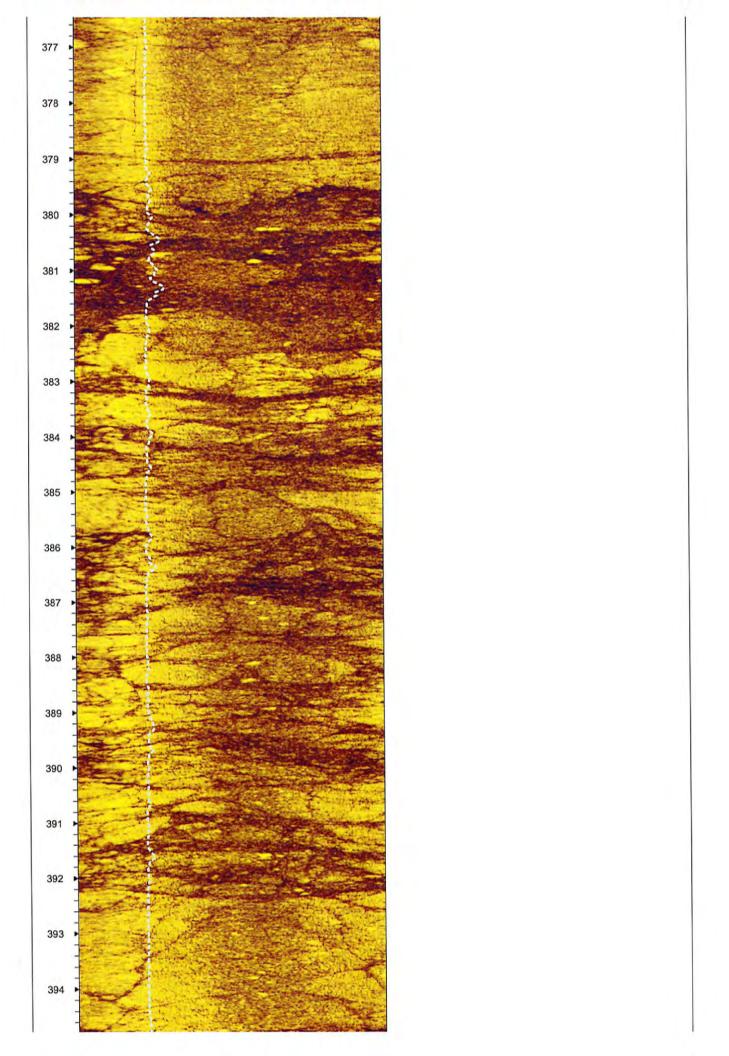


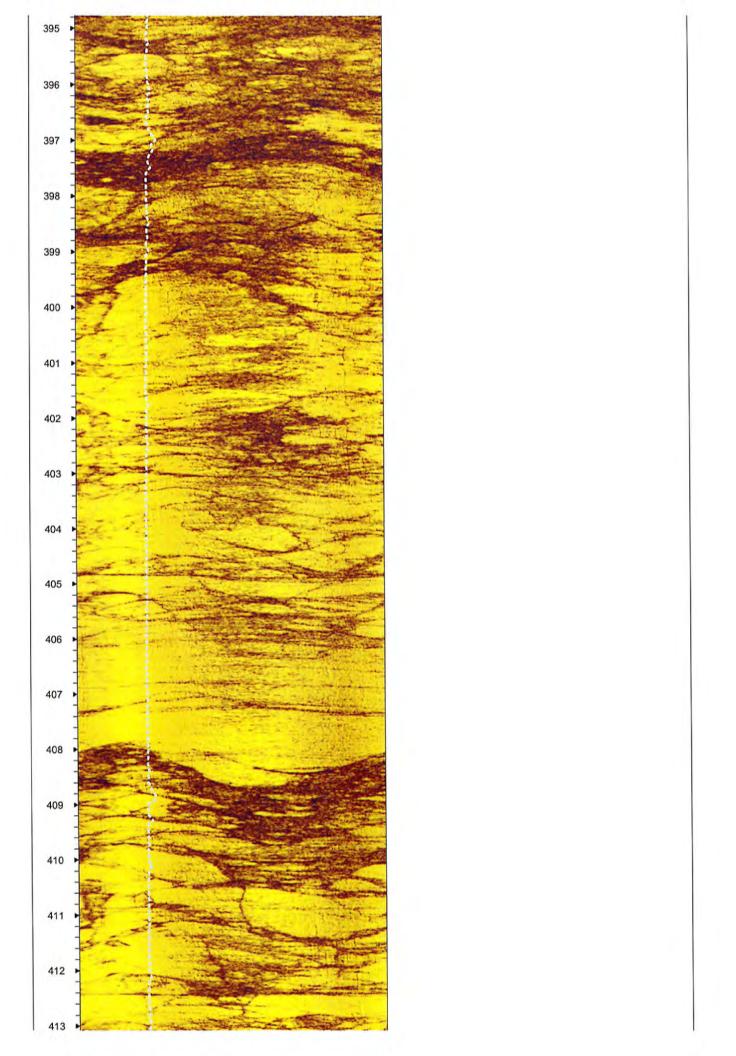


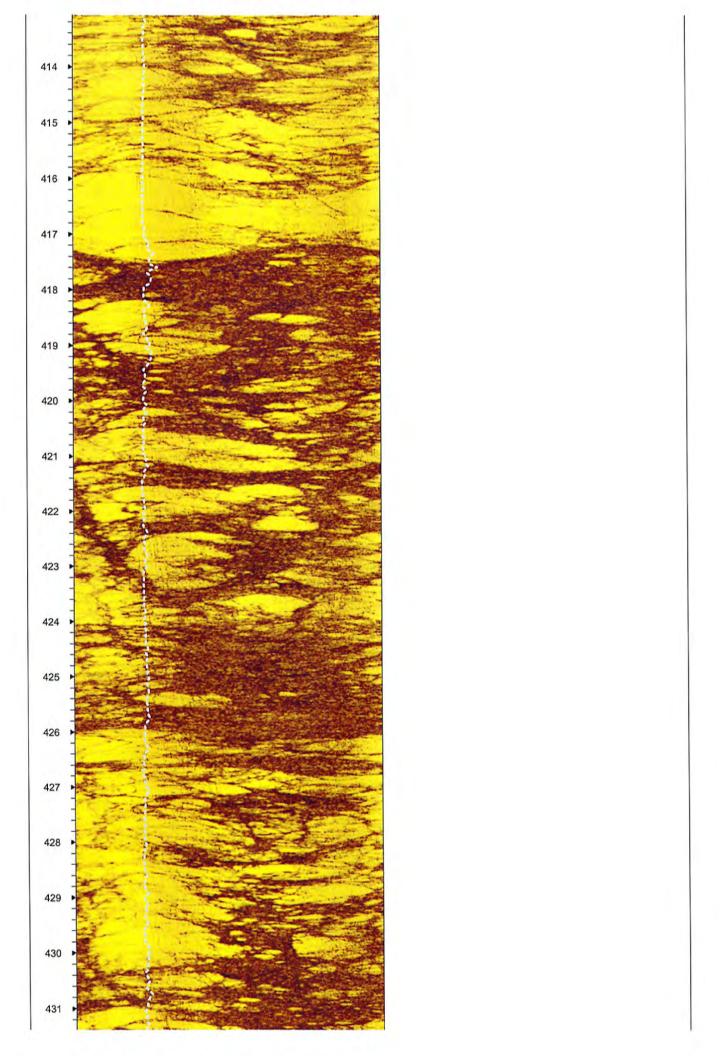


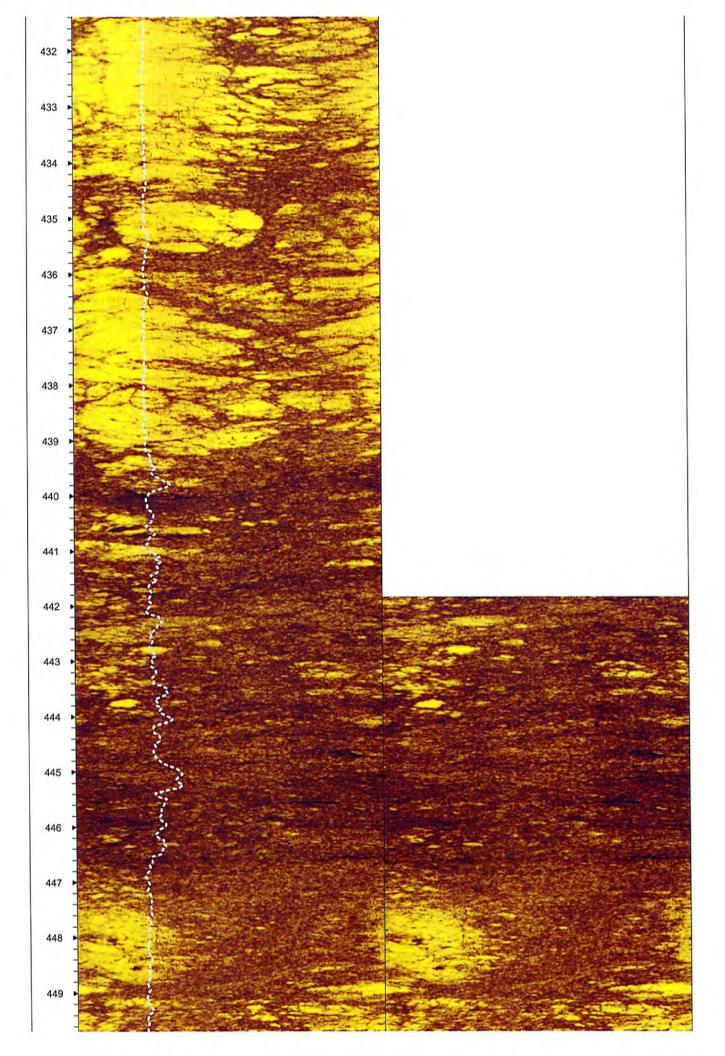


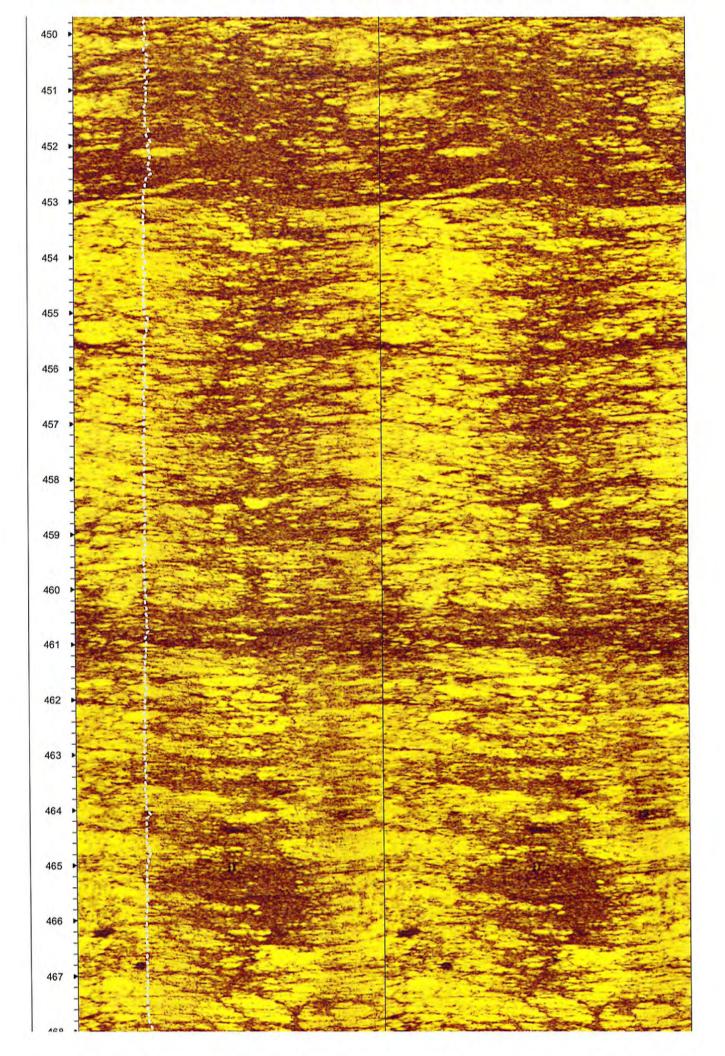


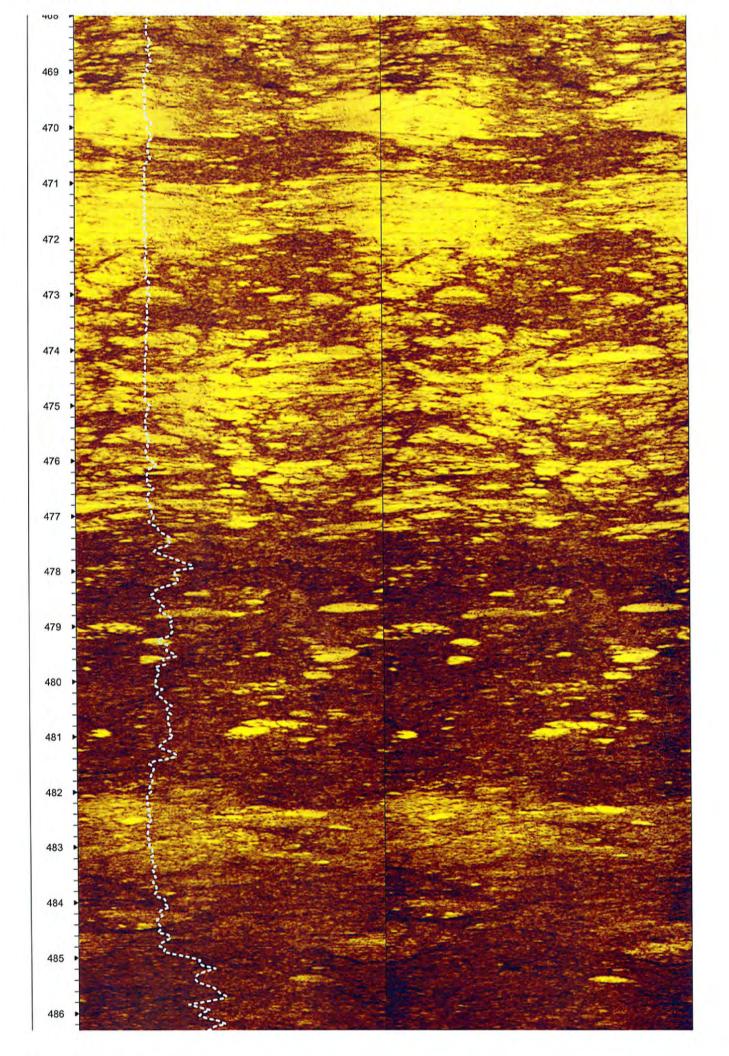


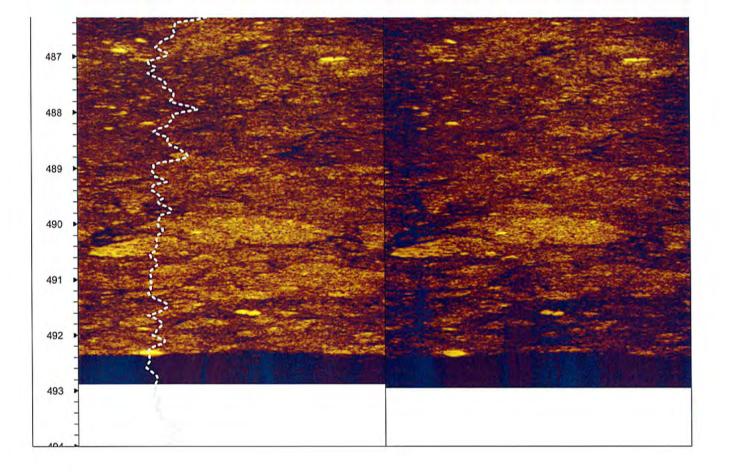


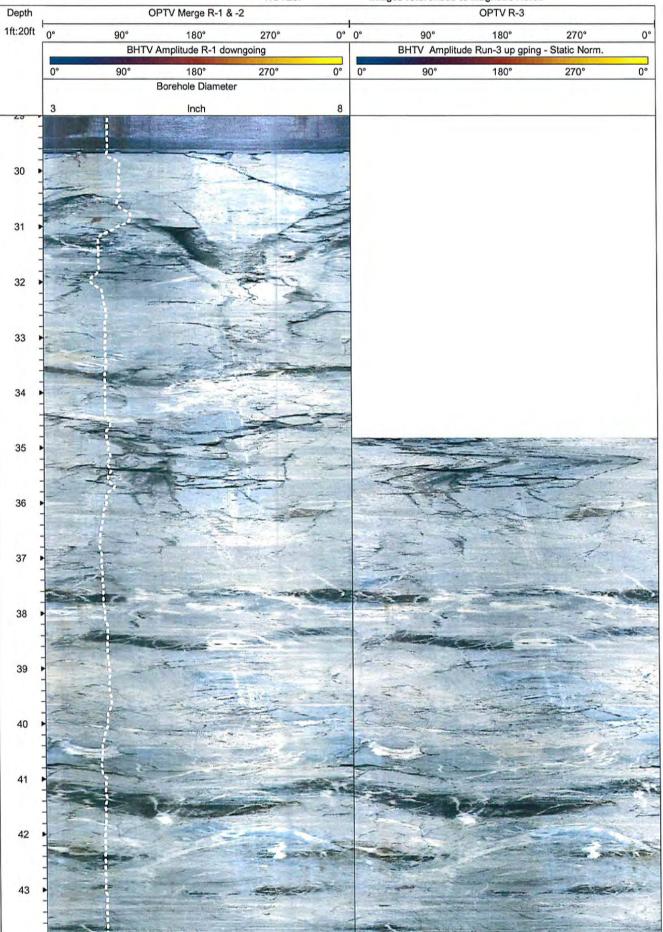


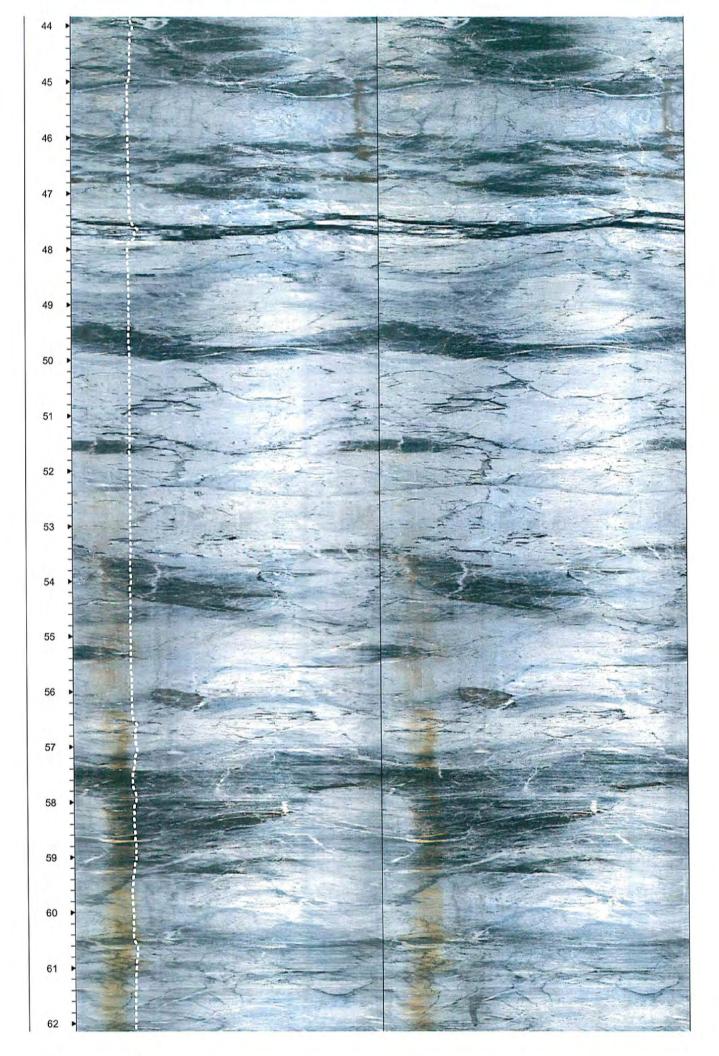


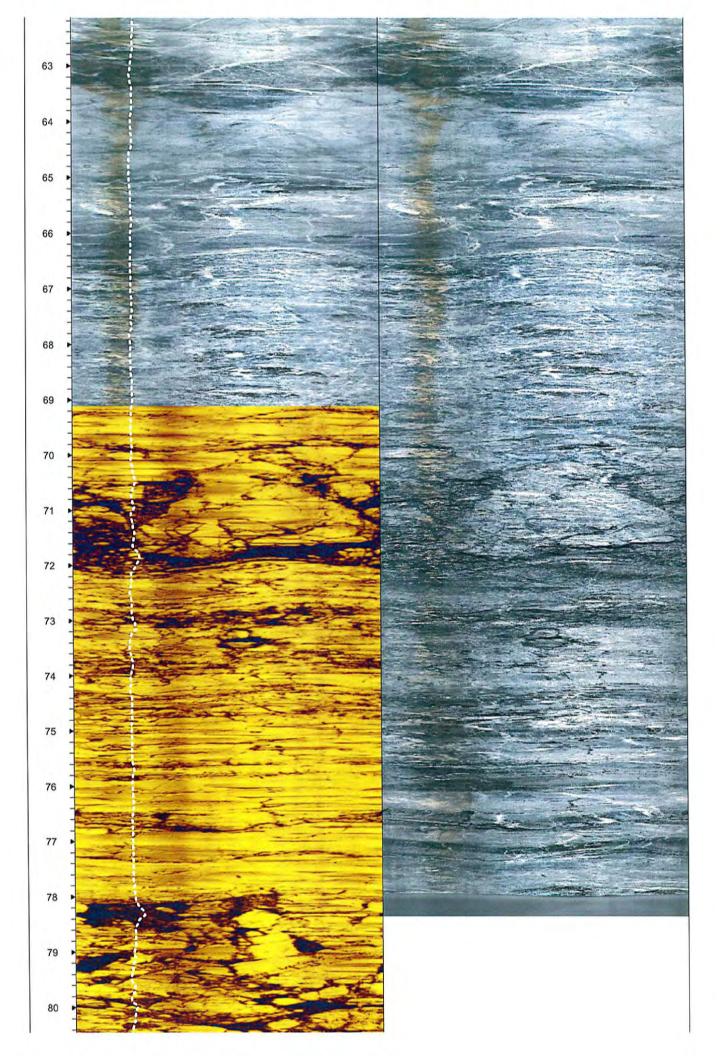


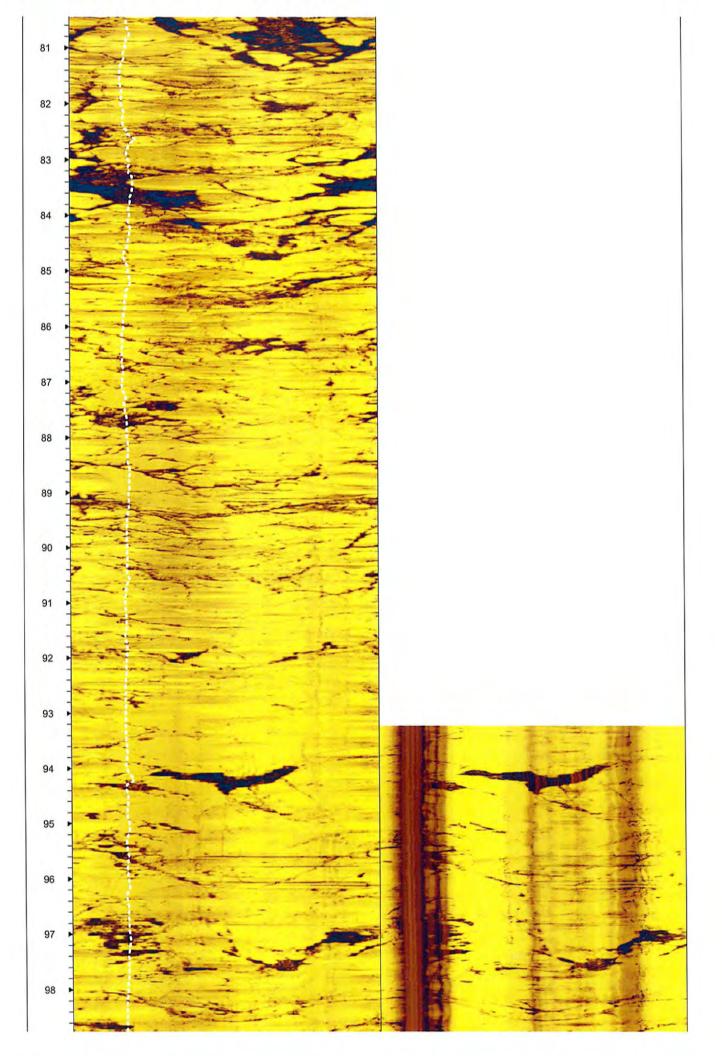


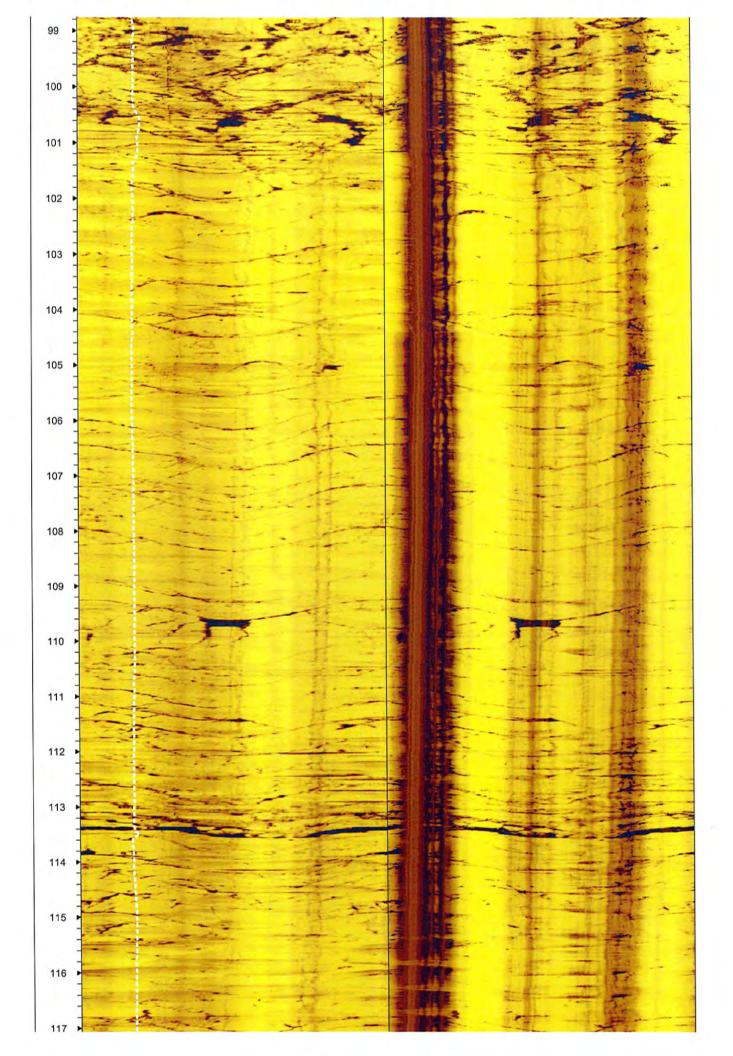


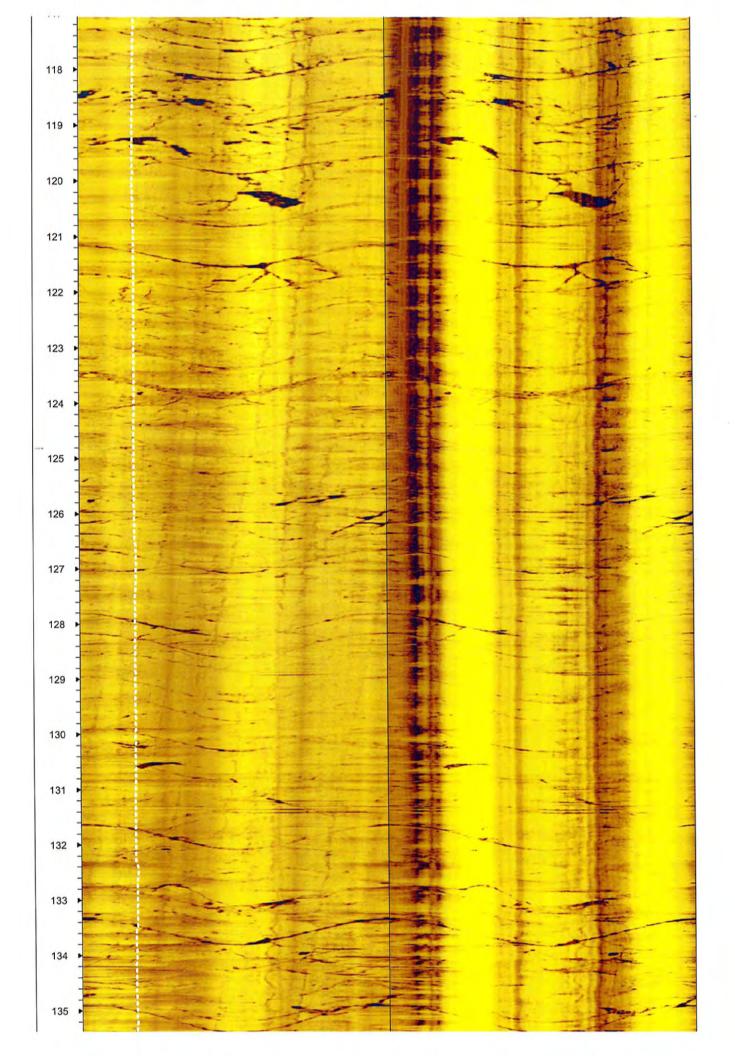

.

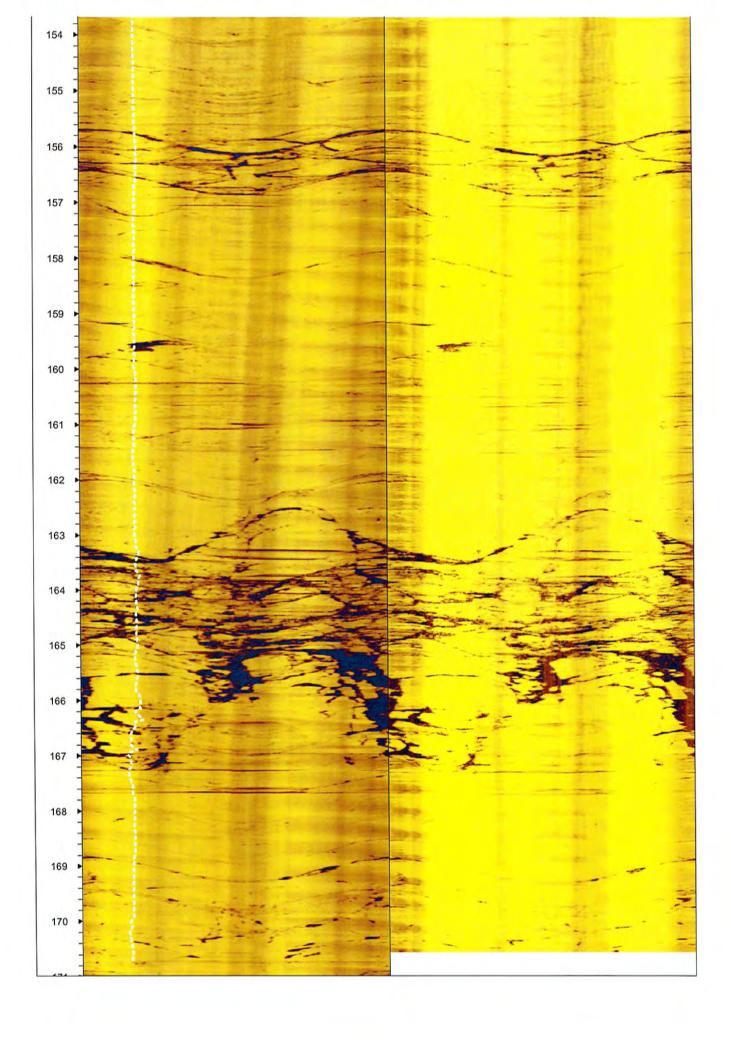


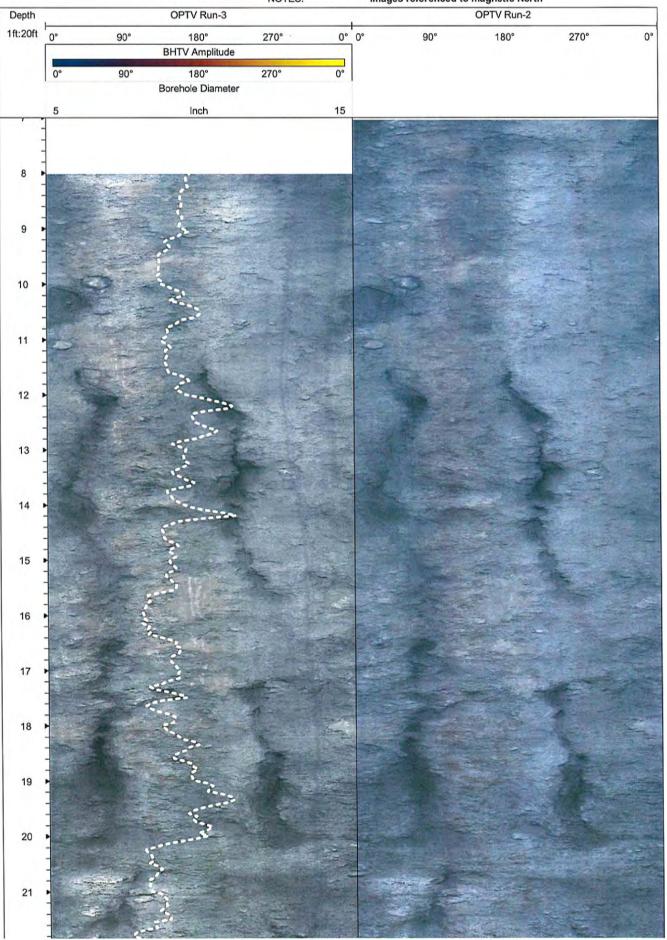

OPTV-BHTV AND CALIPER LOGS COMPANY: STANTEC
WELL ID: GT-1-2018-2
FIELD: LEHIGH QUARRY
COUNTY: SANTA CLARA

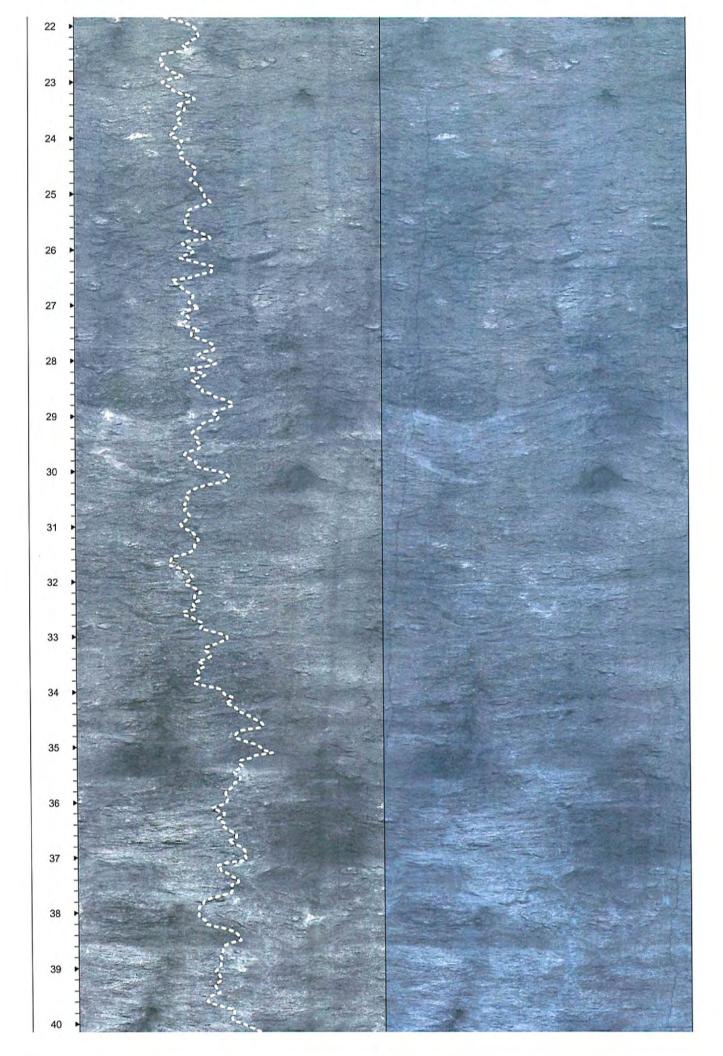

DATE: Oct. 20, 2018 CASING: Hwt to 29.6-ft bgs JOB NO. NS185080 STATE: CA

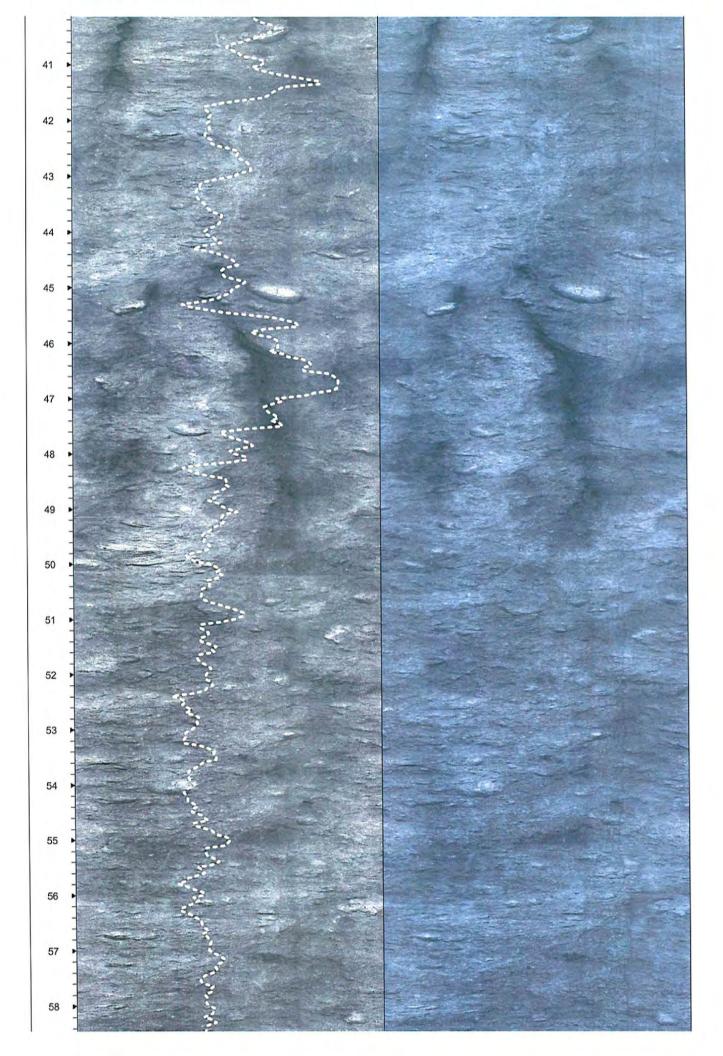

NOTES: Images referenced to magnetic North

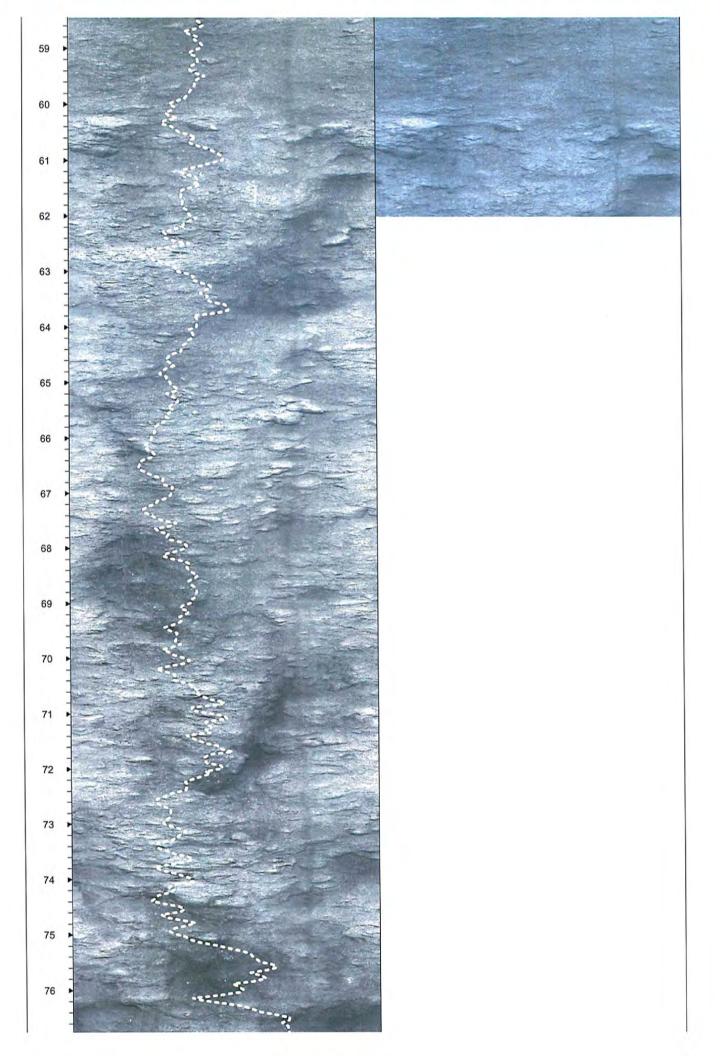


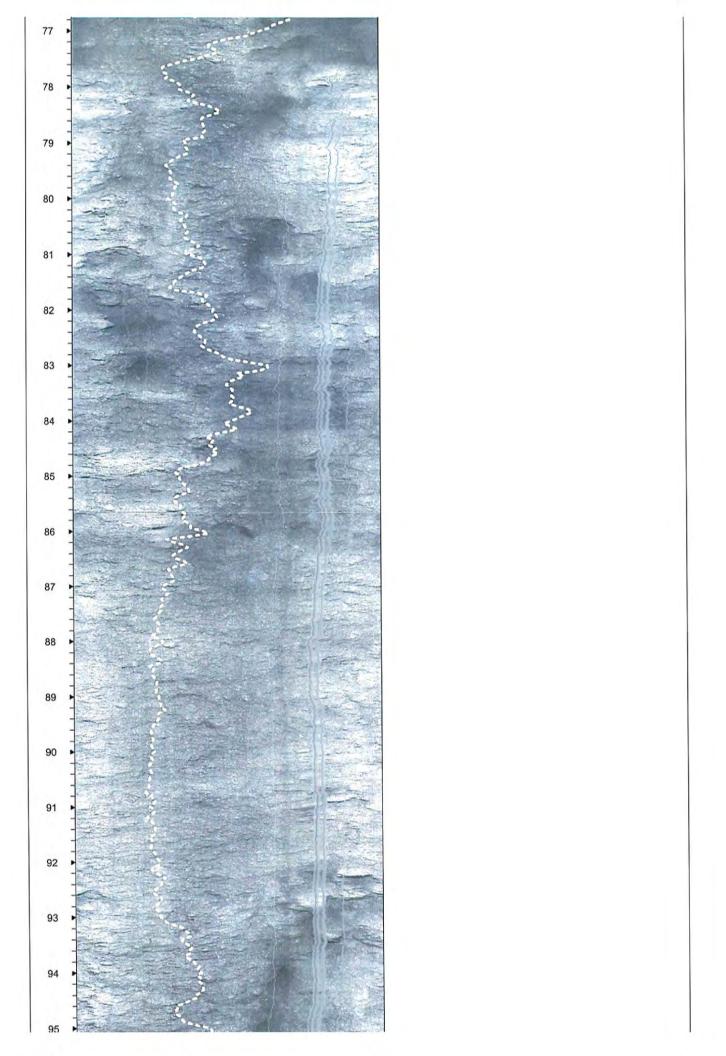


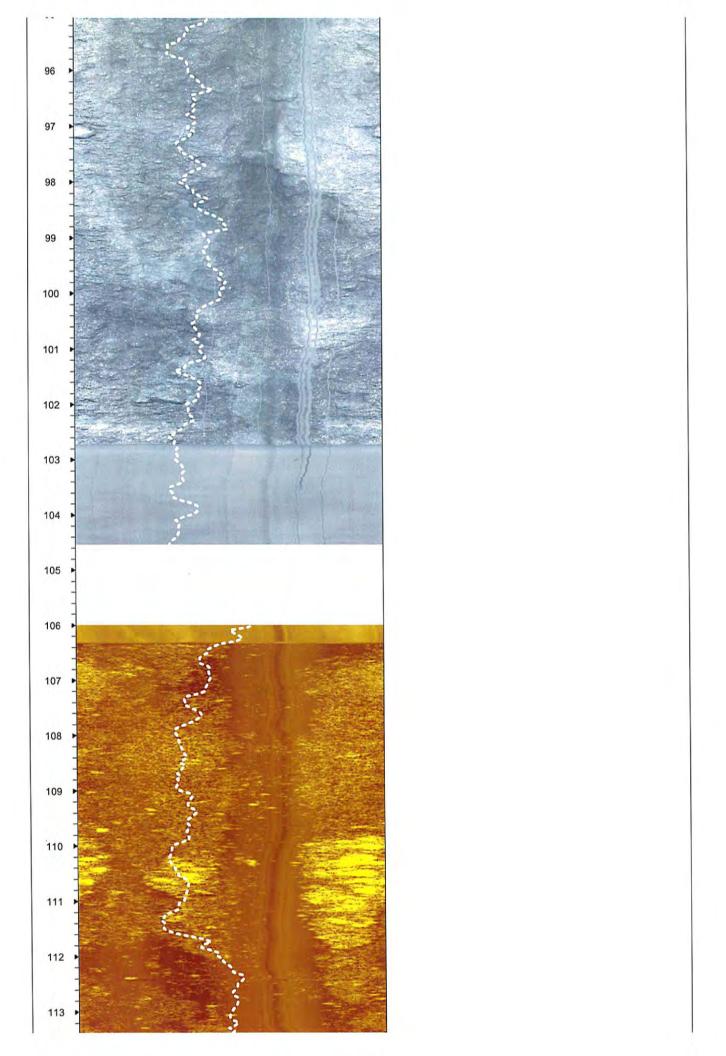

OPTV-BHTV and Caliper Logs

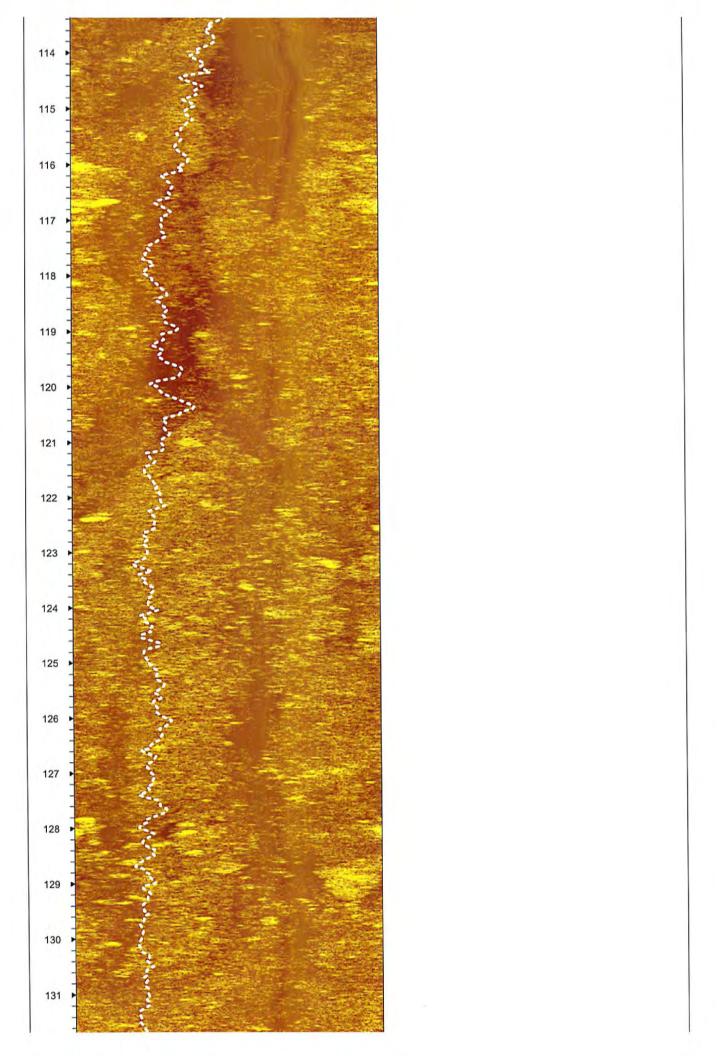

COMPANY: STANTEC
WELL ID: S-1-2018-2
FIELD: LEHIGH QUARRY
COUNTY: Santa Clara

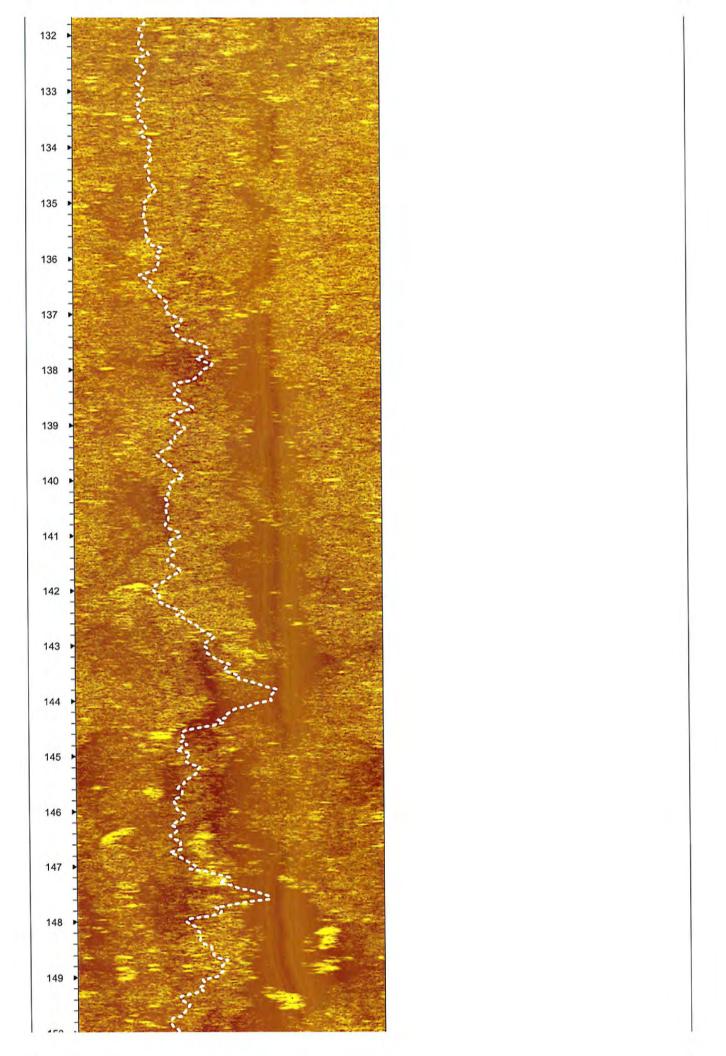

DATE: October 6, 2018 CASING: None JOB NO. NS185080 STATE: CA

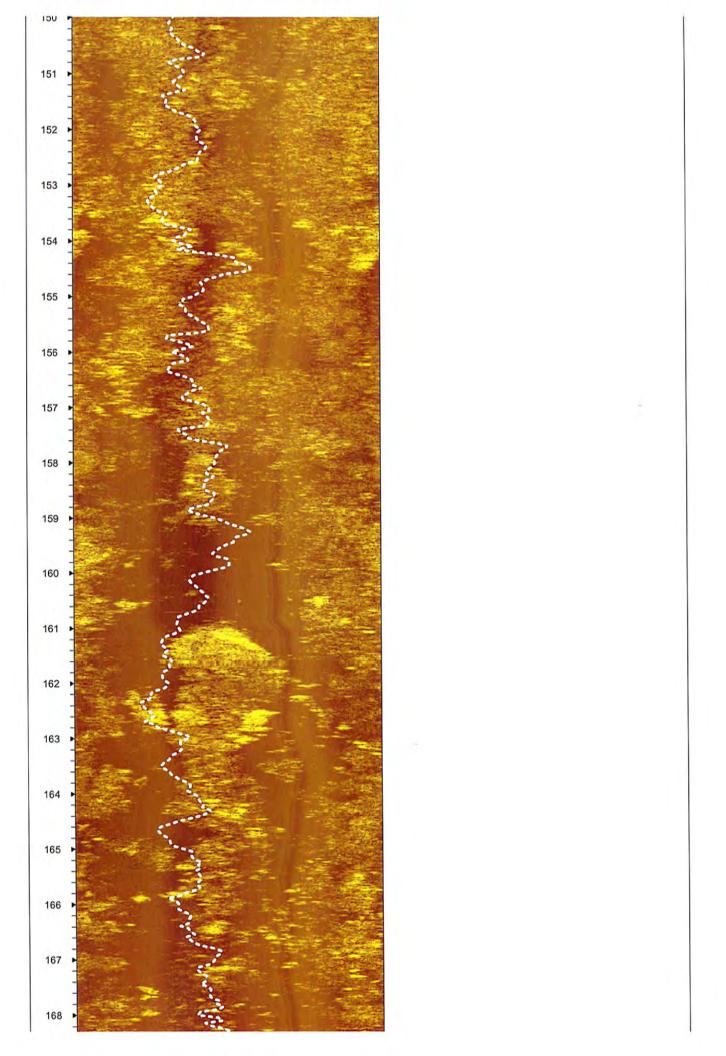

NOTES: Im

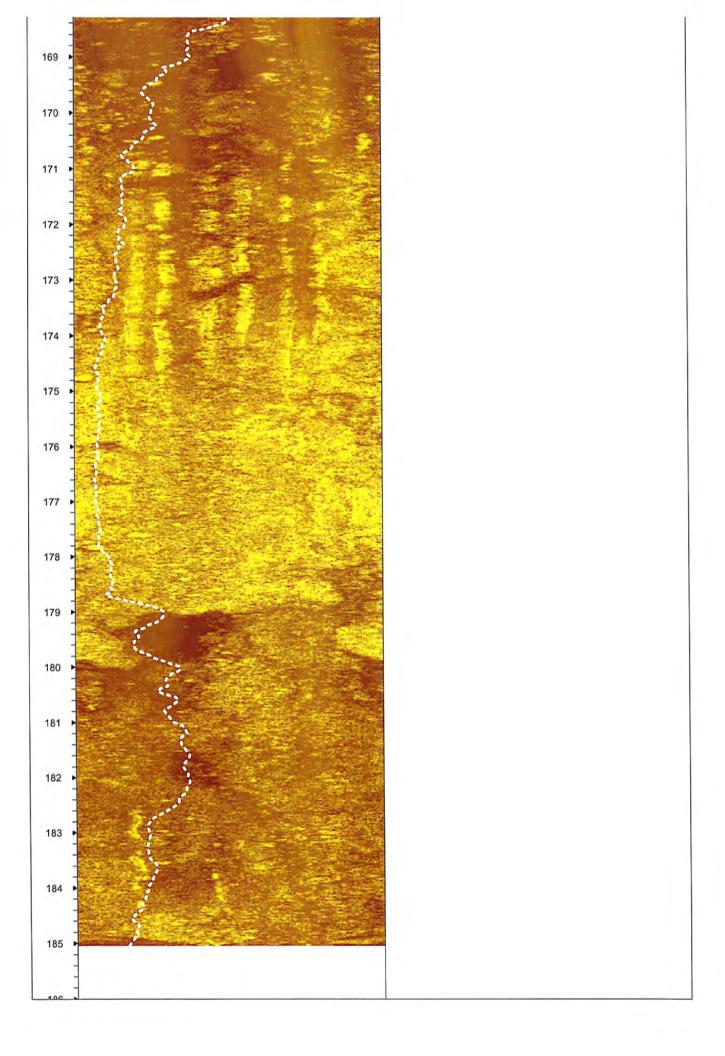




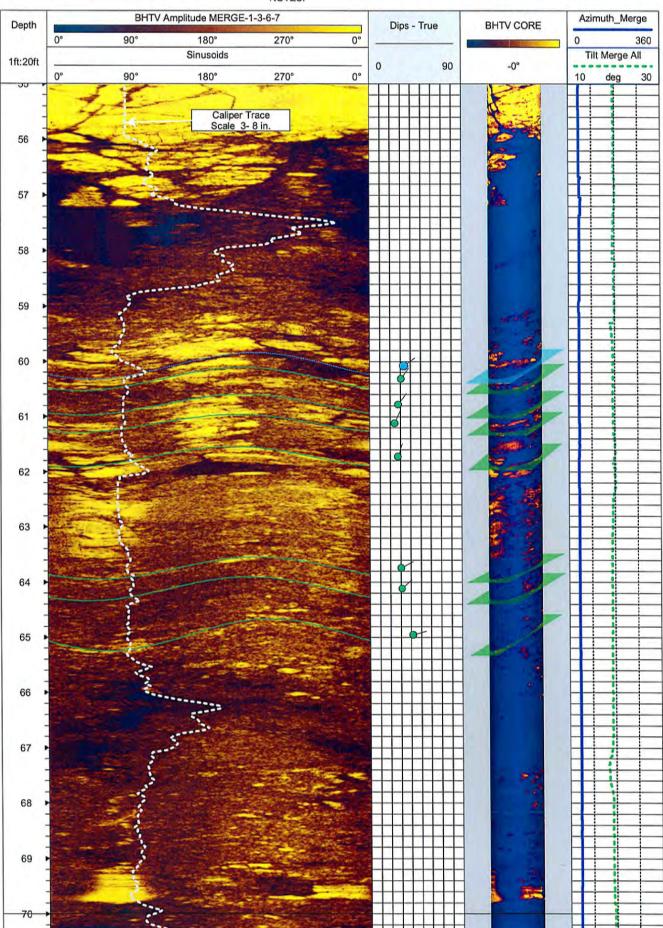


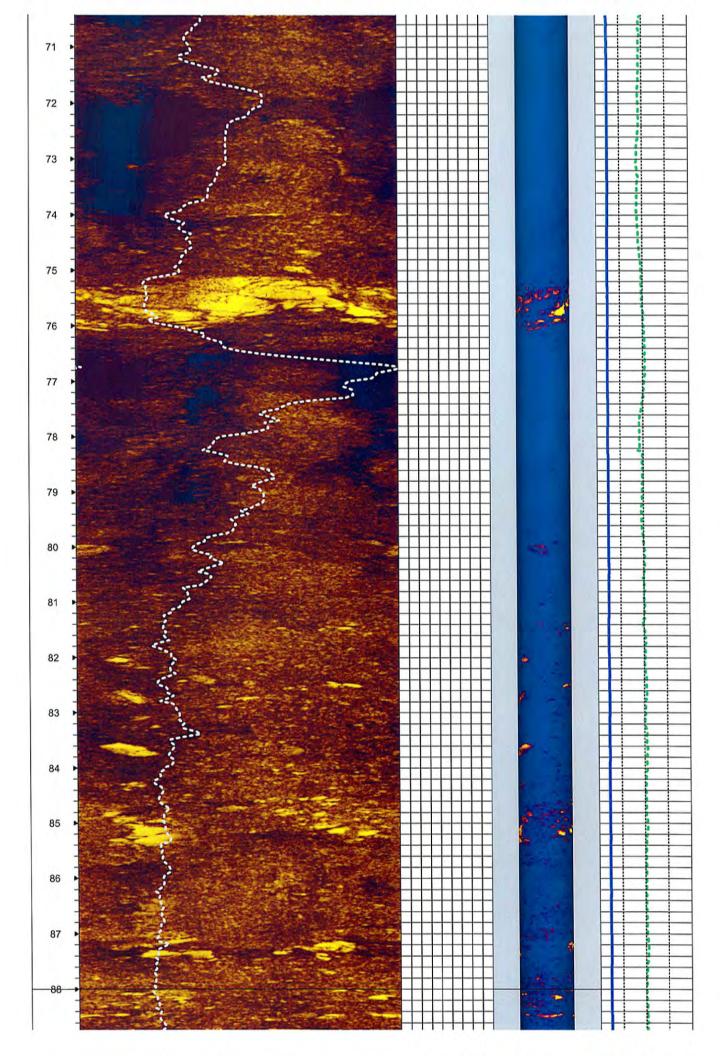


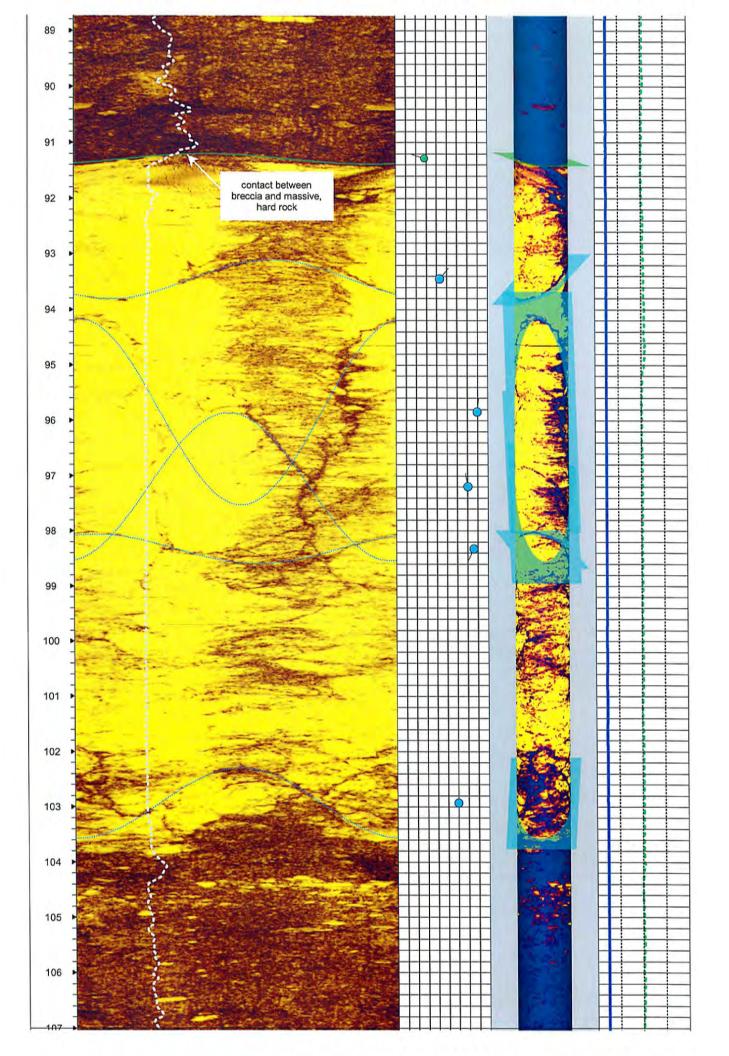


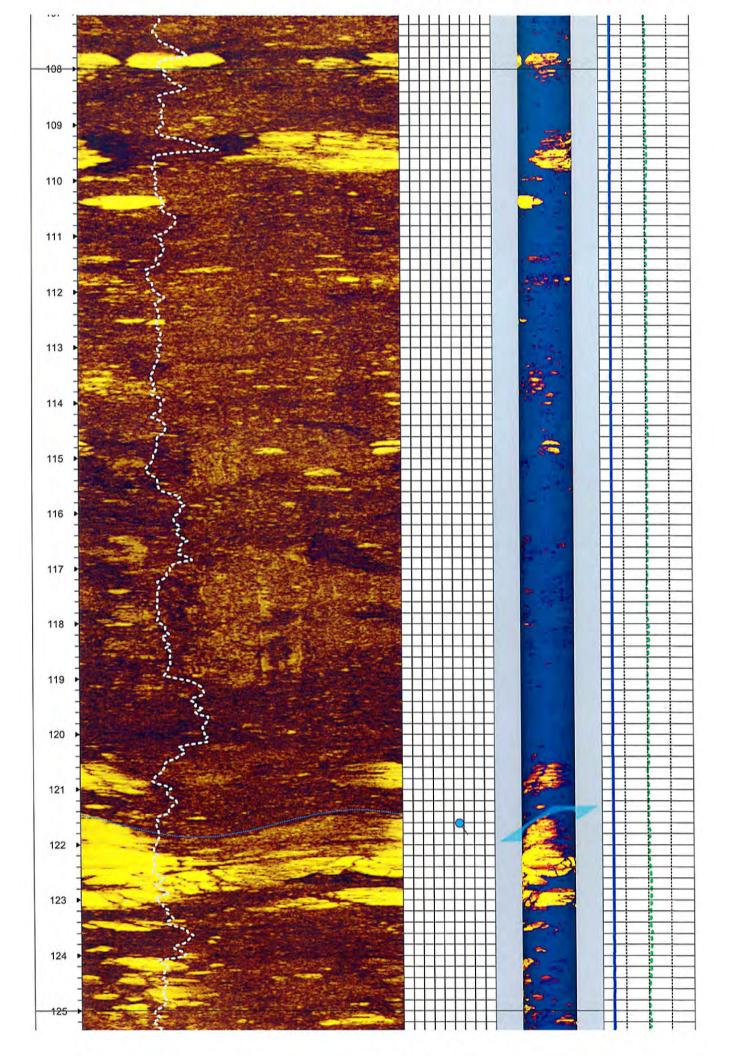


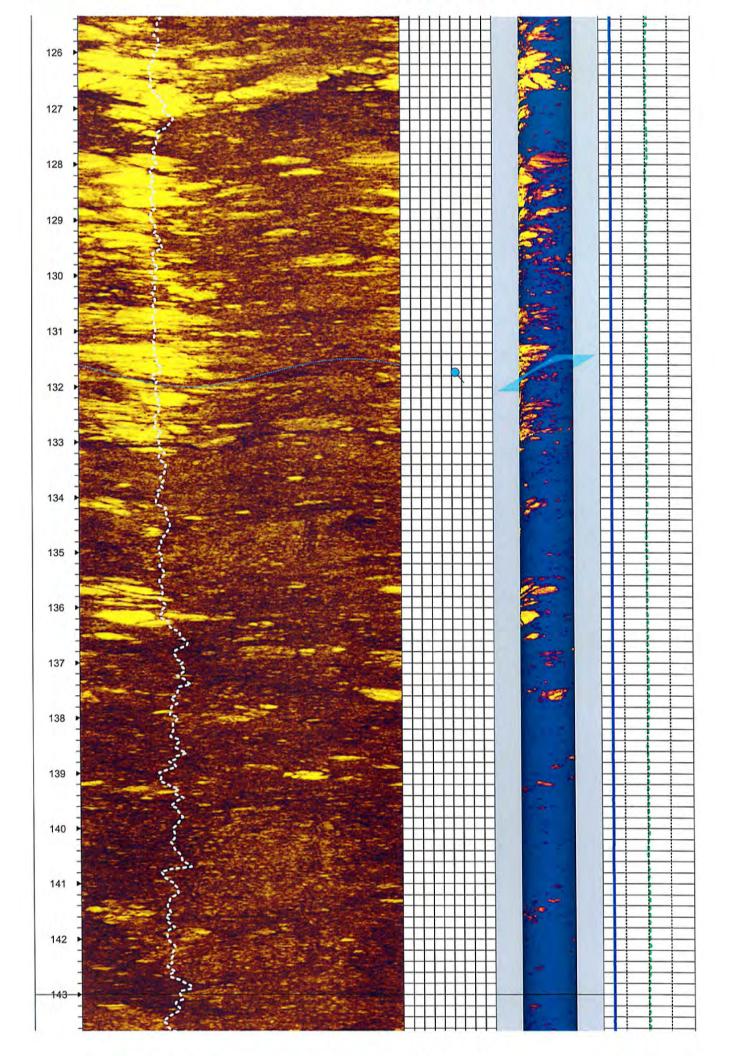
Appendix C:

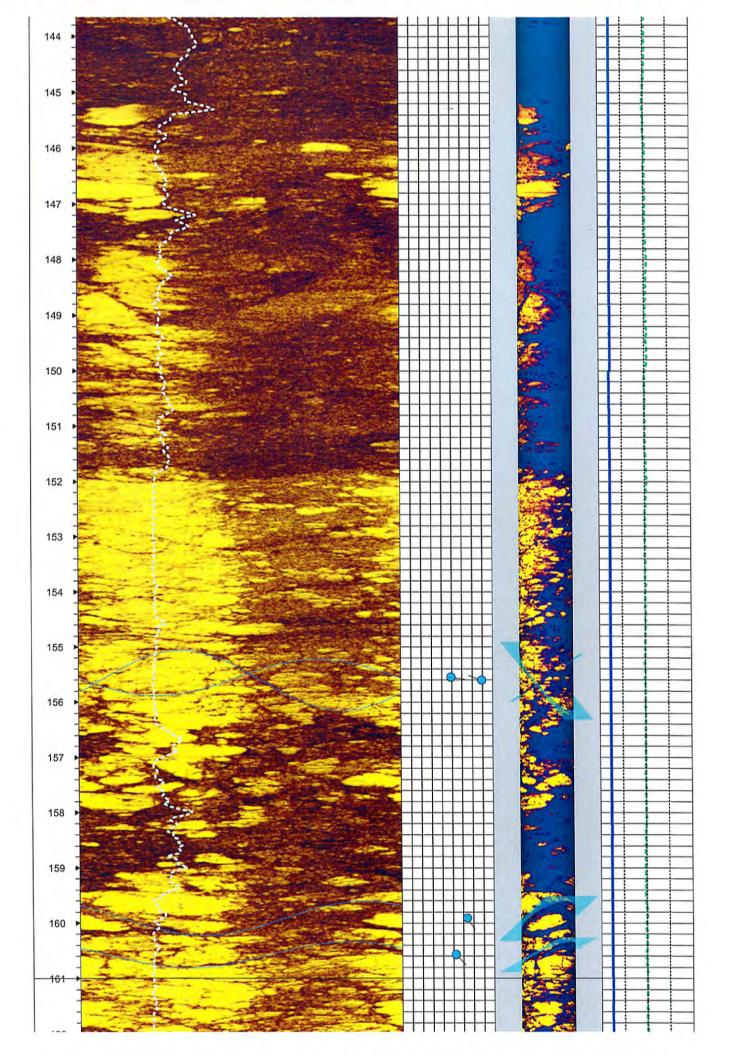

Interpreted Televiewer Plots


Boreholes GT-1-2018-1, GT-1-2018-2, S-1-2018-2

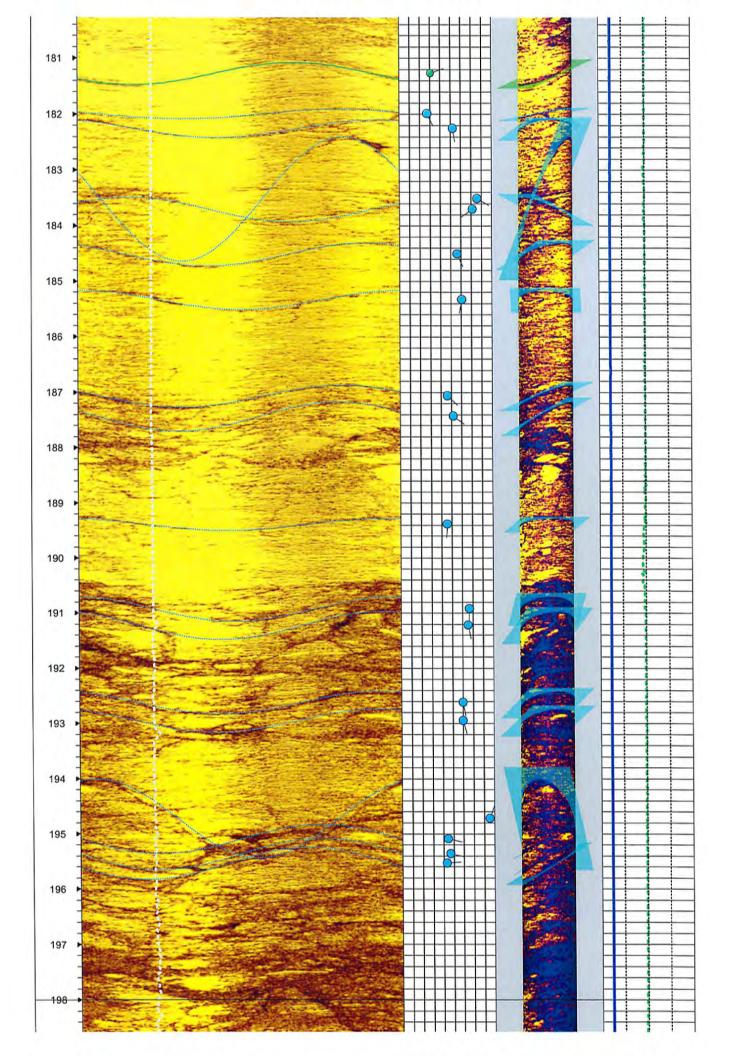


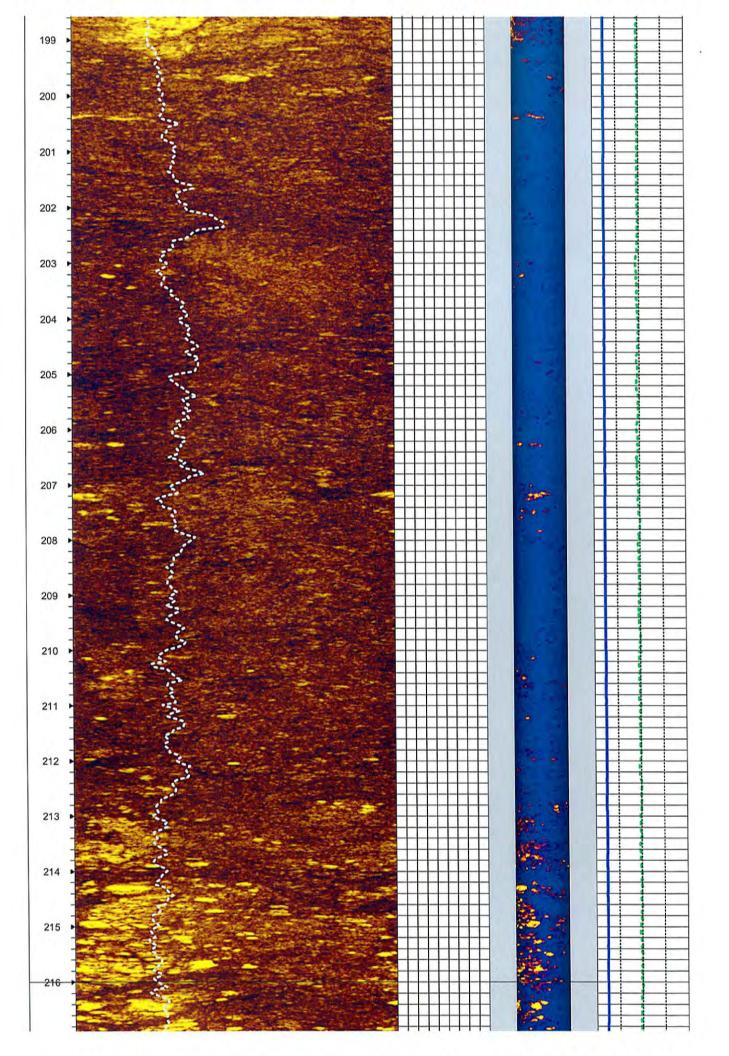

COMPANY: STANTEC WELL ID: GT-1-2018-1 FIELD: LEHIGH QUARRY COUNTY: SANTA CLARA DATE: Oct. 6 & 7, 2018
CASING: Hwt to 50.3-ft bgs
JOB NO. NS185080
STATE: CA

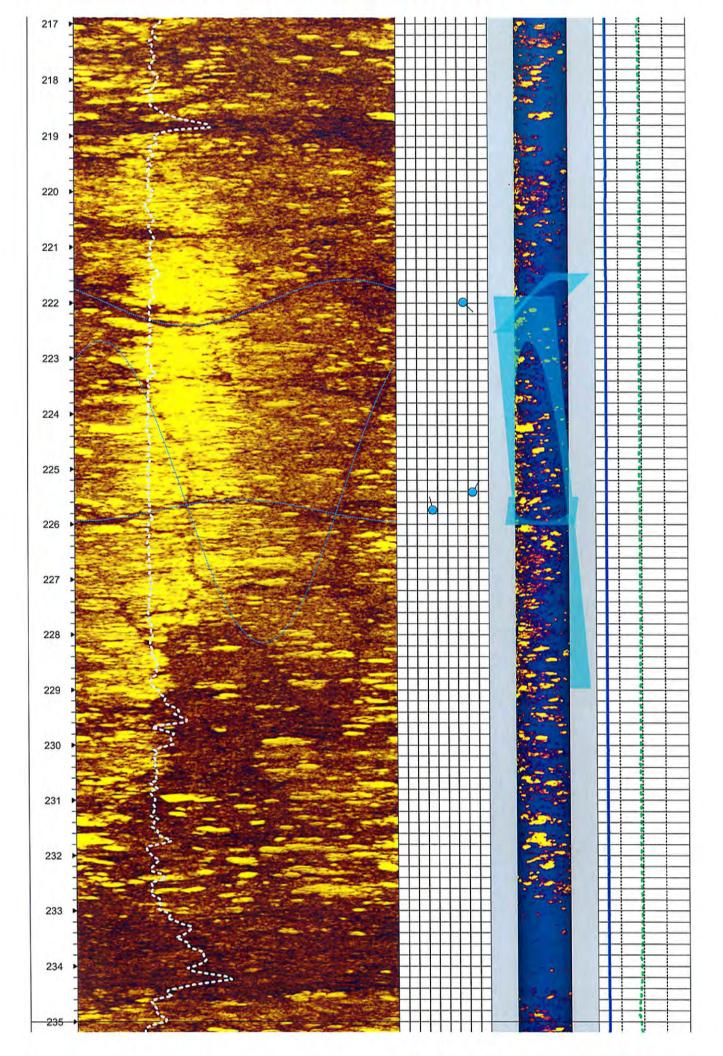

NOTES:

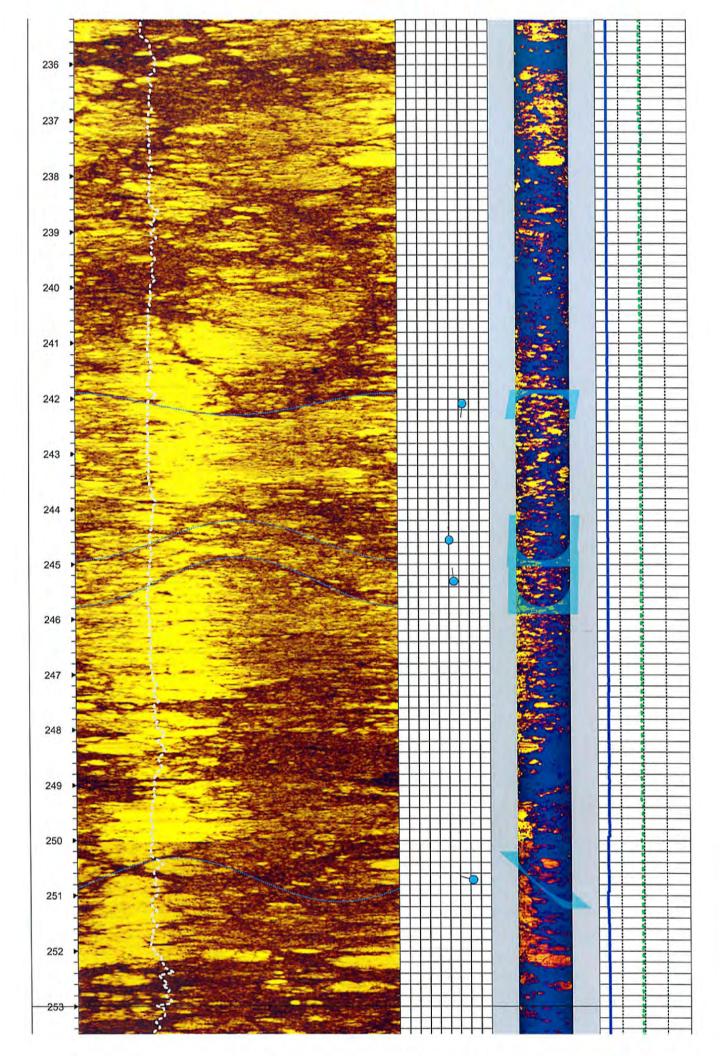


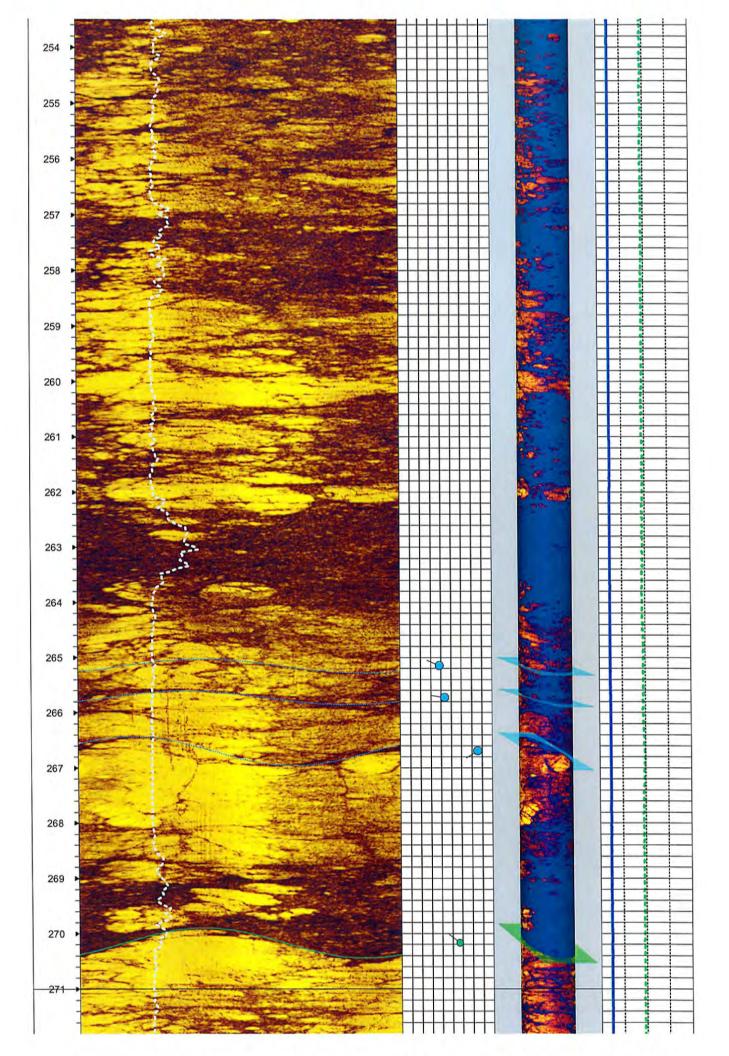


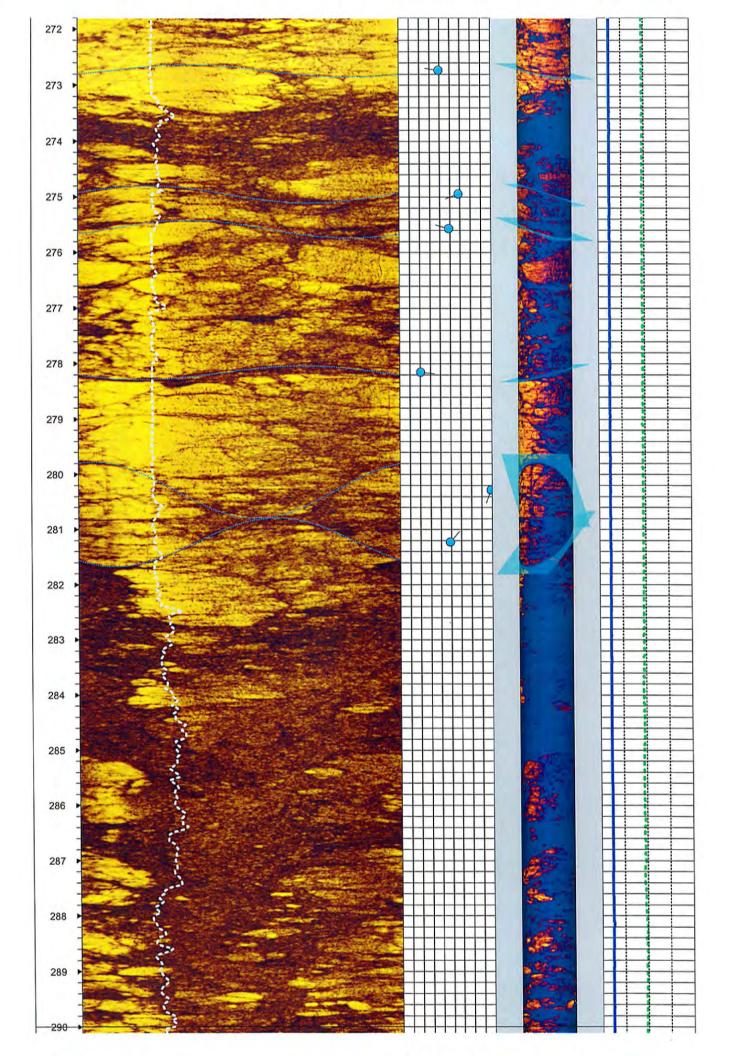


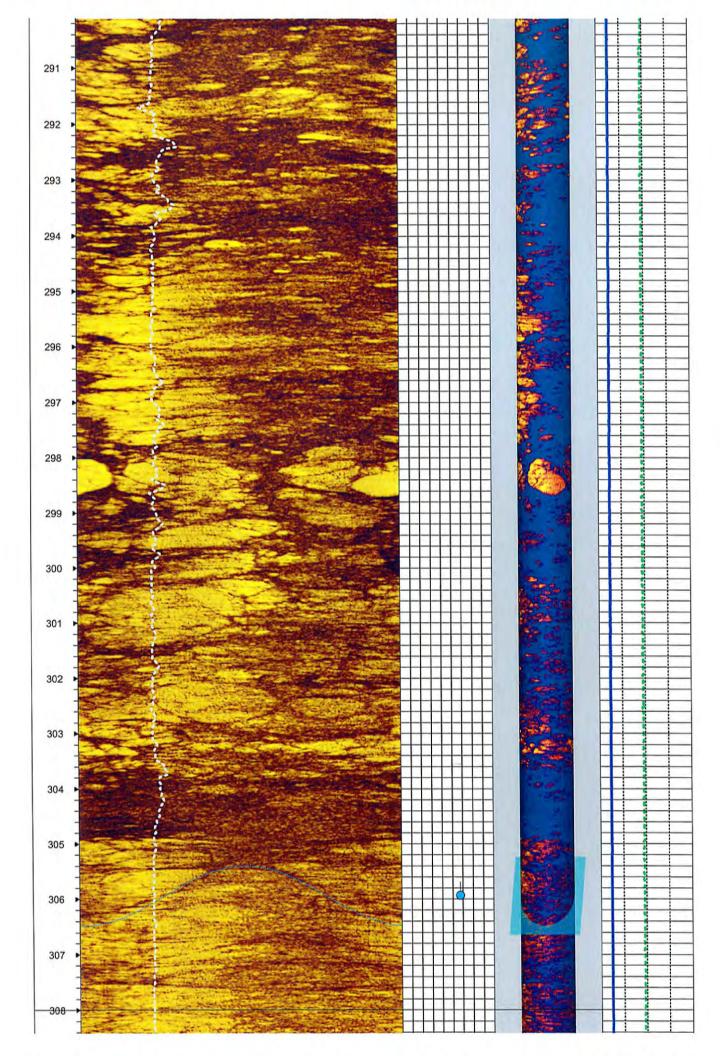


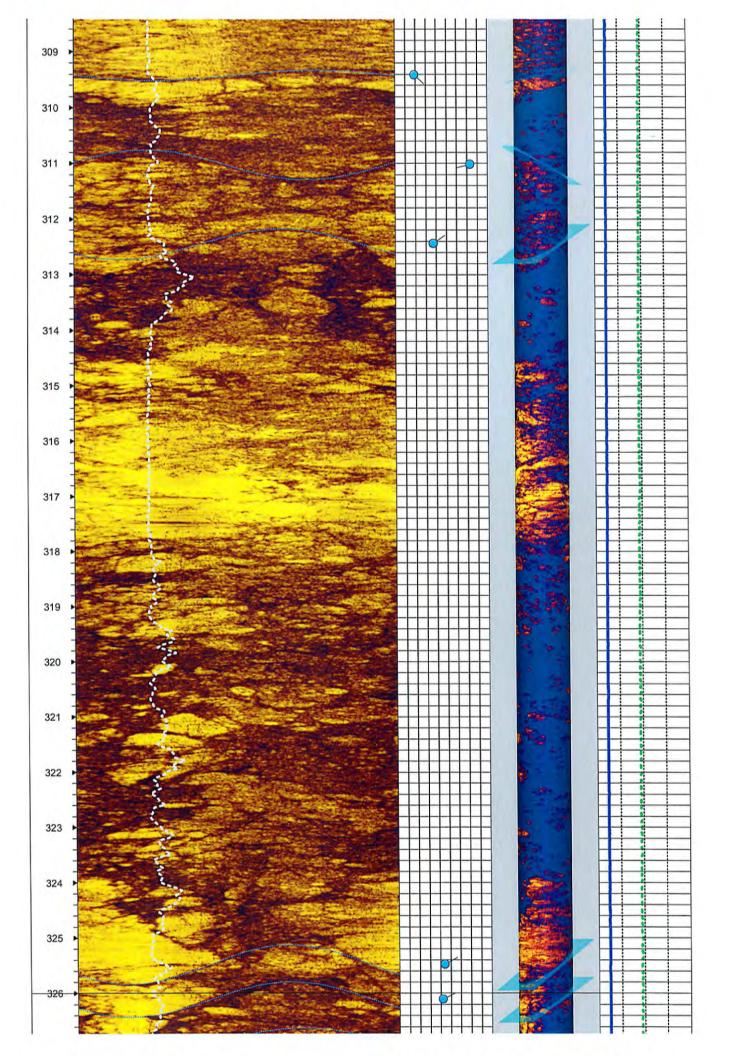


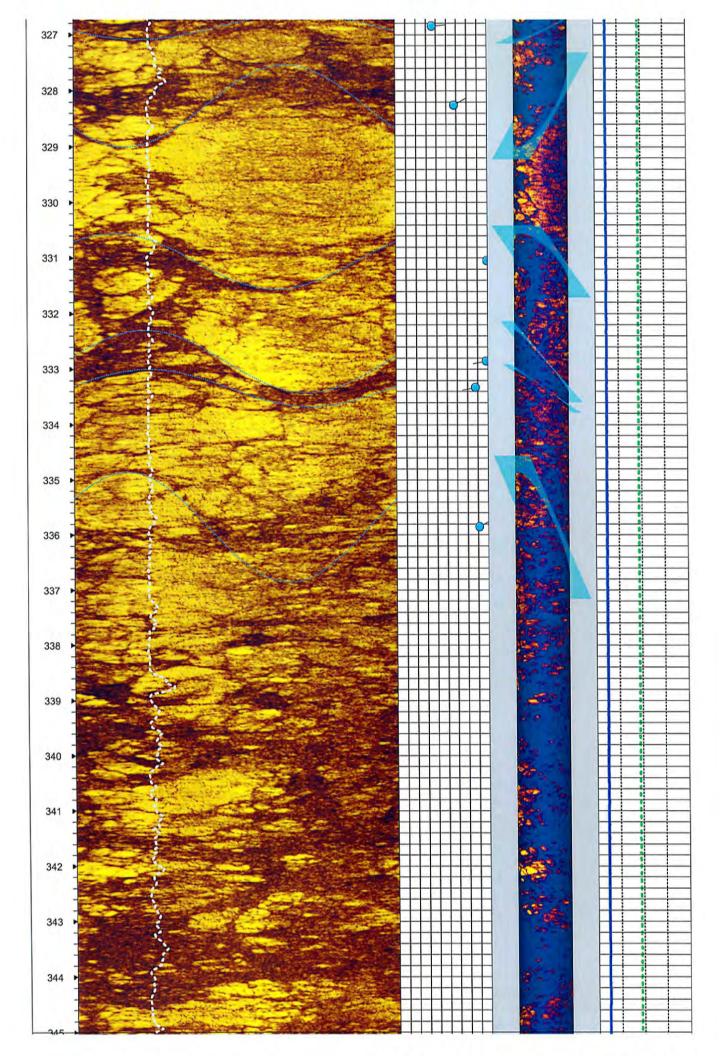


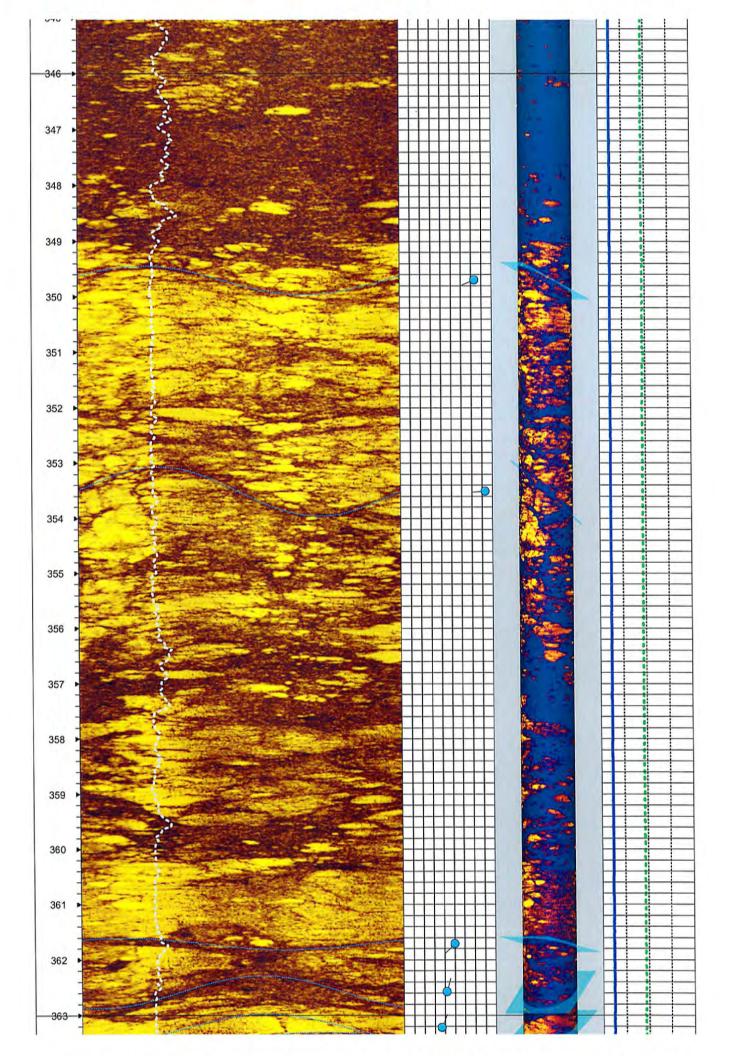


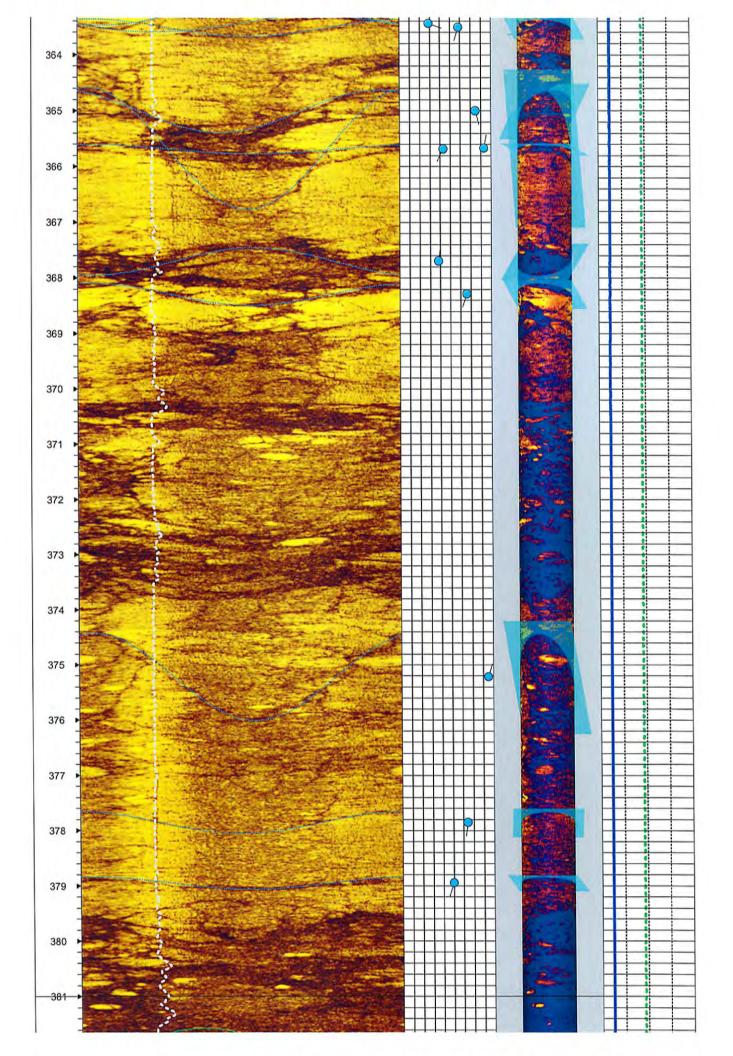


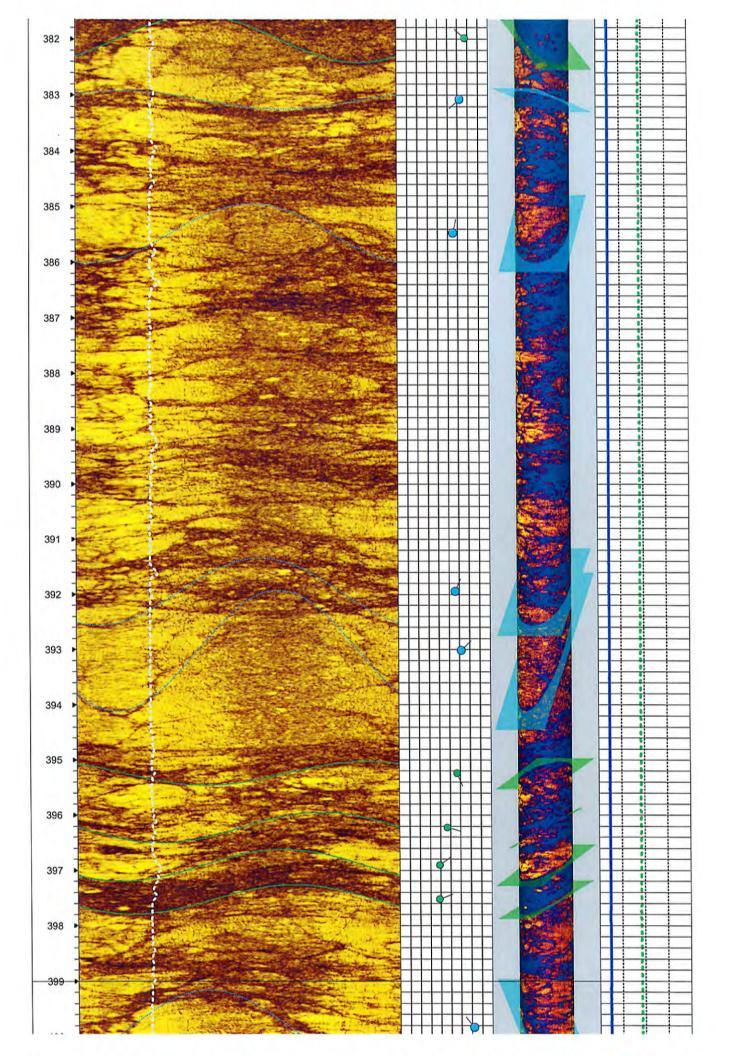


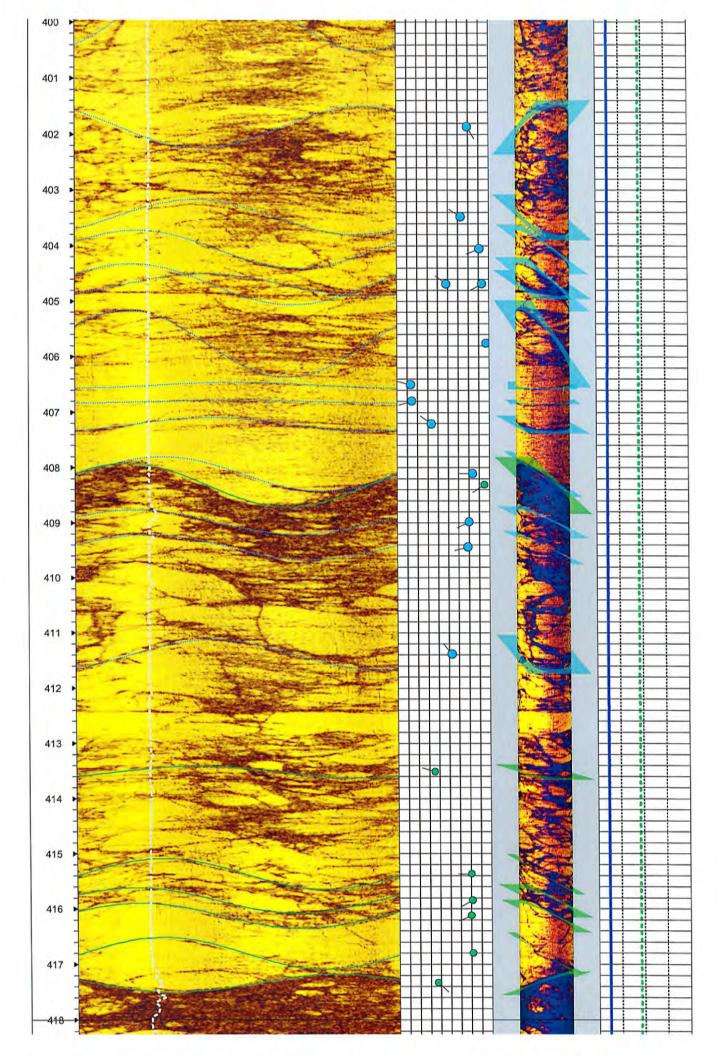


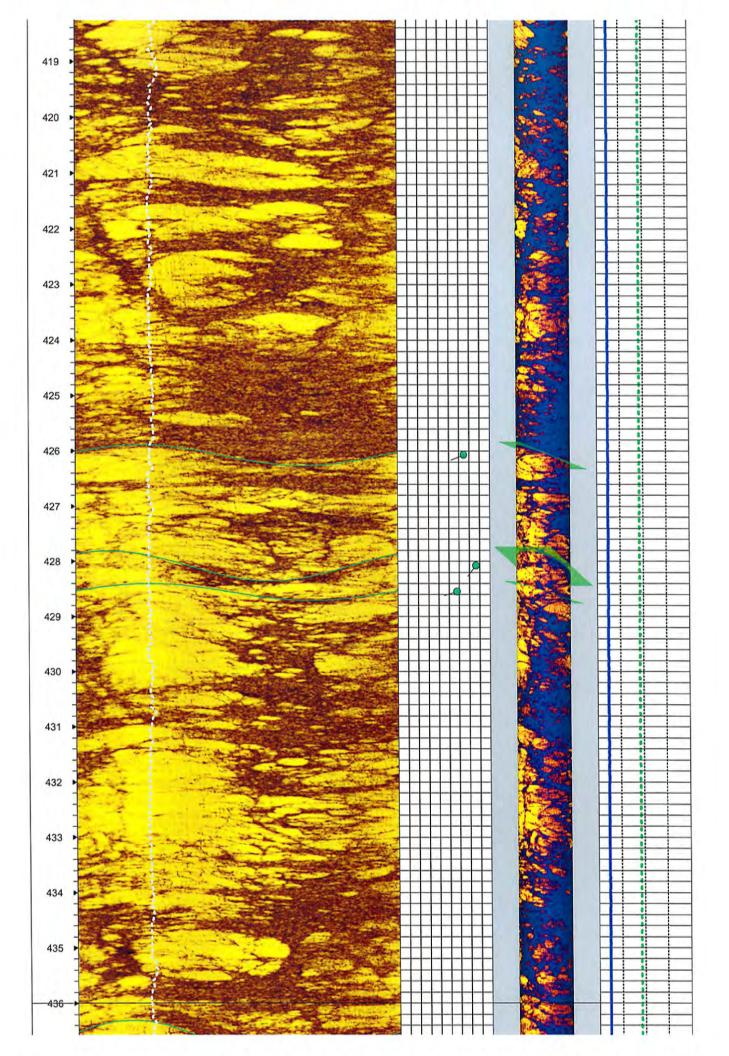


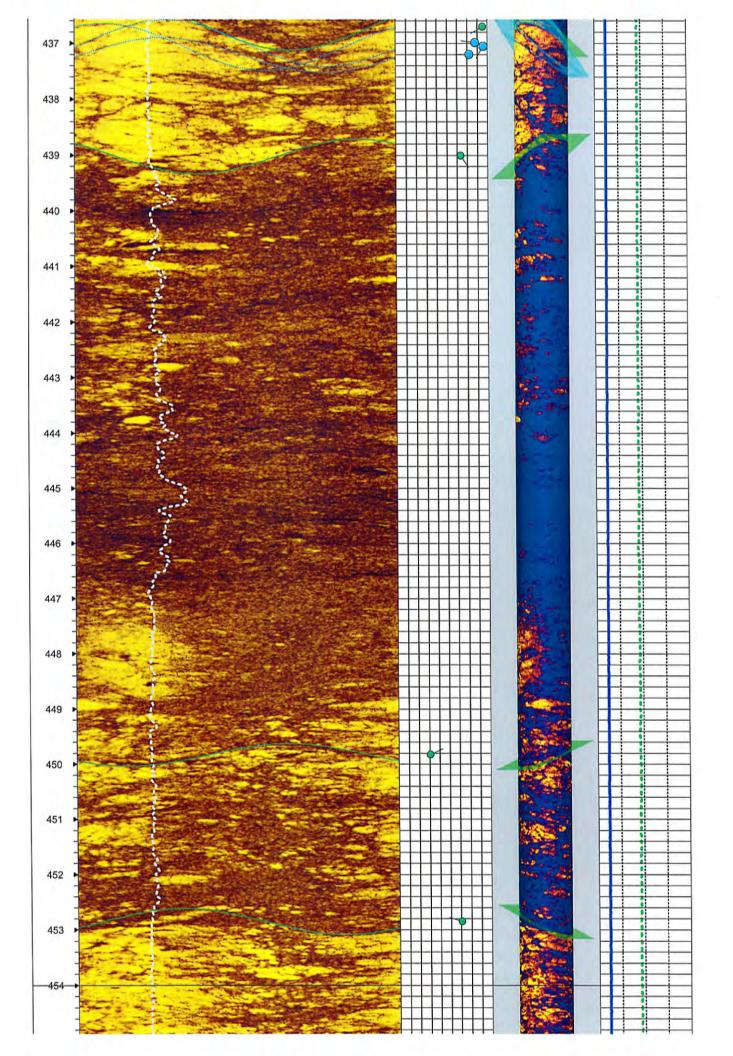


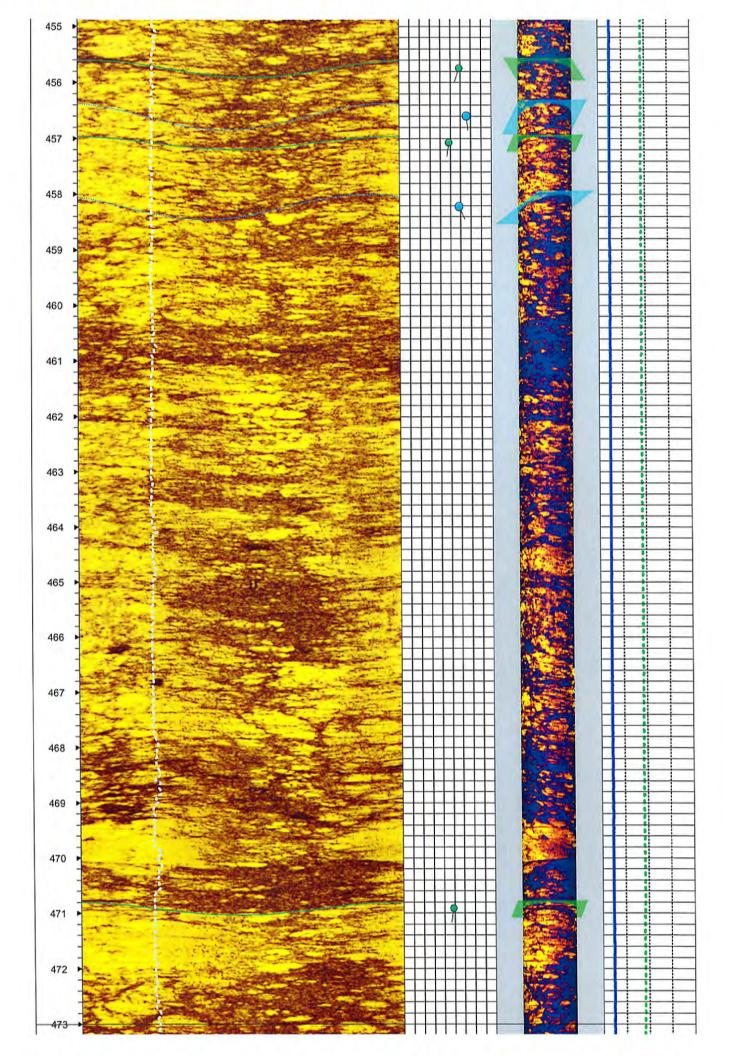


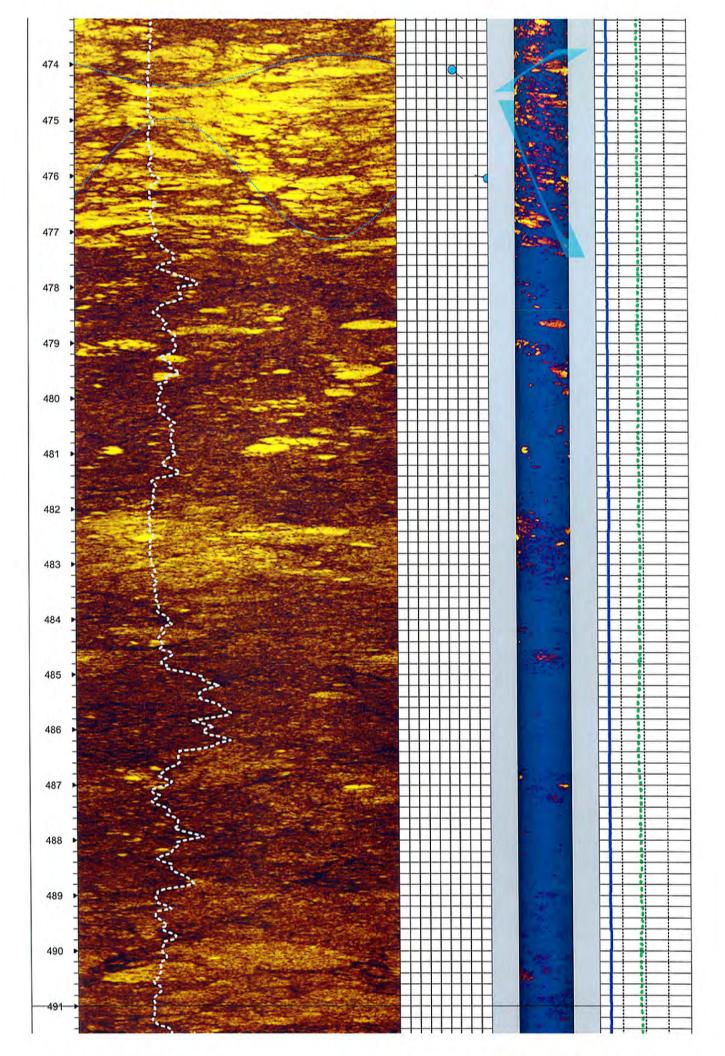


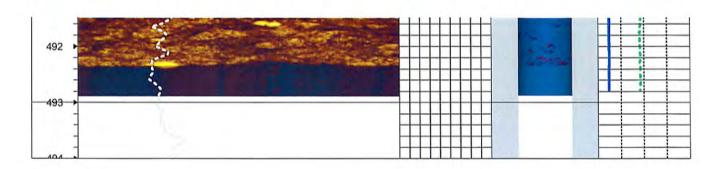


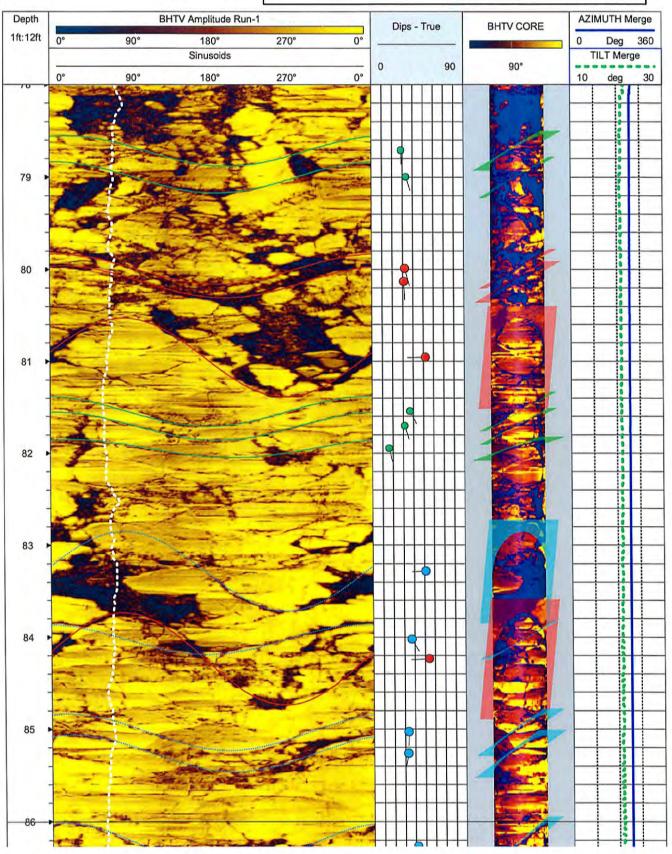


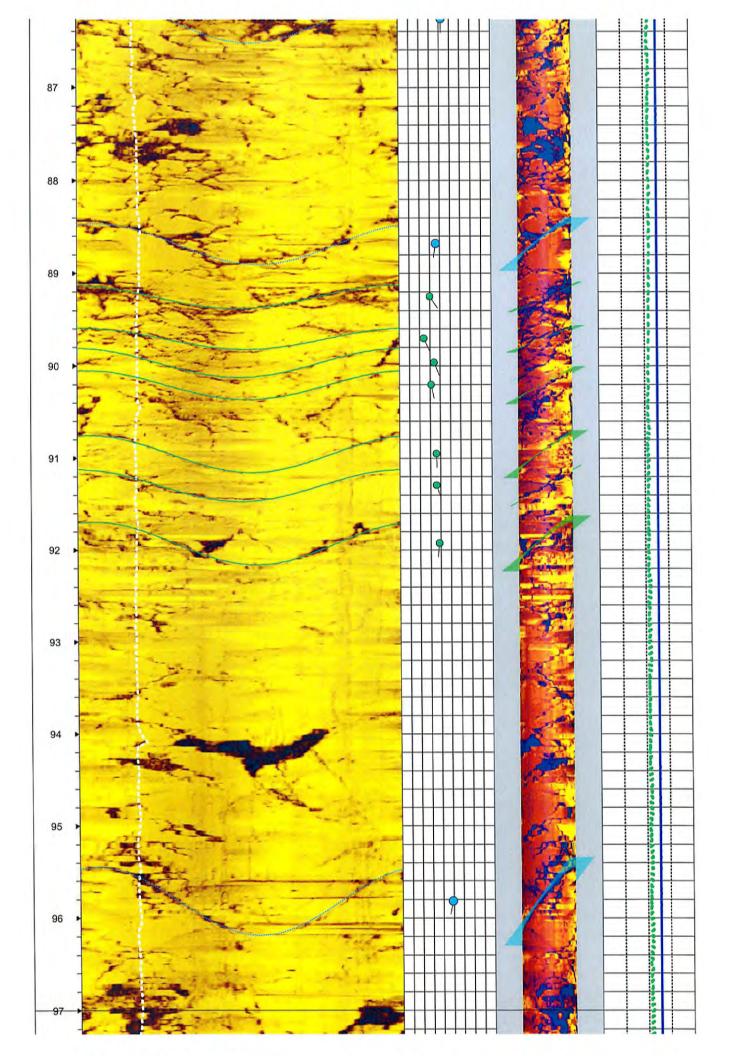


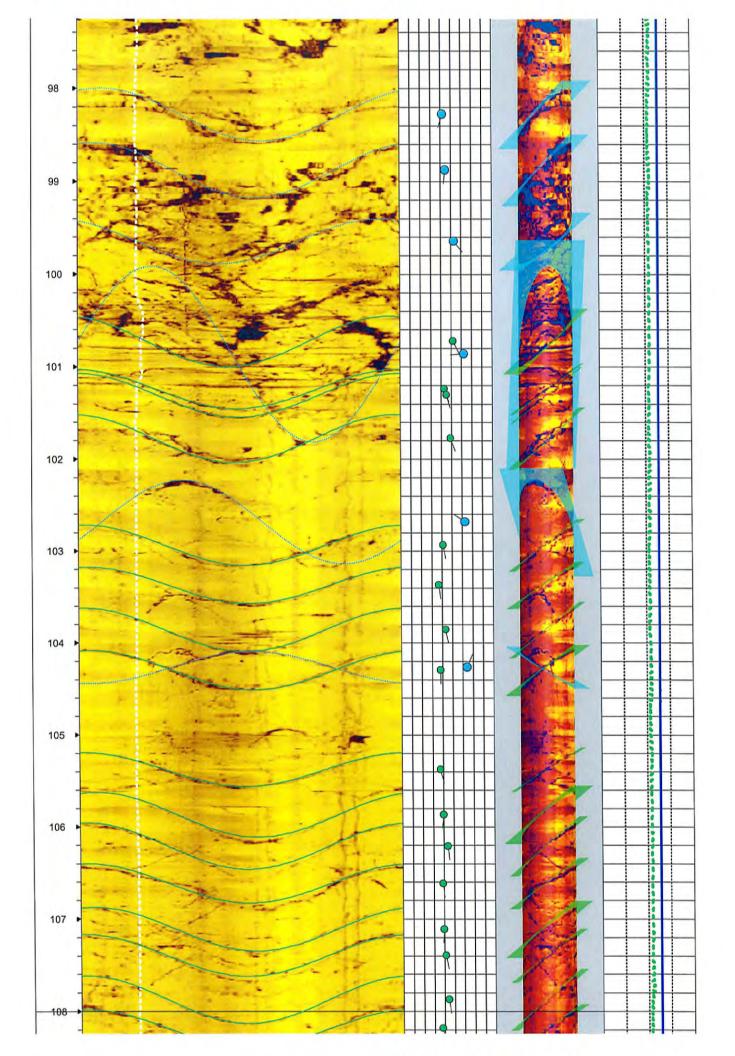


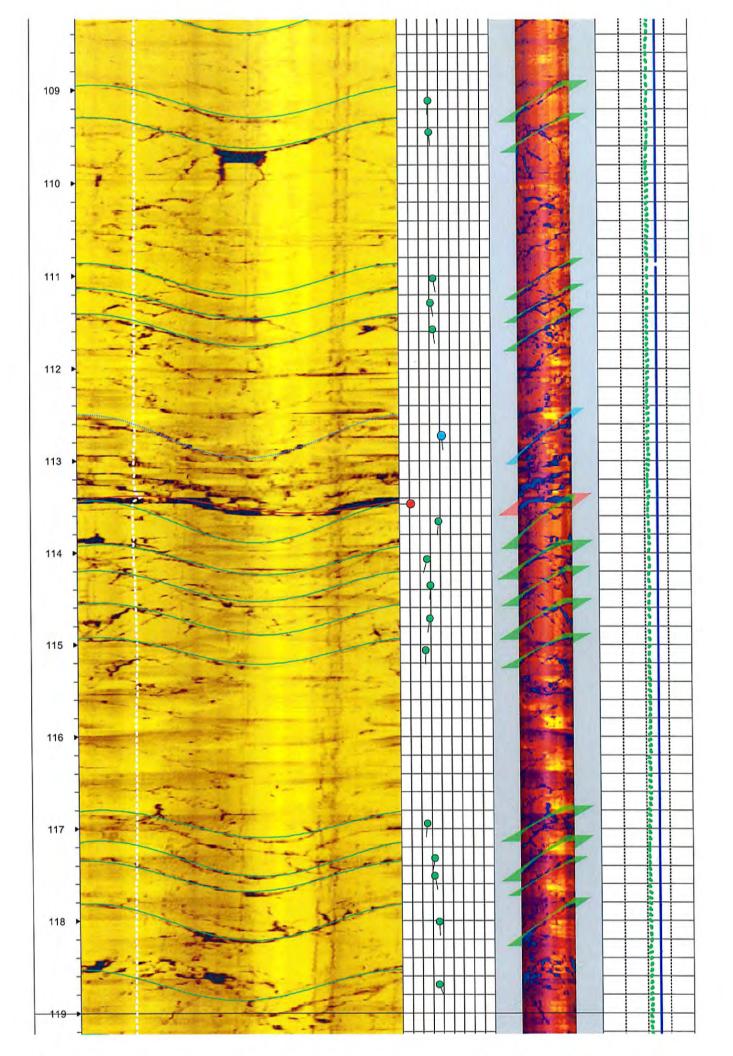


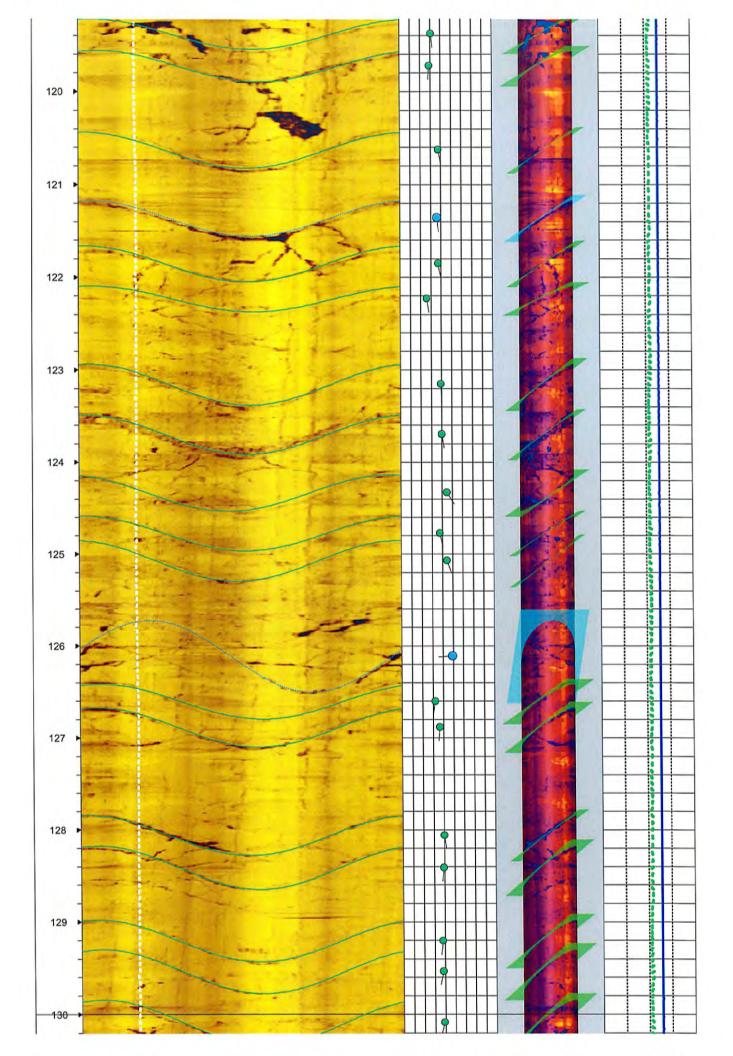


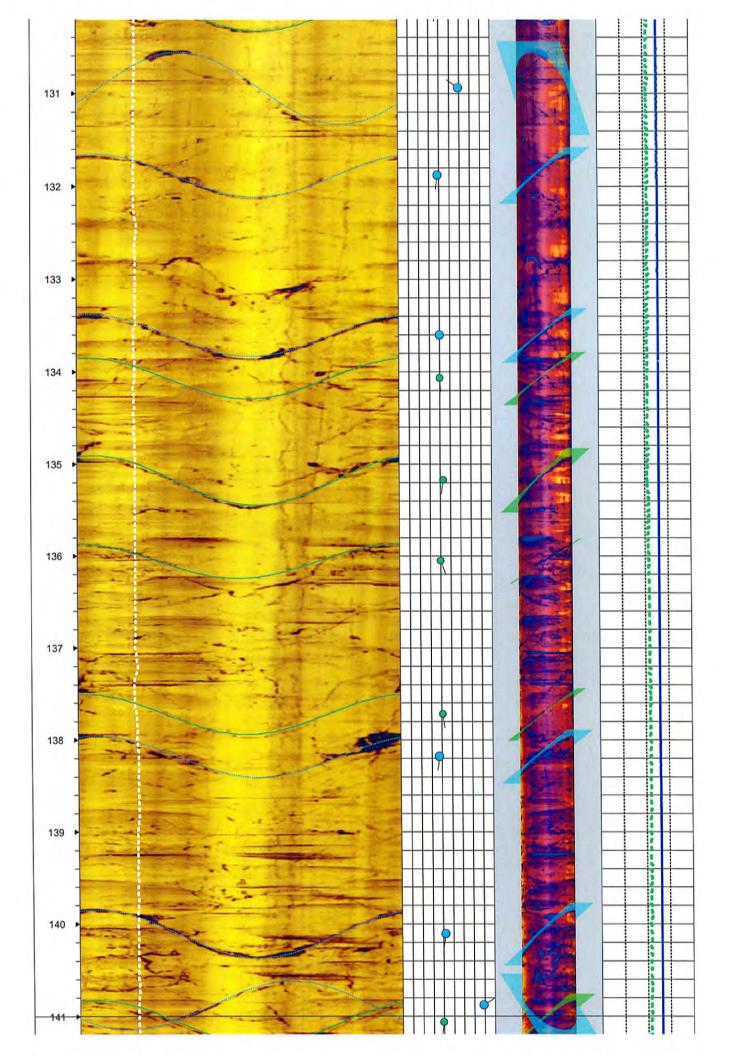


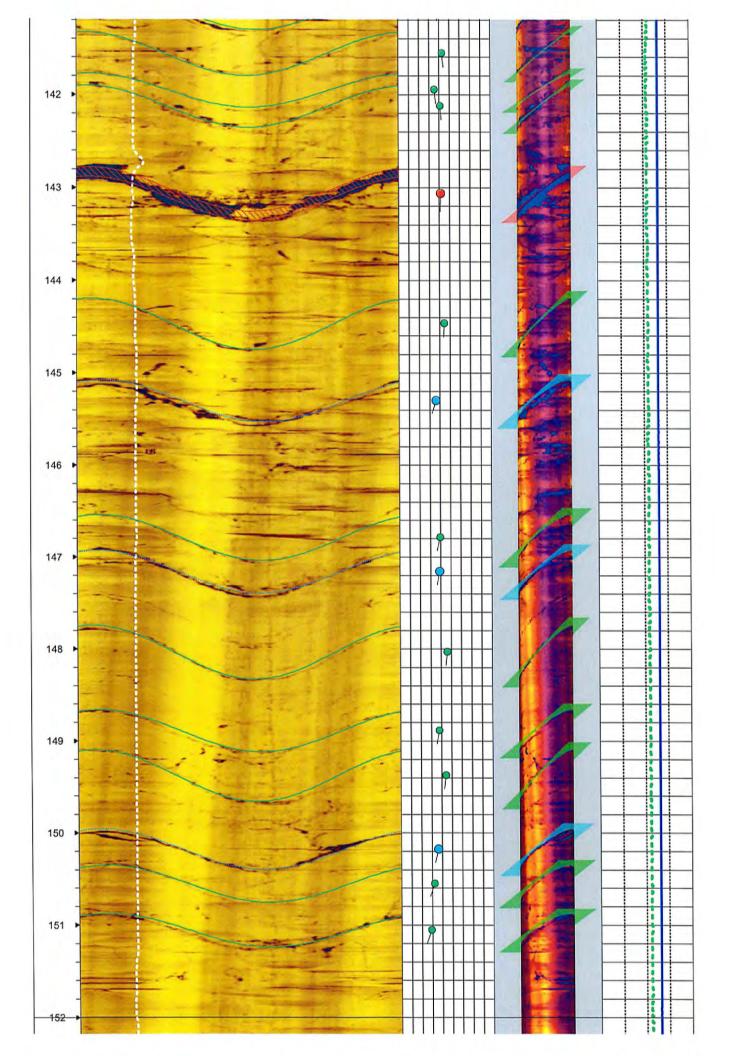

COMPANY: STANTEC
WELL ID: GT-1-2018-2
FIELD: LEHIGH QUARRY
COUNTY: SANTA CLARA

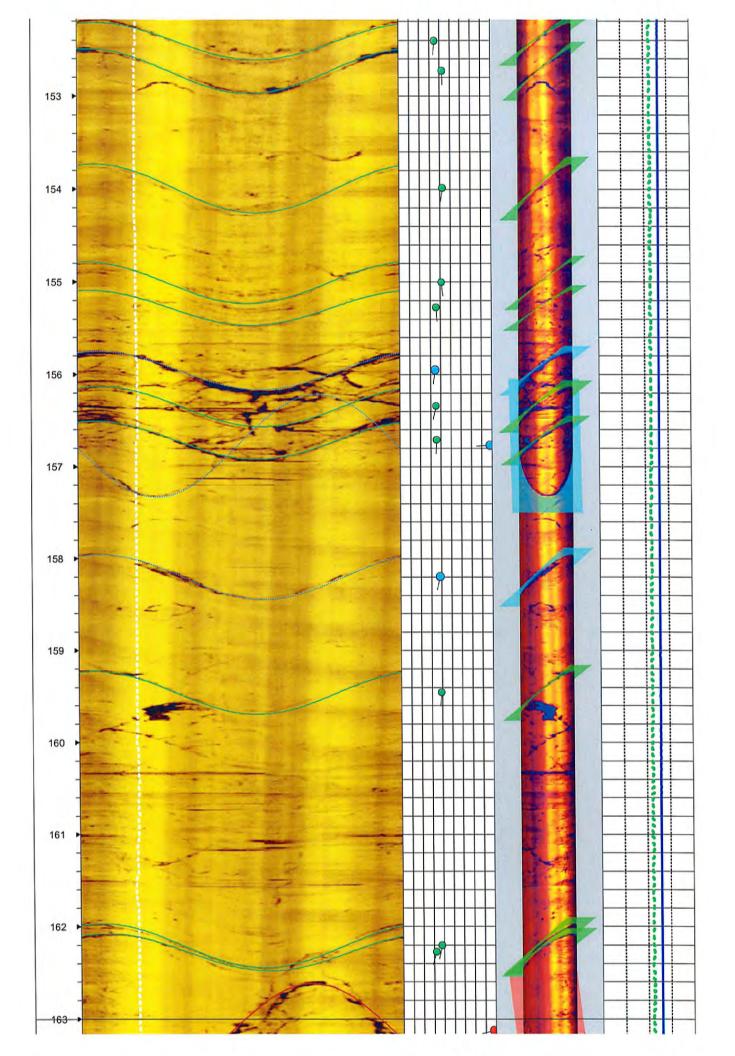

DATE: Oct. 20, 2018 CASING: Hwt to 29.6'ft bgs JOB NO. NS185080 STATE: CA

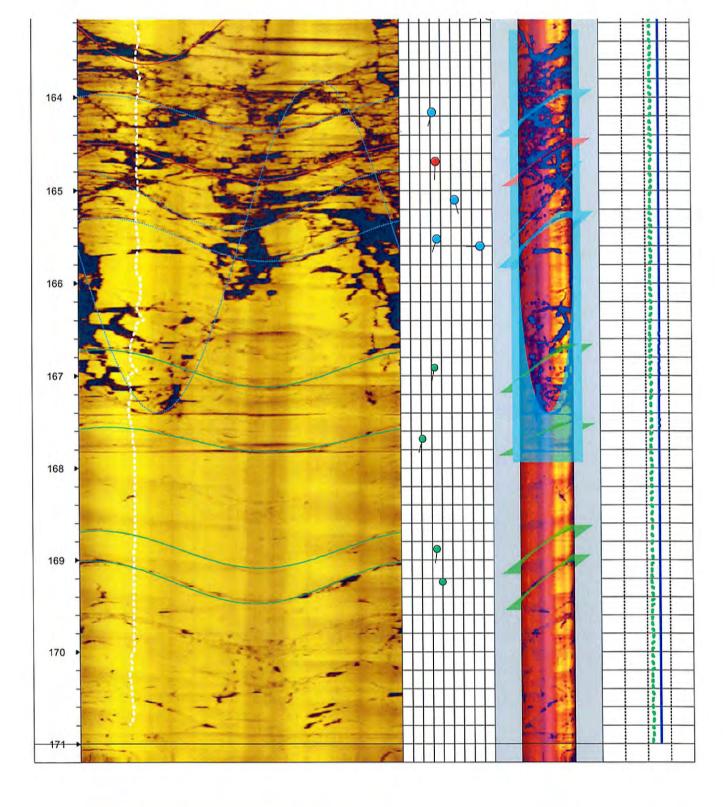

NOTES: DISCONTINUITY LEGEND

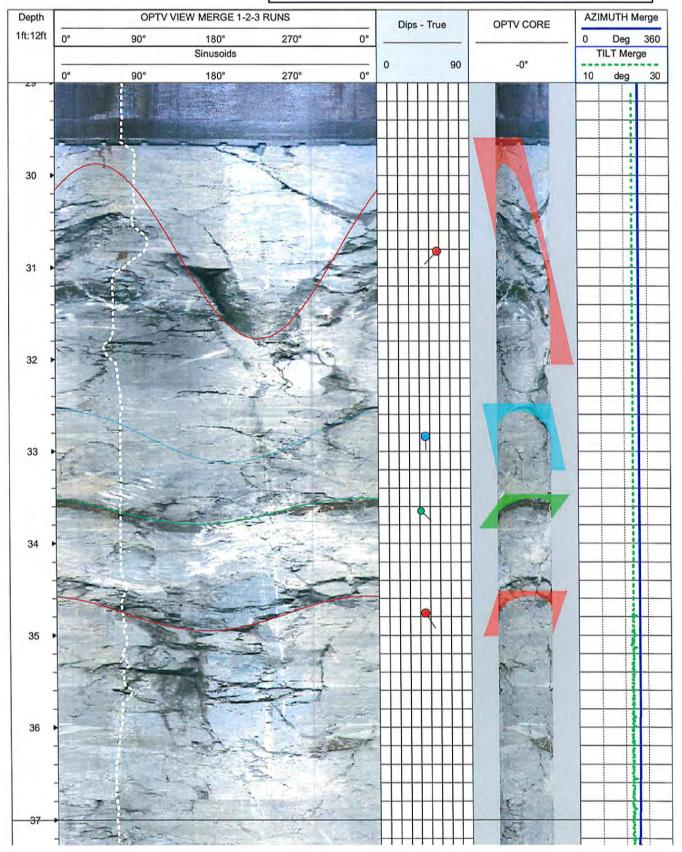

Code	Tadpole	Sine Wave	Name
1	6	-	- Fracture open to partially open, continuous
2	0		- Fracture "hairline" and/or discontinuous/irregula
3	6		- Foliation or Bedding

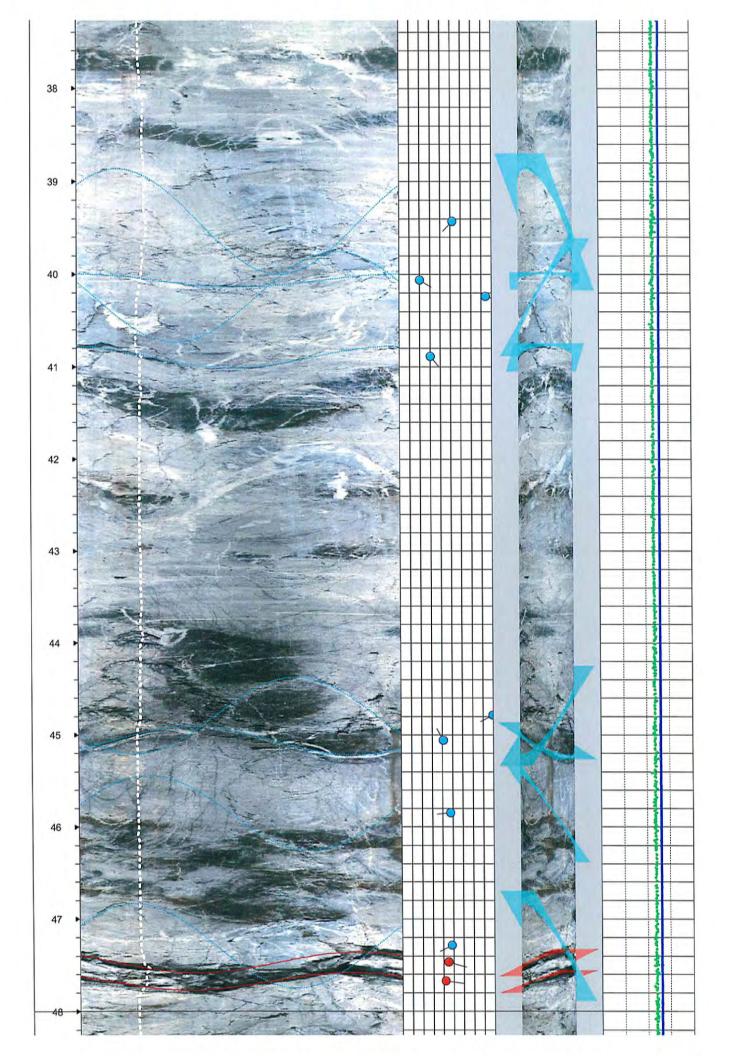


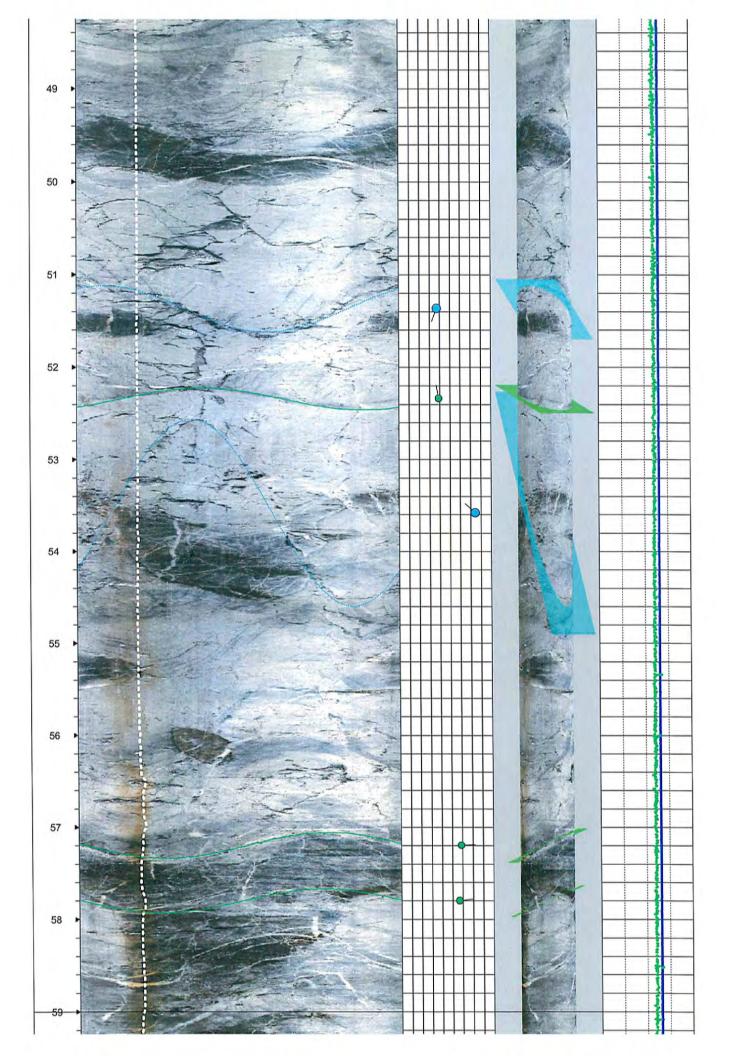


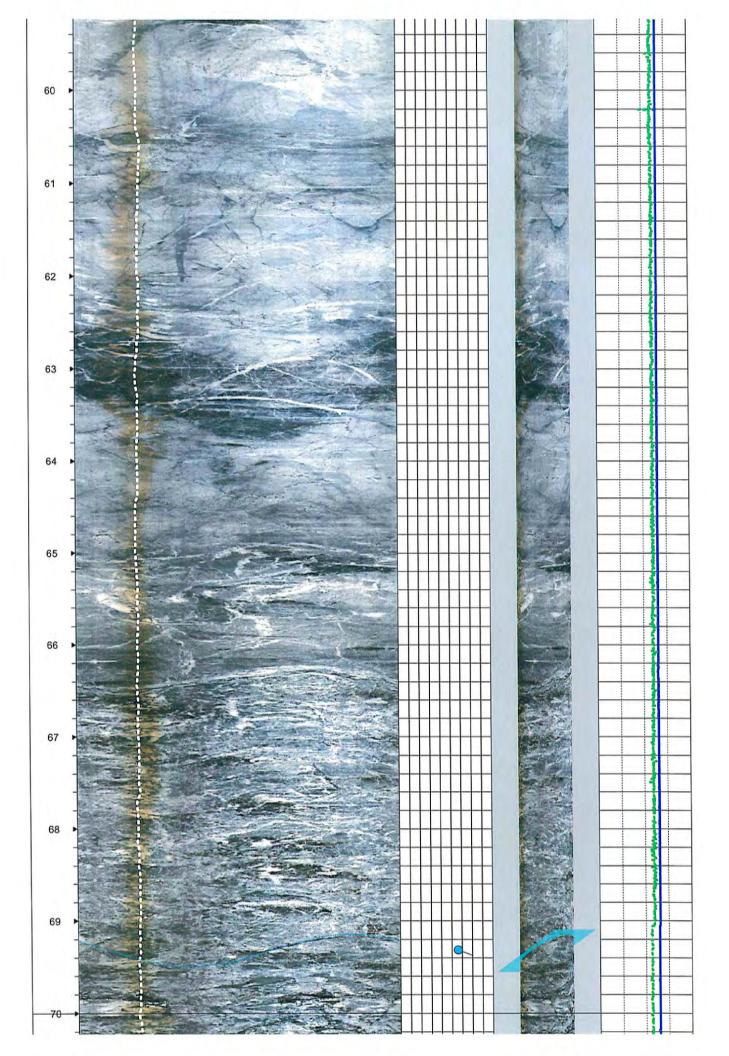


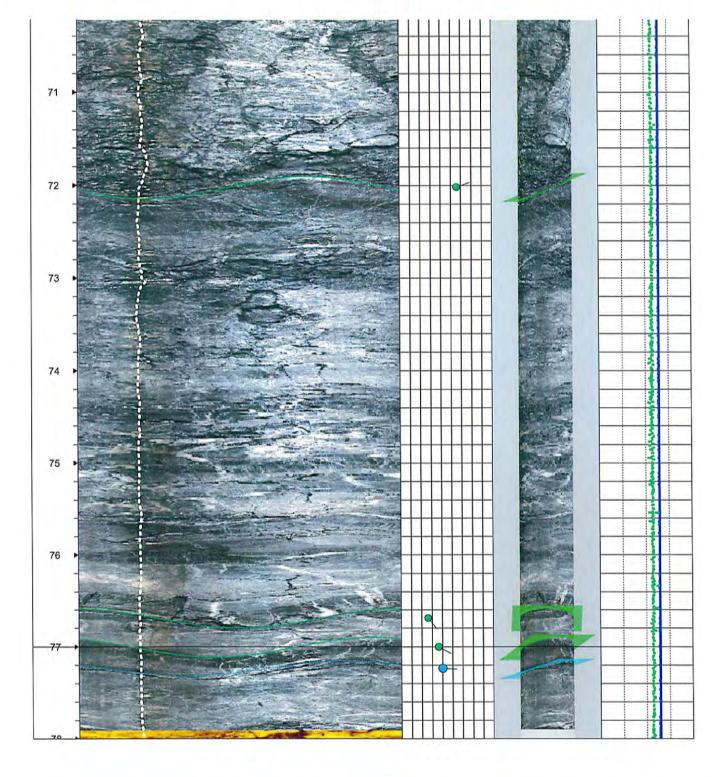


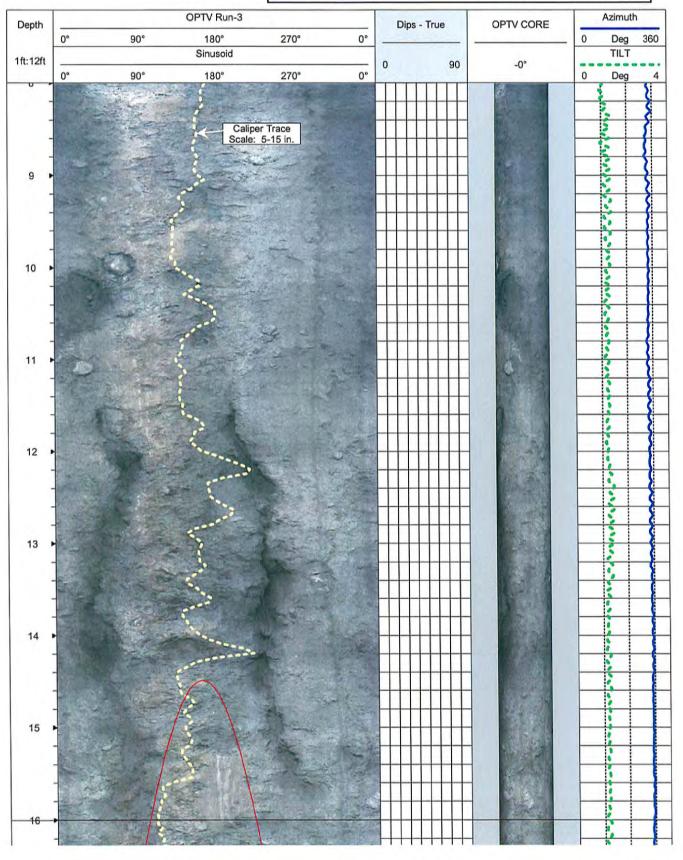


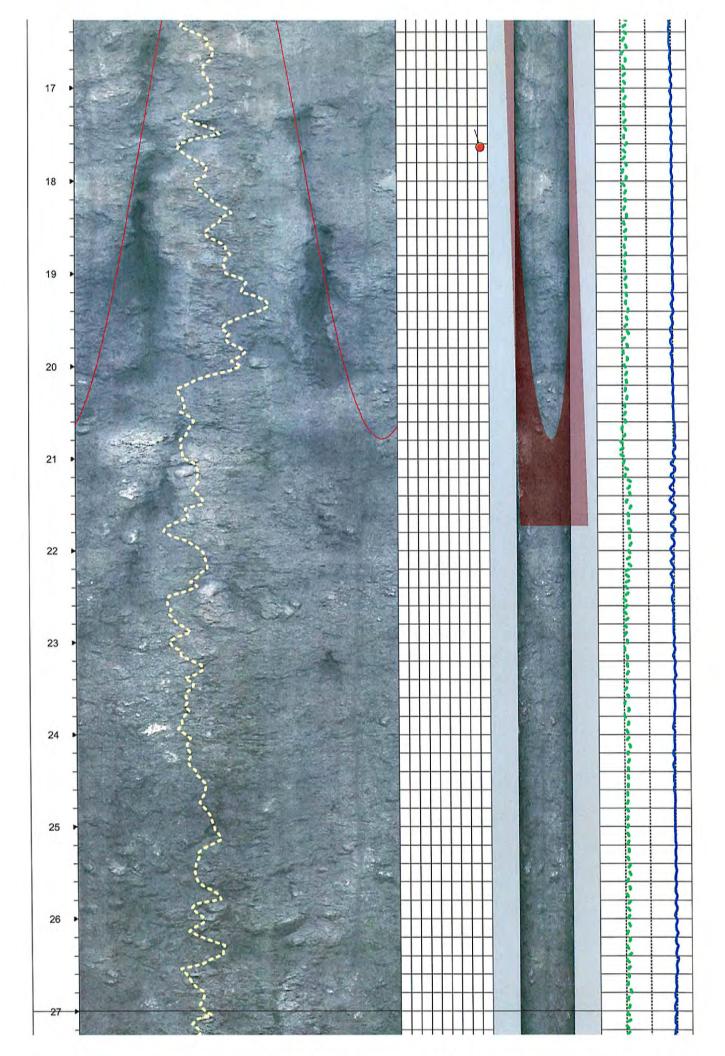

COMPANY: STANTEC
WELL ID: GT-1-2018-2
FIELD: LEHIGH QUARRY
COUNTY: SANTA CLARA

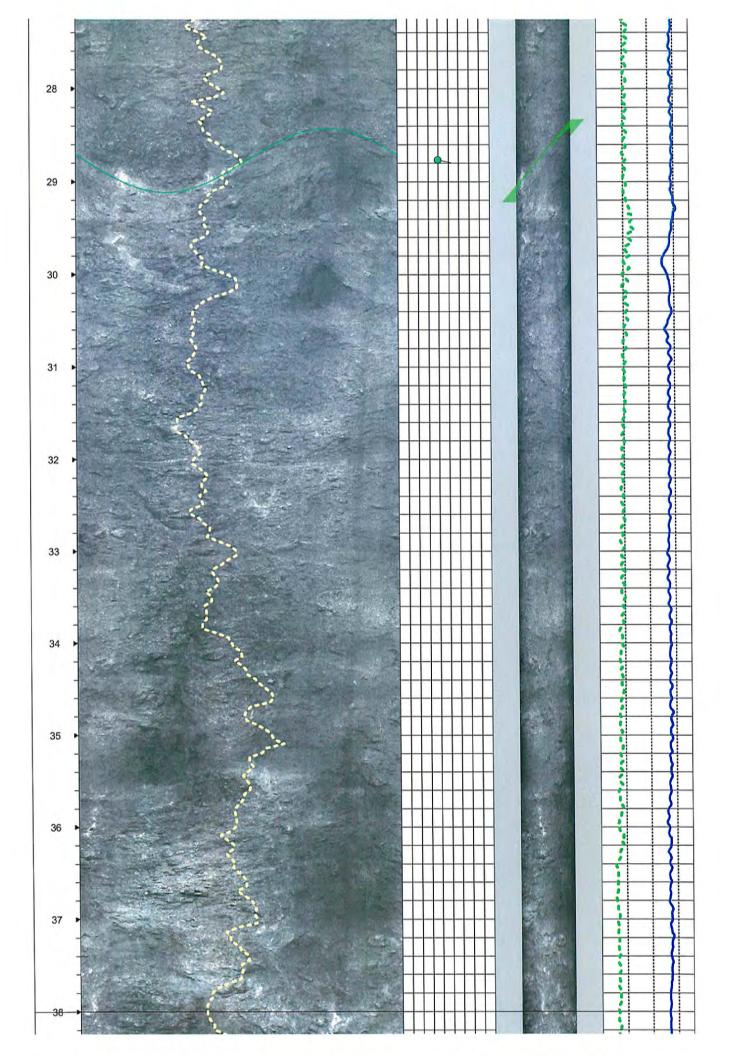

DATE: Oct. 20, 2018
CASING: Hwt to 29.6'ft bgs
JOB NO. NS185080
STATE: CA

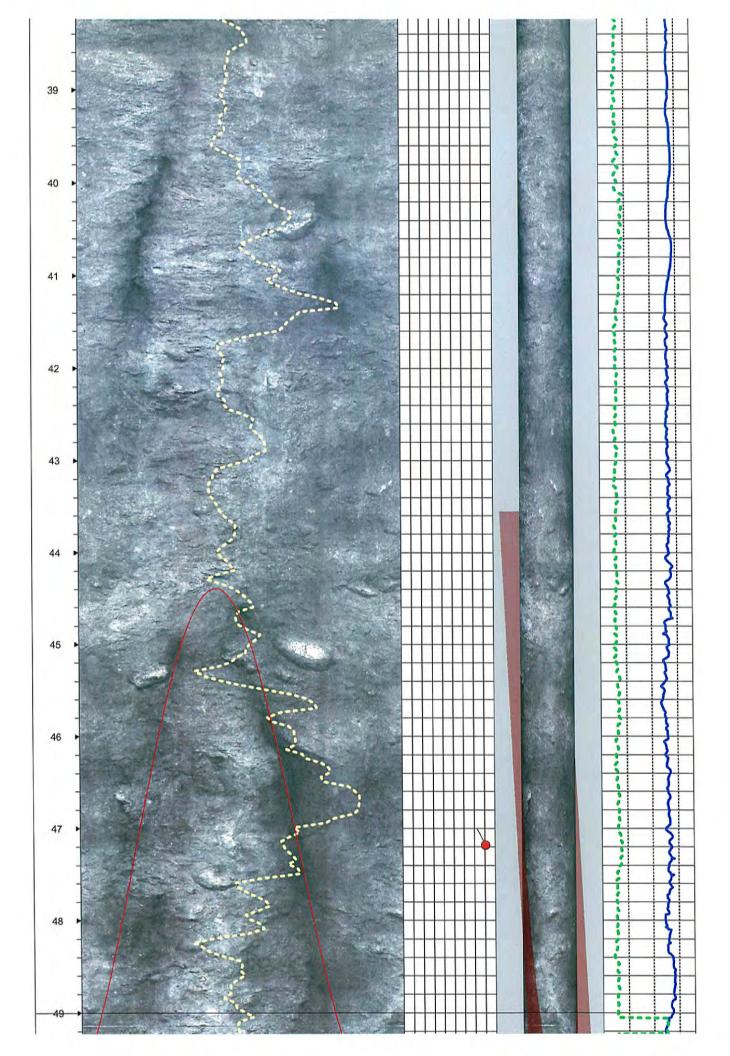

NOTES: DISCONTINUITY LEGEND

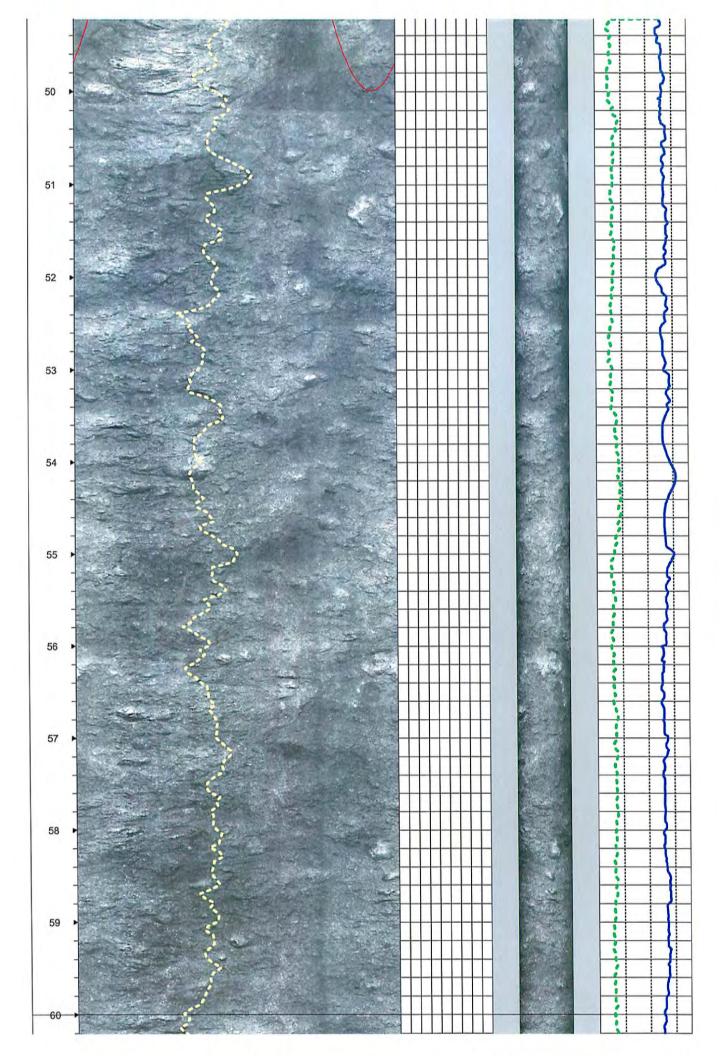

Code	Tadpole	Sine Wave	Name
1	6		- Fracture open to partially open, continuous
2	0		Fracture "hairline" and/or discontinuous/irregula
3	6		- Foliation or Bedding

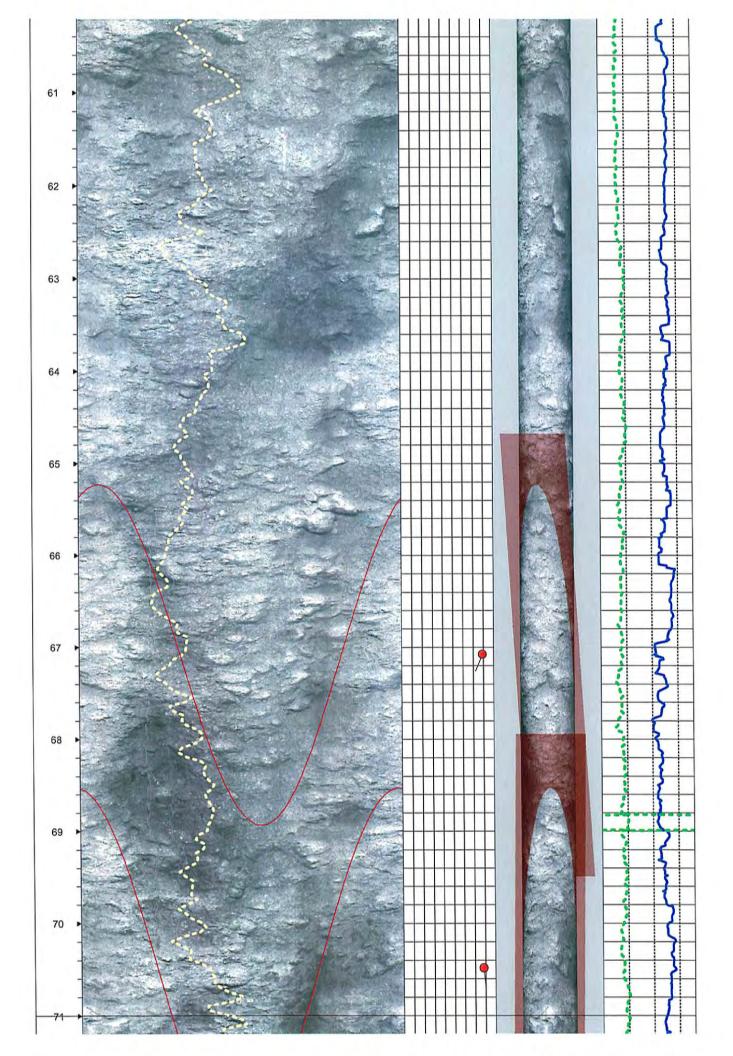

TELEVIEWER ANALYSIS

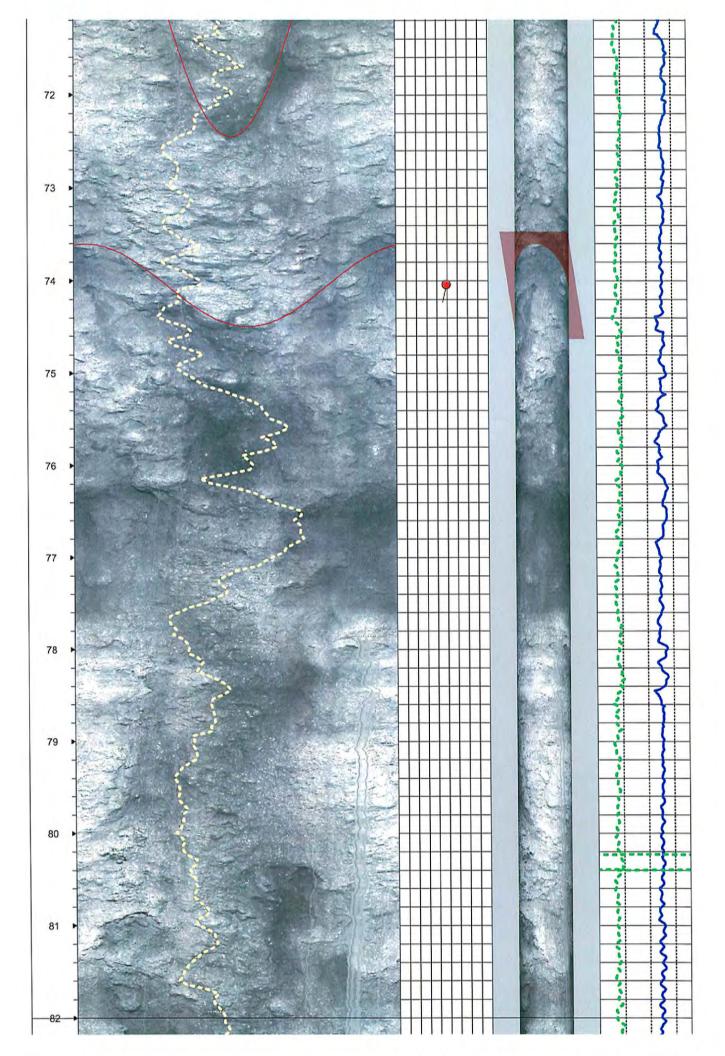

COMPANY: STANTEC
WELL ID: S-1-2018-2
FIELD: LEHIGH QUARRY
COUNTY: Santa Clara

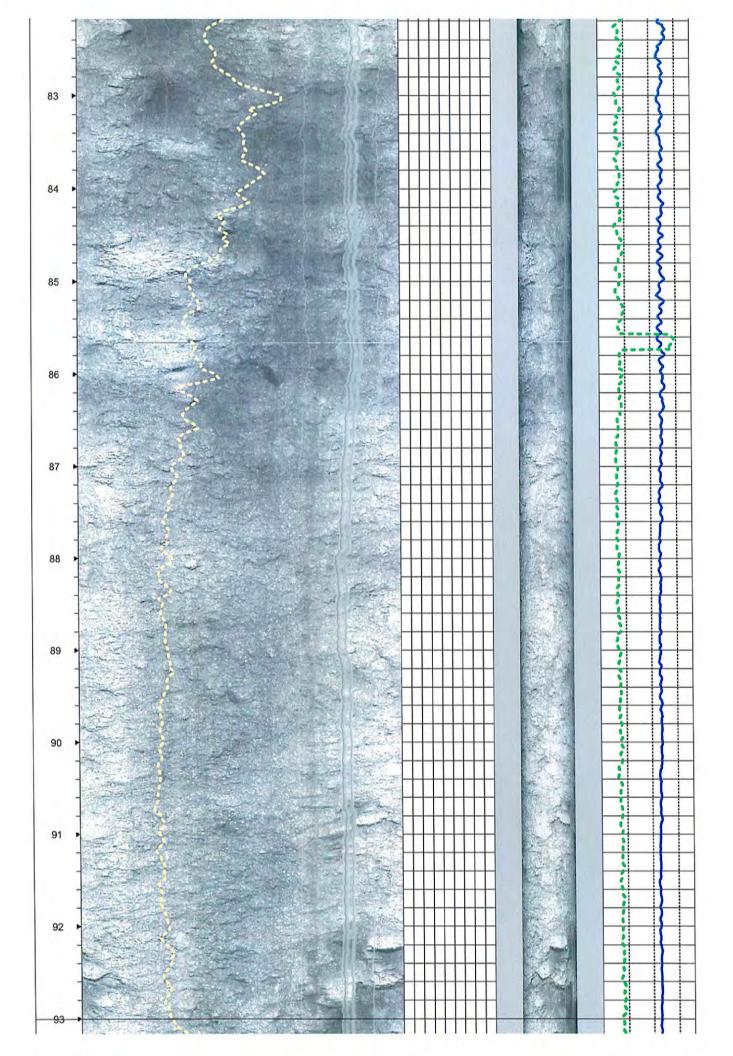

DATE: October 6, 2018
CASING: None
JOB NO. NS185080
STATE: CA

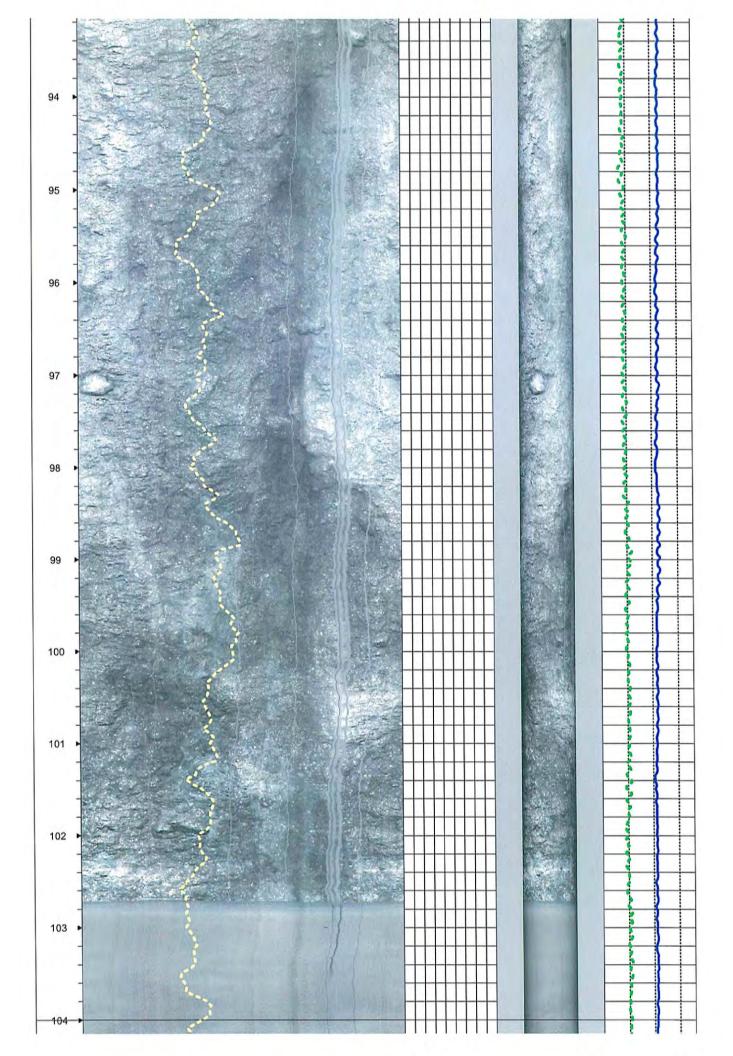

NOTES: DISCONTINUITY LEGEND


Code	Tadpole	Sine Wave	Name
1	•		Fracture open to partially open, continuous
2	0		Fracture "hairline" and/or discontinuous/irregula
3	6		Foliation or Bedding









]			
105			

Appendix D:

Discontinuity Tables

Boreholes GT-1-2018-1, GT-1-2018-2, S-1-2018-2

LEHIGH QUARRY
BOREHOLE DISCONTINUITY TABLE FROM TELEVIEWER ANALYSIS
FOR BOREHOLE GT-1-2018-1 FIELD WORK CONDUCTED OCTOBER, 2018
Cupertino , CA
NORCAL JOB NO. NS185080

DISCONTINUITY LEGEND

Code	Tadpole	Sine Wave	Name
1	•		- Fracture open to partially open, continuous
2	0		Fracture "hairline" and/or discontinuous/irregular
3	6		Foliation or Bedding

Depth	Dip Azimuth	Dip Angle	T-1-2018-1 Discontinuity Tab Aperture or Thickness	Discontinuity Classification
ft			1/10 inches	(see Code under Legend)
60.08	53.91	33.62	nd	2
60.31	35.27	30.74	nd	3
60.78	36.42	28.05	nd	3
61.12	22.59	24.36	nd	3
61.73	17.86	27.47	nd i	3
63.75	61.34	30.61	nd	3
64.12	46.63	31.25	nd	3
64.96	75.32	41.69	nd	3
91.29	288.63	28.23	nd	3
93.45	39.04	43.36	nd	2
95.85	5.81	79.86	nd	2
97.2	348.81	70.38	nd	2
98.33	207.16	76.33	nd	2
102.93	358.77	59.72	nd	2
121.62	143.8	55.7	nd	2
131.74	138.35	53.57	nd	2
155.55	97.48	49.27	nd	2
155.61	289.62	79.3	nd	2
159.91	148.27	63.68	nd	2
160.57	136.55	52.31	nd	2
174.92	96.61	65.5	nd	2
176.87	65.69	46.91	nd	2
178.34	42.06	32.79	nd	3
179.51	127.94	46	nd	3
181.27	69.7	30.66	nd	3
181.99	153.42	27.24	nd	2
182.25	170.56	52.28	nd	2
183.51	119.73	75.92	nd	2
183.7	235.2	71.22	nd	2

184.51	157.38	56.17	nd	2
185.33	190.35	60.68	nd	2
187.06	133.18	46.1	nd	2
187.43	124.91	51.69	nd	2
189.39	183.72	45.37	nd	2
190.92	181.36	66.49	nd	2
191.22	167.91	65.16	nd	2
192.62	168.23	59.88	nd	2
192.95	165.16	59.73	nd	2
194.72	19.47	85.4	nd	2
195.09	102.58	44.77	nd	2
195.36	101.57	46.76	nd	2
195.53	85.05	43.3	nd	2
221.99	134.2	65.99	nd	2
225.41	29.7	74.41	nd	2
225.74	346.21	35.3		
			nd	2
242.09	184.68	63.74	nd	2
244.56	353.51	50.58	nd	2
245.31	353.19	54.97	nd	2
250.71	285.74	72.67	nd	2
265.15	293.24	38.62	nd	2
265.73	279.59	43.5	nd	2
266.69	238.15	75.65	nd	2
270.17	306.56	56.87	nd	3
272.74	278.7	39.5	nd	2
274.95	250.16	58.3	nd	2
275.57	285.81	48.92	nd	2
278.16	95.33	20.45	nd	2
280.28	199.45	88.98	nd	2
281.23	41.36	48.9	nd	2
305.94	359.2	57.42	nd	2
309.42	131.49	19.31	nd	2
311.02	254.45	73.07	nd	2
312.44	54.57	37.11	nd	2
325.48	62.1	44.16	nd	2
326.11	64.02	42.08	nd	2
326.85	83.5	36.31	nd	2
328.26	59.26	57.87	nd	2
331.05	45.43	89.64	nd	2
332.86	257.74	88.75	nd	2
333.34	259.3	78.02	nd	2
335.85	59.27	81.25	nd	2
349.7	247.76	73.51	nd	2
353.51	265.02	82.78	nd	2
361.71	226.14	50	nd	2
362.58	15.17	41.8	nd	2
363.22	20.99	36.96	nd	2

363.45	109.29	29.07	nd	2
363.51	197.27	58.61	nd	2
365	165.31	74.91	nd	2
365.67	10.09	82.77	nd	2
365.68	206.18	43.34	nd	2
367.7	7.46	38.22	nd	2
368.29	198.54	66.03	nd i	2
375.22	16.59	85.19	nd	2
377.86	187.66	64.09	nd	2
378.95	200.18	49.82	nd	2
381.99	309.41	67.5	nd	3
383.08	229.44	62.34	nd	2
385.47	11.38	55.1	nd	2
391.95	22.06	56	nd	2
393.02	45.14	61.79	nd	2
395.24	157	56.72	nd	3
396.23	104.54	46.86	nd	3
396.91	51.97	39.48	nd	3
397.53	67.94	38.9	nd	
399.84	320.88	72.15		3 2
401.87	148.98	69.1	nd	
			nd	2
403.48	303.97	62.83	nd	2
404.06	246.08	80.75 83.34	nd	2
404.68	240.83		nd	2
404.69 405.75	306.94	48.52	nd	2
	57.16	87.3 13.3	nd	2
406.51	283.32		nd	2
406.8	253.15	14.49	nd 	2
407.21	305.56	33.61	nd	2
408.11	270.39	73.69	nd	2
408.32	236.15	85.13	nd	3
408.98	243.05	70.17	nd	
409.44	255.04	68.9	nd	2
411.38	319.65	52.87	nd	2
413.52	286.51	35.58	nd	3
415.37	269.53	70.64	nd	3
415.85	241.48	71.14	nd	3
416.12	246.16	70.06	nd	3
416.8	269.42	71.67	nd	3
417.34	131.55	37.3	nd	3
426.07	247.22	64.91	nd	3
428.08	217.52	76.66	nd	3
428.55	253.76	57.59	nd	3
436.71	239.16	85.38	nd	3
436.99	277.17	78.01	nd	2
437.05	213.39	86.16	nd	2
437.2	271.89	72.3	nd	2

439.01	146.2	63.58	nd	3
449.83	63.98	30.98	nd	3
452.85	286.77	60.56	nd	3
455.75	199.1	58.82	nd	3
456.6	174.55	65.88	nd	2
457.07	188.39	48.71	nd	3
458.22	154.91	58.35	nd	2
470.92	188.89	49.01	nd	3
474.1	127.9	55.51	nd	2
476.04	283.68	89.84	nd	2

Note: 'nd" = discontinuity aperture thickness not determined

LEHIGH QUARRY
BOREHOLE DISCONTINUITY TABLE FROM TELEVIEWER ANALYSIS
FOR BOREHOLE GT-1-2018-2 FIELD WORK CONDUCTED OCTOBER, 2018
Cupertino , CA
NORCAL JOB NO. NS185080

DISCONTINUITY LEGEND

Code	Tadpole	Sine Wave	Name
1	&		- Fracture open to partially open, continuous
2	0	***********	Fracture "hairline" and/or discontinuous/irregular
3	6		- Foliation or Bedding

Depth	Dip Azimuth	Dip Angle	Aperture or Thickness	Discontinuity Classification
ft	deg	deg	1/10 inches	(see Code under Legend)
30.82	223.57	57.82	nd	1
32.84	177.93	45.82	nd	2
33.65	132.85	41.19	nd	3
34.76	146.69	44.9	nd	1
39.43	223.54	52.23	nd	2
40.06	122.64	20.16	nd	2
40.24	105.97	84.47	nd	2
40.89	139.98	30.55	nd	2
44.79	241.9	89.62	nd	2
45.06	331.48	41.04	nd	2
45.85	263.41	48.01	nd	2
47.29	242.84	48.41	nd	2
47.47	106.26	44.88	nd [1
47.67	97.61	42.18	nd [1
51.37	200.89	37.17	nd	2
52.34	349.09	39.1	nd	3
53.58	312.48	74.45	nd	2
57.2	86.43	58.71	nd	3
57.8	82.19	56.69	nd [3
69.32	109.58	56.22	nd !	2
72.02	69.43	56.04	nd	3
76.69	141.76	26.06	nd	3
77	118.64	36.4	nd	3
77.24	92.28	40.28	nd	2
78.71	178.68	29.2	nd	3
79	163.93	33.73	nd	3
79.99	164.56	32.38	nd	1
80.13	176.8	31.14	nd	1
80.96	269.31	52.24	nd	1

81.54	153.6	36.95	nd [3
81.7	163.6	31.59	nd	3
81.95	166.3	16.21	nd	3
83.28	268.8	51.47	nd	2
84.02	150.21	37.34	nd	2
84.24	266.63	54.06	nd	1
85.03	181.87	33.74	nd	2
85.26	190.24	33.26	nd	2
86.27	180.68	42.2	nd	2
88.68	188.46	36.03	nd	2
89.25	146.46	29.96	nd	3
89.7	154.5	24.03	nd	3
89.96	156.85	33.96	nd	3
90.2	167.19	31.01	nd	3
90.95	177.79	36.08	nd	3
91.3	160.82	36	nd	3
91.93	186	38.54	nd	3
95.82	192.44	49.08		
	196.15		nd	2
98.28		41.98	nd	2
98.87	186.02	44.75	nd	2
99.64	141.4	52.91	nd	2
100.72	152.94	51.82	nd	3.
100.86	265.89	62.43	nd	2
101.24	159.39	42.88	nd	3
101.3	162.87	45.06	nd l	3
101.77	159.77	48.85	nd	3
102.68	304.14	62.61	nd	2
102.93	170.02	41.1	nd	3
103.37	172.56	36.99	nd	3
103.85	169.88	43.12	nd	3
104.26	21.16	64.27	nd	2
104.3	178.59	37.75	nd	3
105.37	165.01	37.21	nd	3
105.87	185.56	40.12	nd	3
106.21	173.58	43.85	nd	3
106.61	172.38	39.1	nd	3
107.11	182.71	39.65	nd	3
107.39	169.87	41.3	nd	3
107.87	172.98	44.28	nd	3
108.18	169.32	38.08	nd	3
109.11	184.3	30.25	nd	3
109.45	175.4	30.74	nd	3
111.03	168.88	33.86	nd	3
111.29	168.89	31.68	l nd	3
111.58	172.13	33.68	nd	3
112.73	174.62	41.82	nd	2
113.47	270.45	11.37	nd I nd	
113.4/	270.45	11.57	110	L

113.66	185.2	38.43	nd [3
114.07	194.71	27.08	nd	3
114.36	182.28	29.99	nd [3
114.72	189.22	29.26	nd	3
115.06	180.85	25.29	nd	3
116.94	188.17	25.34	nd	3
117.32	190.28	32.77	nd	3
117.52	169.47	32.41	nd	3
118.01	177.25	36.54	nd	3
118.69	158.81	35.7	nd	3
119.38	174.1	30.72	nd	3
119.72	184.81	29.2	nd	3
120.63	168.91	37.41	nd	3
121.36	173.99	35.99	nd	2
121.85	169.8	37.15	nd	3
122.23	171.5	26	nd	3
123.15	176.91	39.46	nd	3
123.7	171.14	39.91	nd	3
124.33	148.45	44.67	nd	3
124.77	167.32	37.43	nd	3
125.07	159.79	44.44	nd I	3
126.11	265.25	49.34	nd	2
126.6	189.08	32.21	nd	3
126.88	184.71	36.35	nd	3
128.06	172.61	40.18	nd 1	3
128.41	186.77	39.23	nd	3
129.2	186.41	37.84	nd	3
129.54	192.3	38.19	nd	3
130.09	193.26	39	nd	3
130.94	304.48	59.04	nd	2
131.88	187.96	38.76	nd	2
133.6	179.45	40.02	nd	2
134.07	176.21	40.15	nd	3
135.17	187.98	42.99	nd	3
136.05	159.74	40.15	nd	3
137.72	171.5	41.06	nd	3
138.18	188.1	37.61	nd	2
140.11	187.84	42.06	nd	2
140.88	56.13	78.95	nd	2
141.06	187.92	39.67	nd	3
141.56	173.95	42.82	nd	3
141.95	173.68	35.31	nd	3
142.12	176.13	41.1	nd	3
143.06	181	41.36	6.8	1
144.46	184.65	44.49	nd	3
_ TT. TO				
145.3	197.14	36.32	nd i	2

147.16	190.14	38.9	nd	2
148.03	186.13	45.93	nd	3
148.89	191.25	38.03	nd	3
149.37	187.8	44.29	nd	3
150.18	193.25	36.54	nd	2
150.55	199.48	32.73	nd	3
151.06	200.2	29.53	nd	3
152.41	184.05	35.1	nd	3
152.73	177.9	42.37	nd	3
153.99	187.21	42.42	nd	3
155	174.05	41.09	nd	3
155.28	174.88	35.63	nd	3
155.95	188.24	34.74	nd	2
156.34	192.25	35.57	nd	3
156.71	183.53	35.65	nd	3
156.77	266.42	88.1	nd	2
158.2	194.28	38.63	nd	2
159.46	184.05	39.37	nd	3
162.2	192.1	38.03	nd	3
162.28	196.88	32.53	nd	3
163.13	256.95	88.27	nd	1
164.16	194.79	31.93	nd	2
164.69	182.11	34.95	nd	1
165.1	164.79	53.33	nd	2
165.52	200.21	36.26	nd	2
165.6	269.39	78.19	nd	2
166.91	192.36	33.43	nd	3
167.69	194.73	21.11	nd	3
168.88	188.06	34.75	nd	3
169.24	182.19	39.94	nd	3

Note: 'nd" = discontinuity aperture thickness not determined

LEHIGH QUARRY
BOREHOLE DISCONTINUITY TABLE FROM TELEVIEWER ANALYSIS
FOR BOREHOLE S-1-2018-2 FIELD WORK CONDUCTED OCTOBER, 2018
Cupertino , CA
NORCAL JOB NO. NS185080

	DISCO	NTINUITY LEG	END
Code	Tadpole	Sine Wave	Name
1	•	-	 Fracture open to partially open, continuous
2	0		Fracture "hairline" and/or discontinuous/irregular
3	•		- Foliation or Bedding

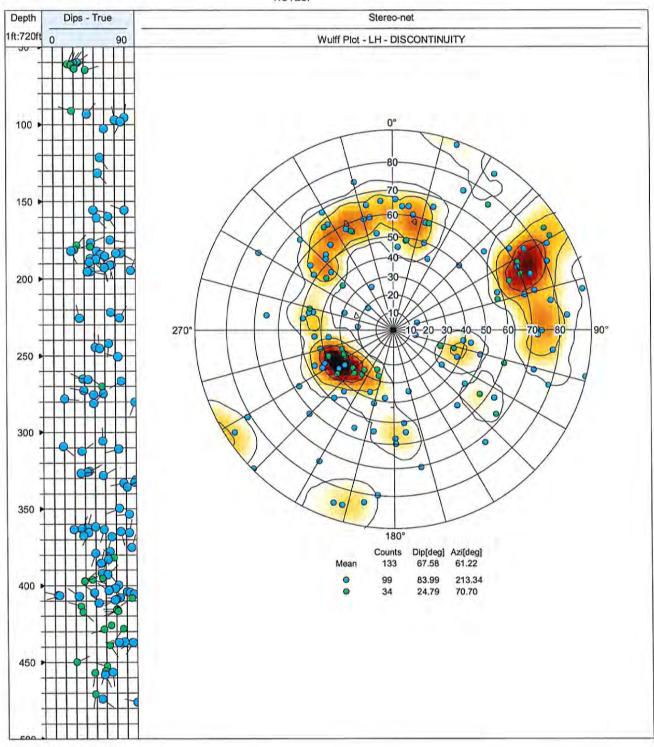
S-1-2018-2 Discontinuity Table						
Depth	Dip Azimuth	Dip Angle	Aperture or Thickness	Discontinuity Classification		
ft	deg	deg	1/10 inches	(see Code under Legend)		
17.63	342.76	82.56	nd	1		
28.77	101.23	39.7	nd	3		
47.19	333	80.73	nd	1		
67.08	202.35	78.94	nd	1		
70.48	175.13	78.43	nd	1		
74.04	192.78	49.25	nd	1		

Note: 'nd" = discontinuity aperture thickness not determined

Appendix E:

Polar Projections

Boreholes GT-1-2018-1 and GT-1-2018-2

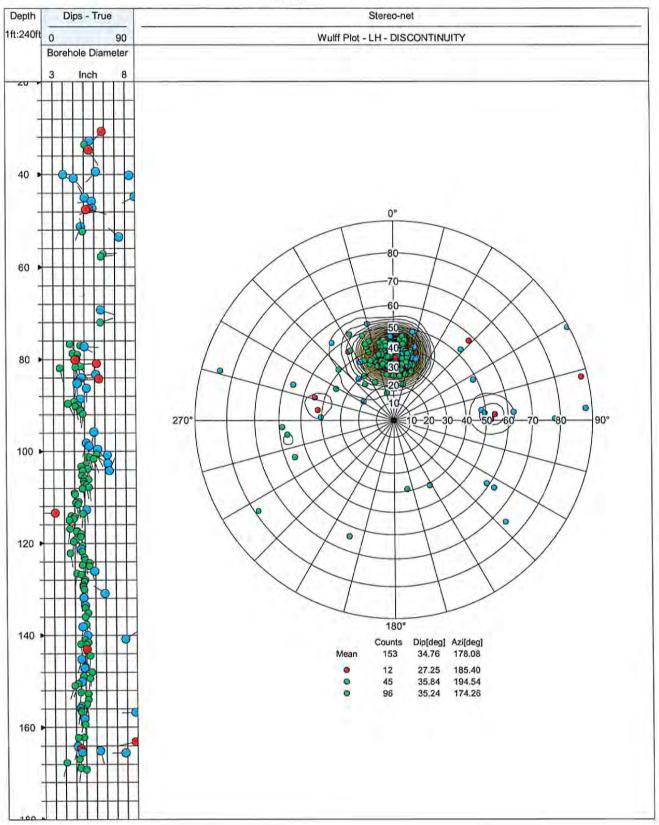


COMPANY: STAANTEC WELL ID: GT-1-2018-1 FIELD: LEHIGH QUARRY COUNTY: SANT CLARA

DATE: OCT. 8, 2018 CASING: STEEL TO 50-3 FT BGS JOB NO. NS185080

STATE: CA

NOTES:


COMPANY: STAANTEC WELL ID: GT-1-2018-2 FIELD: LEHIGH QUARRY

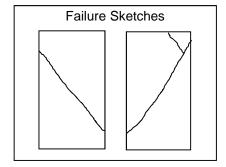
COUNTY: SANT CLARA

DATE: OCT. 8, 2018 CASING: STEEL TO 20FT BGS JOB NO. NS185080

STATE: CA

NOTES:

Uniaxial Compressive Strength of Intact Rock Core Specimens


ASTM D 7012, Method C

Project Name		Project Number	233001329		
Lithology	Greenstone, g	Lab ID	UCR-1		
Hole Number	Hole Number GT-1-2018-1		Depth (ft) 385.1'-385.5'		11/01/2018
-					
Temperature (°C)	22	Moisture Condition	As Prepared, Mo	ist Date Tested_	11/08/2018
·	<u> </u>	-			_
Side Planeness	N/A	Height (in)	4.891	Wet Unit Weight (pcf)	161.1
Perpendicularity	N/A	Diameter (in)	2.390	Dry Unit Weight (pcf)	N/A
End Planeness	N/A	Area (in ²)	4.485	Moisture Content (%)	N/A
Parallelism	N/A	-		· · · -	
Dimensions were	not confirmed.				

Loading Rate (lbf/sec) 7
Peak Load (lbf) 150

Failure Type Shear

Compressive Strength (psi) 33
Compressive Strength (psf) 4752
Compressive Strength (tsf) 2

Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone.

Dimensional tolerances were not confirmed.

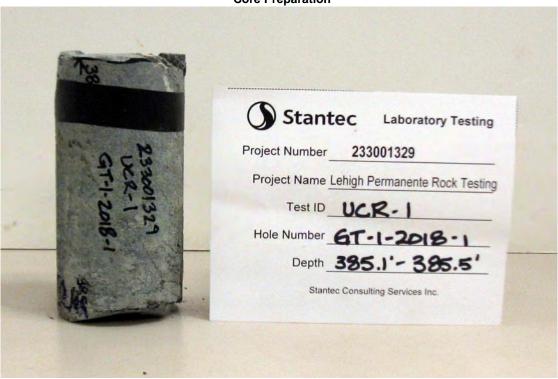
Primary failure occurred along pre-existing healed fault.

Reviewed By_

Reported By: JW Report Date: 11/13/2018

Project Name Lehigh Permanente Rock Testing

Lithology Greenstone, gray/green, moderately hard


Hole Number GT-1-2018-1 Depth (ft) 385.1'-385.5'

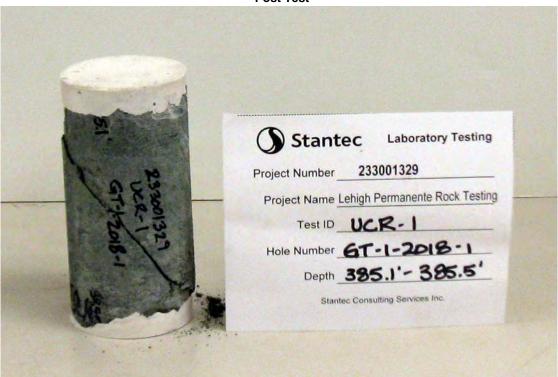
Test Type Uniaxial Compressive Strength of Intact Rock Core

Project Number 233001329 Lab ID UCR-1

As Received Stantec Laboratory Testing Project Number 233001329 Project Name Lehigh Permanente Rock Testing Test ID UCR-I Hole Number 6T-I-2018-1 Depth 395.1'- 395.5' Stantec Consulting Services Inc.

Core Preparation

Project Name Lehigh Permanente Rock Testing


Lithology Greenstone, gray/green, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 385.1'-385.5'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

Project Name Lehigh Permanente Rock Testing

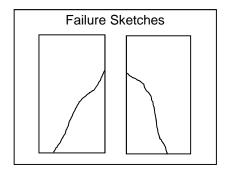
Lithology Greenstone, gray/green, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 385.1'-385.5'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C


Project Name	Lehigh Perma	Project Number	233001329		
Lithology	Greenstone E	Lab ID	UCR-2		
Hole Number	GT-1-2018-1	Depth (ft)	284.2'-284.7'	Date Received	11/01/2018
					_
Temperature (°C)	22	Moisture Condition	As Prepared, Moist	Date Tested	11/13/2018
•		•			
Side Planeness	N/A	Height (in)	5.946	Wet Unit Weight (pcf)	161.2
Perpendicularity	N/A	Diameter (in)	2.373	Dry Unit Weight (pcf)	N/A
End Planeness	N/A	Area (in ²)	4.424	Moisture Content (%)	N/A
Parallelism	N/A	•		_	

Dimensions were not confirmed.

Loading Rate (lbf/sec) 7
Peak Load (lbf) 1241

Failure Type Shear

Compressive Strength (psi)	281
Compressive Strength (psf)	40464
Compressive Strength (tsf)	20

Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone.

Dimensional tolerances were not confirmed.

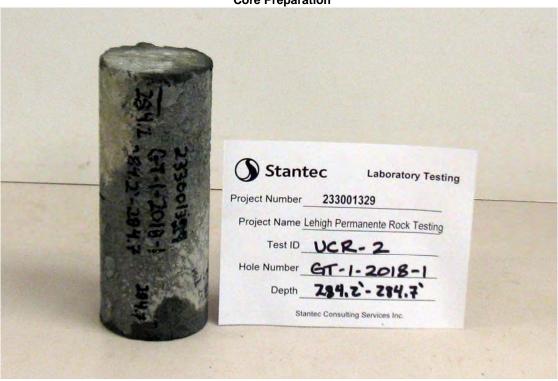
Primary failure occurred along pre-existing healed fault.

Reviewed By____

Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, green/gray, moderately hard

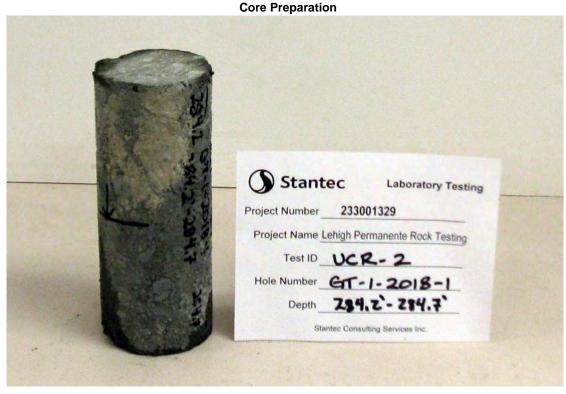
Hole Number GT-1-2018-1 Depth (ft) 284.2'-284.7'


Test Type Uniaxial Compressive Strength of Intact Rock Core

Project Number 233001329 Lab ID UCR-2

As Received

Core Preparation



Project Name Lehigh Permanente Rock Testing

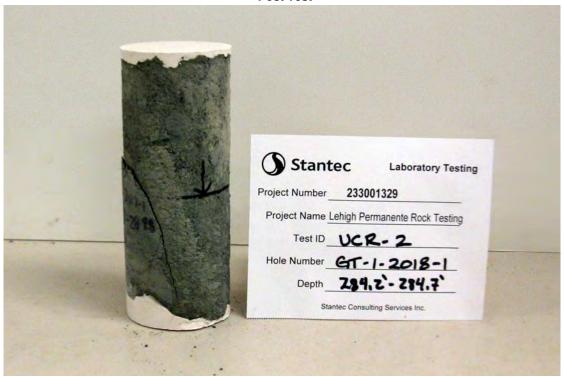
Lithology Greenstone Breccia, green/gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 284.2'-284.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

Project Name Lehigh Permanente Rock Testing


Lithology Greenstone Breccia, green/gray, moderately hard

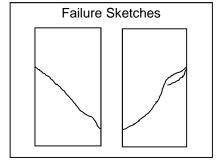
Hole Number GT-1-2018-1 Depth (ft) 284.2'-284.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Project Number 233001329 Lab ID UCR-2

Post Test

Uniaxial Compressive Strength of Intact Rock Core Specimens


ASTM D 7012, Method C

Project Name I	Lehigh Perma	Project Number	233001329		
Lithology	Greenstone Bi	Lab ID	UCR-4		
Hole Number	GT-1-2018-1	Depth (ft)	470.1'-470.6'	Date Received	11/01/2018
_					
Temperature (°C)	22	Moisture Condition	As Prepared, Moi	st Date Tested	11/13/2018
-	,				
Side Planeness	N/A	Height (in)	5.866	Wet Unit Weight (pcf)	171.0
Perpendicularity	N/A	Diameter (in)	2.393	Dry Unit Weight (pcf)	N/A
End Planeness	N/A	Area (in ²)	4.496	Moisture Content (%)	N/A
Parallelism -	N/A	•			
Dimensions were r	not confirmed.				

Loading Rate (lbf/sec) 20 Peak Load (lbf) 4936

Failure Type Shear

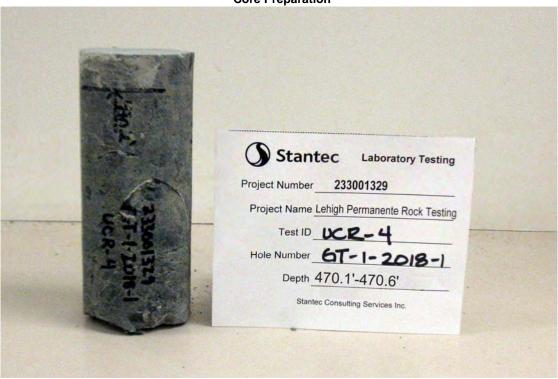
Compressive Strength (psi) 1098
Compressive Strength (psf) 158112
Compressive Strength (tsf) 79

Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone.

Dimensional tolerances were not confirmed.

Reviewed By _______

Project Name Lehigh Permanente Rock Testing


Lithology Greenstone Breccia, green/gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 470.1'-470.6'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Core Preparation

Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, green/gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 470.1'-470.6'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Project Number 233001329 Lab ID UCR-4

Stantec Laboratory Testing Project Number 233001329 Project Name Lehigh Permanente Rock Testing Test ID LCZ - 4 Hole Number 6T-1-2018-1 Depth 470.1'-470.6' Stantec Consulting Services Inc.

Stantec Laboratory Testing

Project Number 233001329

Project Name Lehigh Permanente Rock Testing

Test ID LCR-4

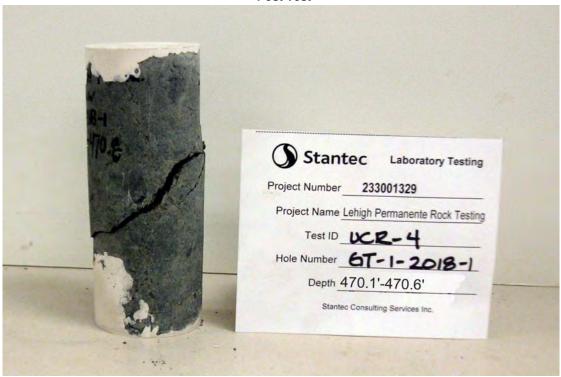
Hole Number 6T-1-2018-1

Depth 470.1'-470.6'

Stantec Consulting Services Inc.

Post Test

Project Name Lehigh Permanente Rock Testing


Lithology Greenstone Breccia, green/gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 470.1'-470.6'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Lab ID _

Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C

Project Name Lehigh Perma	Project Number 23300132	29		
Lithology Greenstone E	Breccia, green/gray, hard		Lab ID <u>UCR-5</u>	
Hole Number GT-1-2018-1	Depth (ft) 406	3.2'-406.7'	Date Received 11/01/201	18
Temperature (°C)22	Moisture Condition As	Prepared, M	oist Date Tested 11/13/201	18
Side Planeness Pass	Height (in)	5.861	Wet Unit Weight (pcf) 178	3.6
Perpendicularity Pass	Diameter (in)		Dry Unit Weight (pcf) N/A	
End Planeness Pass	Area (in²)	4.461	Moisture Content (%) N/A	
Parallelism Pass	. ,		· /	
Loading Rate (lbf/sec) Peak Load (lbf) Failure Type Compressive Strength (psi) Compressive Strength (tsf) Compressive Strength (tsf)	69746 Shear 15630 2250720		Failure Sketches	
Comments				

Reviewed By _______

Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, green/gray, hard

Hole Number GT-1-2018-1 Depth (ft) 406.2'-406.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Project Number 233001329 Lab ID UCR-5

As Received Stantec Laboratory Testing Project Number 233001329 Project Name Lehigh Permanente Rock Testing Test ID UCR-5 Hole Number 6T-1-2018-1 Depth 406.2-406.7 Stantec Consulting Services Inc.

Core Preparation

Stantec Laboratory Testing

Project Number 233001329

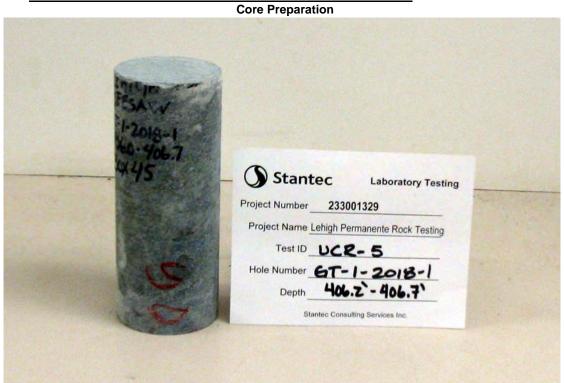
Project Name Lehigh Permanente Rock Testing

Test ID UCR-5

Hole Number 6T-1-2018-1

Depth 406.2-406.7

Stantec Consulting Services Inc.



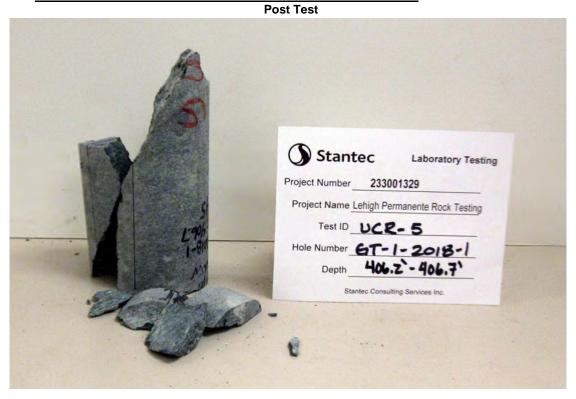
Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, green/gray, hard

Hole Number GT-1-2018-1 Depth (ft) 406.2'-406.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test



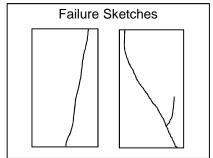
Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, green/gray, hard

Hole Number GT-1-2018-1 Depth (ft) 406.2'-406.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Uniaxial Compressive Strength of Intact Rock Core Specimens


ASTM D 7012, Method C

Project Name L	ehigh Perma.	Project Number	233001329		
Lithology C	Greenstone B	Lab ID	UCR-6		
Hole Number C	ST-1-2018-1	Depth (ft) 285.2'-285.7'		Date Received	11/01/2018
_					_
Temperature (°C)	22	Moisture Condition A	s Prepared, Moist	Date Tested	11/13/2018
Side Planeness	N/A	Height (in)	5.827	Wet Unit Weight (pcf)	164.8
Perpendicularity	N/A	Diameter (in)	2.377	Dry Unit Weight (pcf)	N/A
End Planeness	N/A	Area (in²)	4.436	Moisture Content (%)	N/A
Parallelism	N/A	· · · <u>-</u>		` ' -	
Dimensions were n	ot confirmed.				

Loading Rate (lbf/sec) 7
Peak Load (lbf) 1325

Failure Type Shear

Compressive Strength (psi) 299
Compressive Strength (psf) 43056
Compressive Strength (tsf) 22

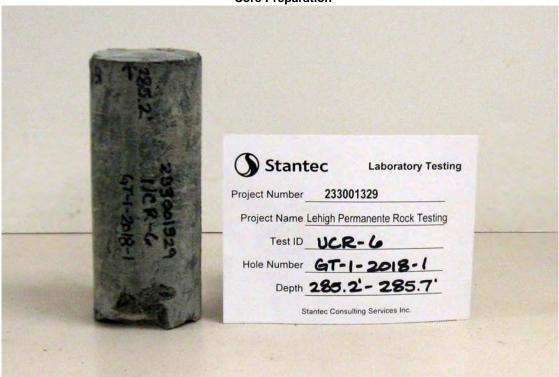
Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone.

Dimensional tolerances were not confirmed.

Reviewed By _______

Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, green/gray, moderately hard


Hole Number GT-1-2018-1 Depth (ft) 285.2'-285.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Project Number 233001329 Lab ID UCR-6

As Received Stantec Laboratory Testing Project Number 233001329 Project Name Lehigh Permanente Rock Testing Test ID UCR-C Hole Number GT-I- 2013-1 Depth 285.2- 285.7 Stanted Consulting Stantes Inc.

Core Preparation

Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, green/gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 285.2'-285.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

Project Name Lehigh Permanente Rock Testing

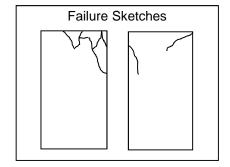
Lithology Greenstone Breccia, green/gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 285.2'-285.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C


Project Name	Lehigh Perma	Project Number	233001329		
Lithology	Greenstone E	Breccia, gray, moderate	ely hard	Lab ID	UCR-7
Hole Number	GT-1-2018-1	Depth (ft)	444.4'-444.9'	Date Received	11/01/2018
					_
Temperature (°C)	22	Moisture Condition	As Prepared, Moist	Date Tested	11/15/2018
-		•			
Side Planeness	N/A	Height (in)	5.935	Wet Unit Weight (pcf)	170.9
Perpendicularity	N/A	Diameter (in)	2.388	Dry Unit Weight (pcf)	N/A
End Planeness	N/A	Area (in ²)	4.478	Moisture Content (%)	N/A
Parallelism	N/A	•		•	

Dimensions were not confirmed.

Loading Rate (lbf/sec) 7 Peak Load (lbf) 1209

Failure Type Undetermined

Compressive Strength (psi) 270
Compressive Strength (psf) 38880
Compressive Strength (tsf) 19

Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone.

Dimensional tolerances were not confirmed.

Reviewed By ______

Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 444.4'-444.9'

Test Type Uniaxial Compressive Strength of Intact Rock Core

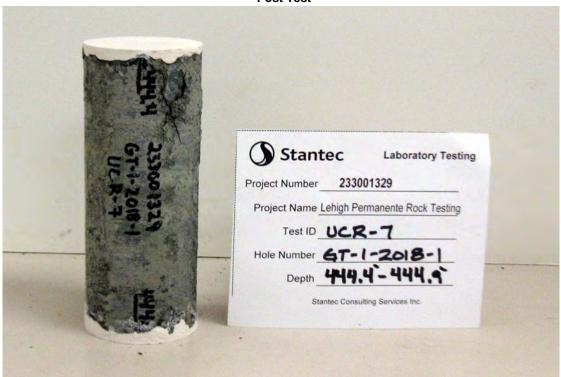
Project Number 233001329 Lab ID UCR-7

As Received Stantec Laboratory Testing Project Number 233001329 Project Name Lehigh Permanente Rock Testing Test ID UCR-7 Hole Number 4T-1-2018-1 Depth 449.4-444.5 Stantec Consulting Services Inc.

Core Preparation

Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, gray, moderately hard


Hole Number GT-1-2018-1 Depth (ft) 444.4'-444.9'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Project Number 233001329 Lab ID UCR-7

Core Preparation Stantec Laboratory Testing Project Number 233001329 Project Name Lehigh Permanente Rock Testing Test ID UCR-7 Hole Number 4T-1-2018-1 Depth 449.4-449.5 Stantec Consulting Services Inc.

Post Test

UCR-7

Project Number 233001329

Lab ID

Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 444.4'-444.9'

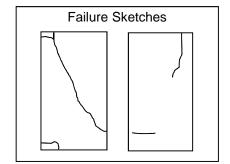
Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C

Project Name	Lehigh Perma	anente Rock Testing	Project Number	233001329	
Lithology	Lithology Breccia, dark gray, moderately hard				UCR-8
Hole Number	GT-1-2018-1	Depth (ft)	68.8'-69.2'	Date Received	11/01/2018
Temperature (°C)	22	Moisture Condition	As Prepared, Moist	Date Tested	11/15/2018
			·		
Side Planeness	N/A	Height (in)	3.715	Wet Unit Weight (pcf)	147.1
Perpendicularity	N/A	Diameter (in)	2.419	Dry Unit Weight (pcf)	N/A


N/A **End Planeness** Parallelism N/A Area (in²) 4.596 Moisture Content (%) N/A

Dimensions were not confirmed.

Loading Rate (lbf/sec) Peak Load (lbf)

Failure Type Shear

Compressive Strength (psi) 182 Compressive Strength (psf) Compressive Strength (tsf)

Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone.

Dimensional tolerances were not confirmed.

Specimen doesn't meet 2:1 height to diameter ratio requirement, tested upon client's request.

Reviewed By

Reported By: JW Report Date: 11/15/2018

Project Name Lehigh Permanente Rock Testing

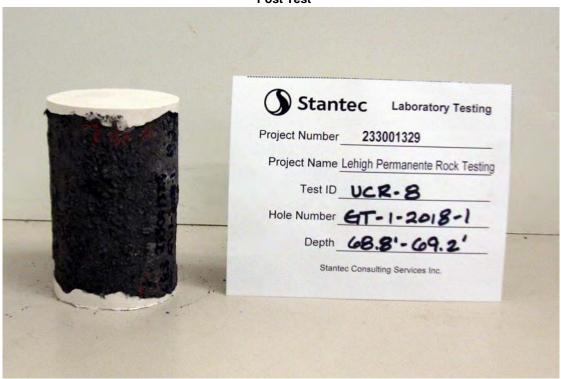
Lithology Breccia, dark gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 68.8'-69.2'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Core Preparation

Project Name Lehigh Permanente Rock Testing


Lithology Breccia, dark gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 68.8'-69.2'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

UCR-8

Project Number 233001329

Lab ID

Project Name Lehigh Permanente Rock Testing

Lithology Breccia, dark gray, moderately hard

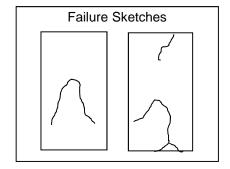
Hole Number GT-1-2018-1 Depth (ft) 68.8'-69.2'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C


Project Name I	Lehigh Perma	Project Number	233001329		
Lithology I	Breccia, gray,	Lab ID	UCR-9		
Hole Number (GT-1-2018-1	Depth (ft)	4.2'-4.7'	Date Received	11/01/2018
Temperature (°C)	22	Moisture Condition	As Prepared, Moist	Date Tested	11/15/2018
Side Planeness	N/A	Height (in)	5.881	Wet Unit Weight (pcf)	157.4
Perpendicularity	N/A	Diameter (in)	2.383	Dry Unit Weight (pcf)	N/A
End Planeness	N/A	Area (in²)	4.458	Moisture Content (%)	N/A
Parallelism -	N/A	•			

Dimensions were not confirmed.

Loading Rate (lbf/sec) 14
Peak Load (lbf) 5732

Failure Type Undetermined

Compressive Strength (psi) 1286
Compressive Strength (psf) 185184
Compressive Strength (tsf) 93

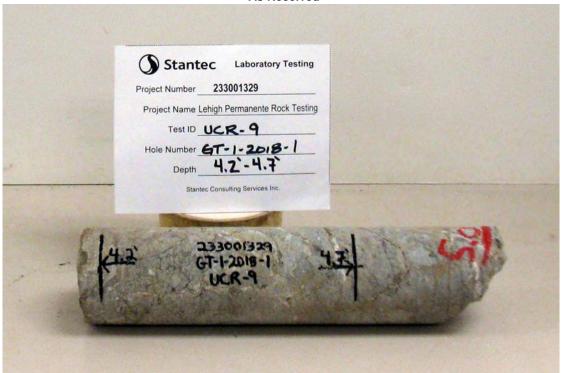
Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone.

Dimensional tolerances were not confirmed.

Reviewed By _______

Reported By: JW Report Date: 11/15/2018

Project Name Lehigh Permanente Rock Testing


Lithology Breccia, gray, moderately hard

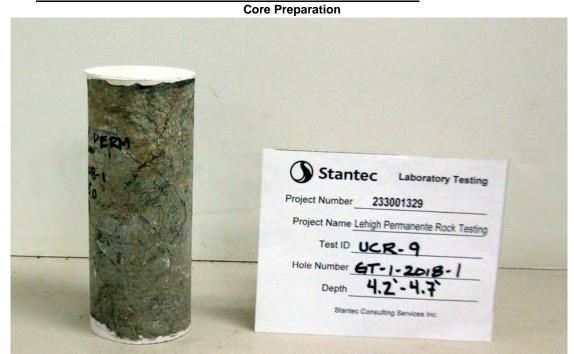
Hole Number GT-1-2018-1 Depth (ft) 4.2'-4.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Project Number 233001329 Lab ID UCR-9

As Received

Core Preparation



Project Name Lehigh Permanente Rock Testing

Lithology Breccia, gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 4.2'-4.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

UCR-9

Project Number 233001329

Lab ID

Project Name Lehigh Permanente Rock Testing

Lithology Breccia, gray, moderately hard

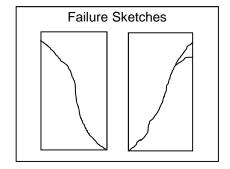
Hole Number GT-1-2018-1 Depth (ft) 4.2'-4.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C


Project Name Lehigh Permanente Rock Testing				Project Number	233001329
Lithology I	Breccia, gray,	moderately hard		Lab ID	UCR-10
Hole Number	GT-1-2018-1	Depth (ft)	128.2'-128.7'	Date Received	11/01/2018
_					
Temperature (°C)	22	Moisture Condition	As Prepared, Moist	Date Tested	11/15/2018
· · · · · · -			•		
Side Planeness	N/A	Height (in)	5.460	Wet Unit Weight (pcf)	158.5
Perpendicularity	N/A	Diameter (in)	2.405	Dry Unit Weight (pcf)	N/A
End Planeness	N/A	Area (in ²)	4.543	Moisture Content (%)	N/A

Parallelism N/A Dimensions were not confirmed.

Loading Rate (lbf/sec) 18
Peak Load (lbf) 721

Failure Type Shear

Compressive Strength (psi)	159
Compressive Strength (psf)	22896
Compressive Strength (tsf)	11

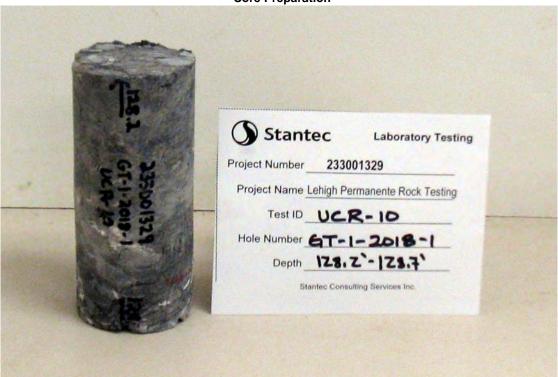
Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone.

Dimensional tolerances were not confirmed.

Reviewed By ______

Project Name Lehigh Permanente Rock Testing

Lithology Breccia, gray, moderately hard

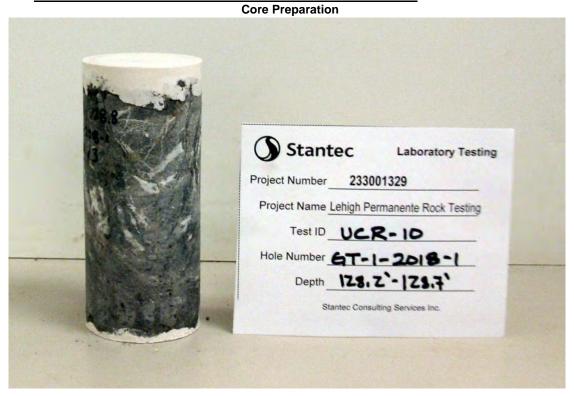

Hole Number GT-1-2018-1 Depth (ft) 128.2'-128.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Project Number 233001329 Lab ID UCR-10

As Received Stantec Laboratory Testing Project Number 233001329 Project Name Lehigh Permanente Rock Testing Test ID UCR-ID Hole Number 4T-I-2018-1 Depth 128.2-128.3 Stantec Consulting Services Inc.

Core Preparation



Project Name Lehigh Permanente Rock Testing

Lithology Breccia, gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 128.2'-128.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

UCR-10

Project Number 233001329

Lab ID

Project Name Lehigh Permanente Rock Testing

Lithology Breccia, gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 128.2'-128.7'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

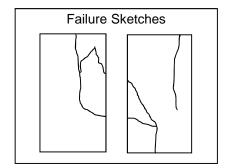
Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C

Project Name	Lehigh Perma	Project Number	233001329		
Lithology	Greenstone B	reccia, gray, moderat	ely hard	Lab ID	UCR-11
Hole Number	GT-1-2018-1	Depth (ft)	136.3'-137.0'	Date Received	11/01/2018
Temperature (°C)	22	Moisture Condition	As Prepared, Moist	Date Tested	11/13/2018
•					
Side Planeness	N/A	Height (in)	5.372	Wet Unit Weight (pcf)	156.5
Perpendicularity	N/A	Diameter (in)	2.402	Dry Unit Weight (pcf)	N/A
· ·		0		· ·	

Р **End Planeness** N/A Parallelism N/A

Area (in²) 4.532


Moisture Content (%) N/A

Dimensions were not confirmed.

Loading Rate (lbf/sec) ___ Peak Load (lbf) 1778

Failure Type Undetermined

Compressive Strength (psi) 392 Compressive Strength (psf) Compressive Strength (tsf)

Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone. Dimensional tolerances were not confirmed.

Reviewed By

Reported By: JW Report Date: 11/13/2018

Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, gray, moderately hard

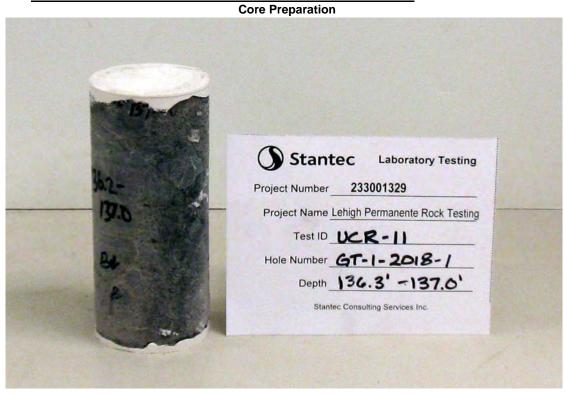
Hole Number GT-1-2018-1 Depth (ft) 136.3'-137.0'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Project Number 233001329 Lab ID UCR-11

As Received Stantec Laboratory Testing Project Number 233001329 Project Name Lehigh Permanente Rock Testing Test ID UCR-II Hole Number GT-I-2DI8-/ Depth 136.3' -137.0' Stantec Consulting Services Inc.

Core Preparation



Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 136.3'-137.0'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

Project Number 233001329

Lab ID UCR-11

Project Name Lehigh Permanente Rock Testing

Lithology Greenstone Breccia, gray, moderately hard

Hole Number GT-1-2018-1 Depth (ft) 136.3'-137.0'

Test Type Uniaxial Compressive Strength of Intact Rock Core

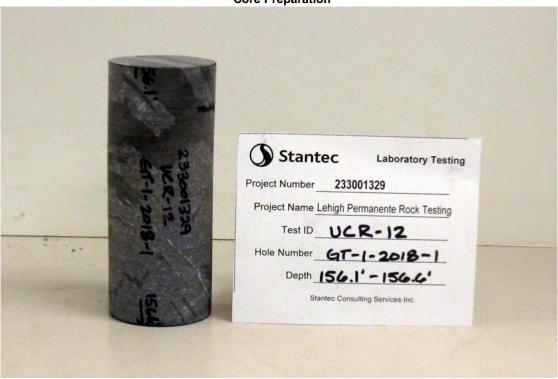
Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C

Project Name Lehigh Perm	anente Rock Testing		Project Number 2330	01329
Lithology Limestone, g	gray, hard, bedded		Lab ID UC	R-12
Hole Number GT-1-2018-1		56.1'-156.6'	Date Received 11/0	1/2018
Temperature (°C) 22	Moisture Condition A		<u> </u>	
Side Planeness Pass	Height (in)	5.805	Wet Unit Weight (pcf)	165.6
Perpendicularity Pass	Diameter (in)		Dry Unit Weight (pcf) N/A	
End Planeness Pass	Area (in²)	4.518	Moisture Content (%) N/A	
Parallelism Pass				
Loading Rate (lbf/sec) Peak Load (lbf) Failure Type Compressive Strength (psi) Compressive Strength (psf) Compressive Strength (tsf)	33525 Shear 7420 1068480		Failure Sketches	
Comments				
			<u> </u>	

Reviewed By ______

Project Name Lehigh Permanente Rock Testing


Lithology Limestone, gray, hard, bedded

Hole Number GT-1-2018-1 Depth (ft) 156.1'-156.6'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Core Preparation

Project Name Lehigh Permanente Rock Testing

Lithology Limestone, gray, hard, bedded

Hole Number GT-1-2018-1 Depth (ft) 156.1'-156.6'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

UCR-12

Project Number 233001329

Lab ID

Project Name Lehigh Permanente Rock Testing

Lithology Limestone, gray, hard, bedded

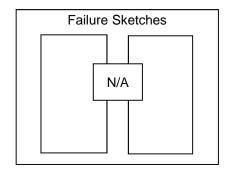
Hole Number GT-1-2018-1 Depth (ft) 156.1'-156.6'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C


Project Name Lehi	pject Name Lehigh Permanente Rock Testing				233001329
Lithology Lime	estone, gray, hard			Lab ID	UCR-13
Hole Number GT-	1-2018-1	Depth (ft)	119.5'-120.0'	Date Received	11/01/2018
Temperature (°C)	22 Moisture	Condition	As Prepared, Moist	Date Tested	11/15/2018
			-		

Side Planeness Height (in) 5.891 Wet Unit Weight (pcf) **Pass** 166.9 Perpendicularity Pass Diameter (in) 2.394 Dry Unit Weight (pcf) N/A Area (in²) **End Planeness** 4.499 Moisture Content (%) N/A **Pass** Parallelism Pass

Loading Rate (lbf/sec) 103
Peak Load (lbf) 54224

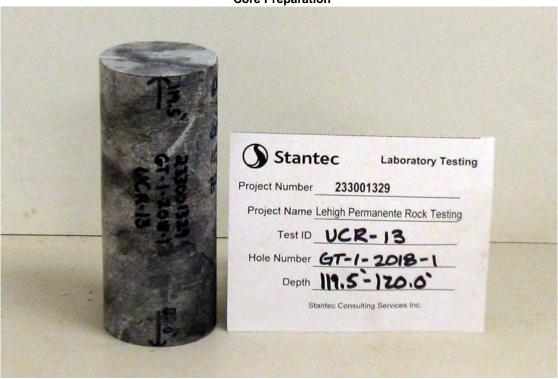
Failure Type Undetermined

Compressive Strength (psi) 12050
Compressive Strength (psf) 1735200
Compressive Strength (tsf) 868

Comments Testing load indicated compressive failure of specimen, no external visual sign of failure was observed.

Reviewed By____

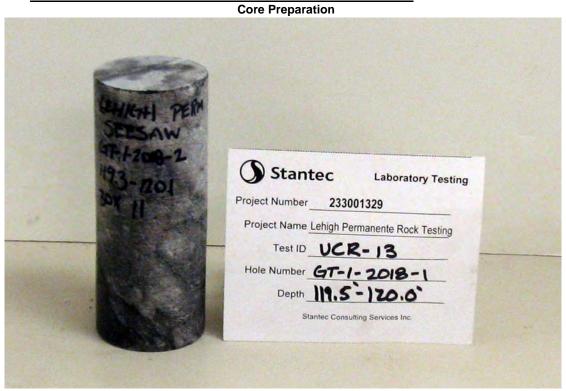
Project Name Lehigh Permanente Rock Testing


Lithology Limestone, gray, hard

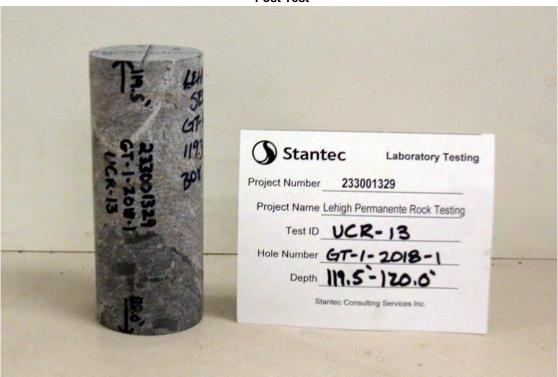
Hole Number GT-1-2018-1 Depth (ft) 119.5'-120.0'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Core Preparation



Project Name Lehigh Permanente Rock Testing


Lithology Limestone, gray, hard

Hole Number GT-1-2018-1 Depth (ft) 119.5'-120.0'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

UCR-13

Project Number 233001329

Lab ID


Project Name Lehigh Permanente Rock Testing

Lithology Limestone, gray, hard

Hole Number GT-1-2018-1 Depth (ft) 119.5'-120.0'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C

Project Name Lehigh Pern	Project Number	233001329		
Lithology Limestone,	Lab ID	UCR-14		
Hole Number GT-1-2018-	1 Depth (ft) <u>1</u>	105.6'-106.0'	Date Received	11/01/2018
Temperature (°C) 22	Moisture Condition	As Prepared, Mo	oist Date Tested	11/15/2018
Side Planeness Pass	Height (in)	4.796	Wet Unit Weight (pcf)	166.1
Perpendicularity Pass	Diameter (in)	2.391	Dry Unit Weight (pcf)	N/A
End Planeness Pass	Area (in²)	4.491	Moisture Content (%)	N/A
Parallelism Pass	- · · · · -		,	
Loading Rate (lbf/sec) Peak Load (lbf) Failure Type Compressive Strength (psi) Compressive Strength (tsf)	35285 Undetermined 7860 1131840		Failure Sketches	
Comments				
				_

Reviewed By _____

Project Name Lehigh Permanente Rock Testing

Lithology Limestone, gray, hard

Hole Number GT-1-2018-1 Depth (ft) 105.6'-106.0'

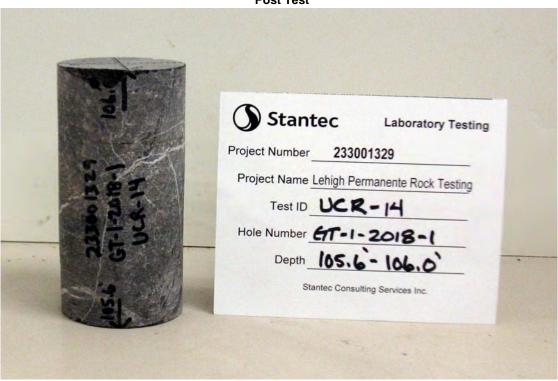
Test Type Uniaxial Compressive Strength of Intact Rock Core

Project Number 233001329 Lab ID UCR-14

As Received Stantec Laboratory Testing Project Number 233001329 Project Name Lehigh Permanente Rock Testing Test ID UCR - IH Hole Number 4T-1-2018-1 Depth 105.6-106.0 Stantec Consulting Services Inc.

Core Preparation

Project Name Lehigh Permanente Rock Testing


Lithology Limestone, gray, hard

Hole Number GT-1-2018-1 Depth (ft) 105.6'-106.0'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

UCR-14

Project Number 233001329

Lab ID

Project Name Lehigh Permanente Rock Testing

Lithology Limestone, gray, hard

Hole Number GT-1-2018-1 Depth (ft) 105.6'-106.0'

Test Type Uniaxial Compressive Strength of Intact Rock Core

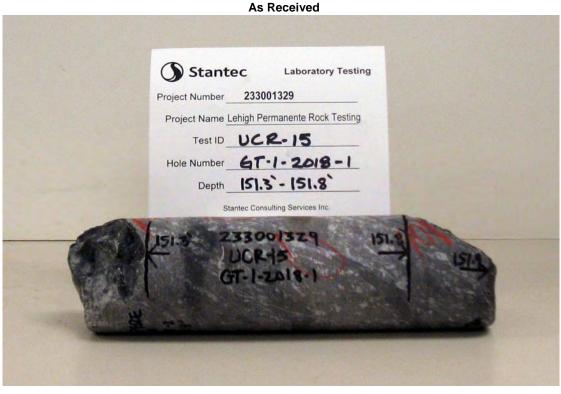
Post Test

Uniaxial Compressive Strength of Intact Rock Core Specimens

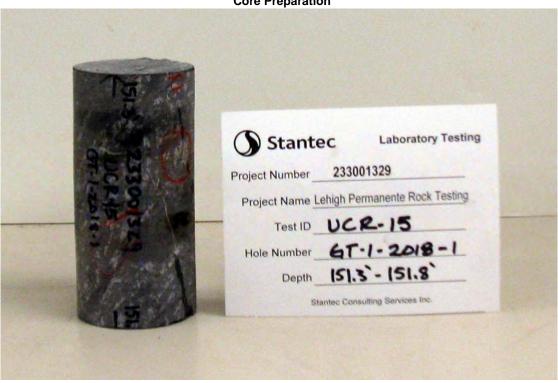
ASTM D 7012, Method C

Project Name Lehigh Permanente Rock Testing					Project Num	ber 2330	001329
Lithology Limestone, gray, hard					Lab	o ID UC	CR-15
Hole Number G	T-1-2018-1	Depth (ft) 1	51.3'-151.8'		Date Recei	ved 11/0	1/2018
Temperature (°C)	22	Moisture Condition A		Moist	Date Tes	sted 11/1	3/2018
Side Planeness	Pass	Height (in)	4.964	W	et Unit Weight (pcf)	165.9
Perpendicularity	Pass	Diameter (in)	2.393		ry Unit Weight (
End Planeness	Pass	Area (in ²)	4.497		oisture Content		
Parallelism	Pass	` ' <u>-</u>				` /	
	x Load (lbf) _ ailure Type <u>L</u> rength (psi) _ ength (psf) _	Undetermined 6790		F	ailure Sketches		
Comments							
_							

Reviewed By ______



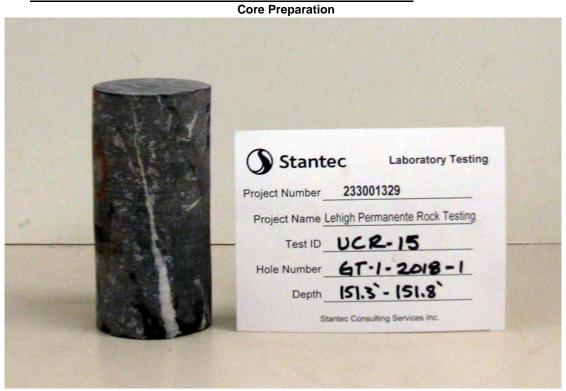
Project Name Lehigh Permanente Rock Testing


Lithology Limestone, gray, hard

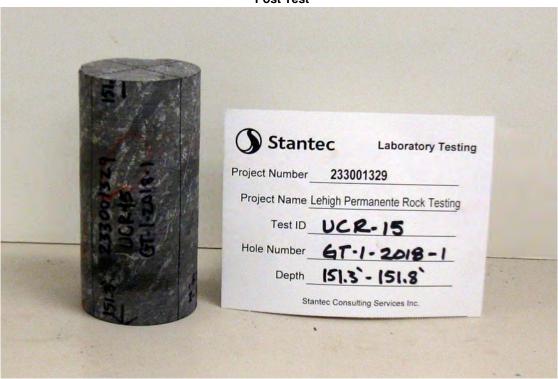
Hole Number GT-1-2018-1 Depth (ft) 151.3'-151.8'

Test Type Uniaxial Compressive Strength of Intact Rock Core

Core Preparation



Project Name Lehigh Permanente Rock Testing


Lithology Limestone, gray, hard

Hole Number GT-1-2018-1 Depth (ft) 151.3'-151.8'

Test Type Uniaxial Compressive Strength of Intact Rock Core

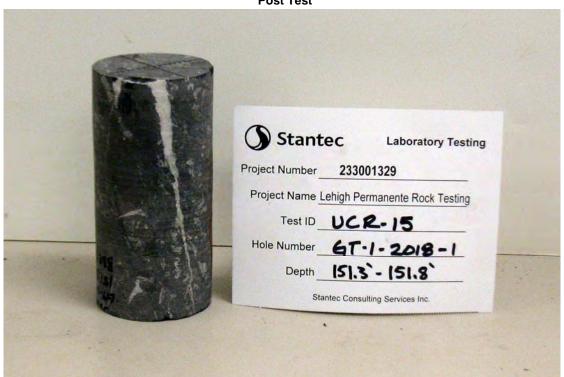
Post Test

Photo Report

UCR-15

Project Number 233001329

Lab ID


Project Name Lehigh Permanente Rock Testing

Lithology Limestone, gray, hard

Hole Number GT-1-2018-1 Depth (ft) 151.3'-151.8'

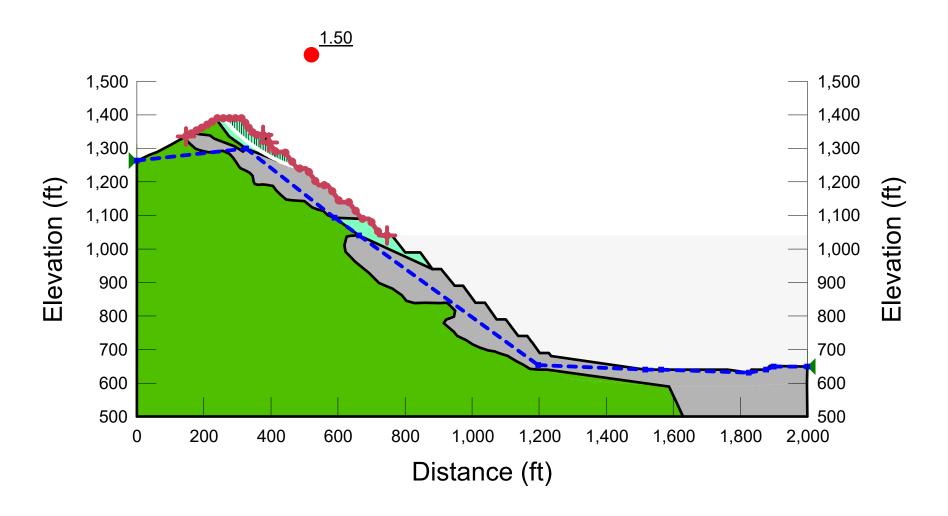
Test Type Uniaxial Compressive Strength of Intact Rock Core

Post Test

NORTH HIGHWALL RESERVE GEOTECHNICAL EVALUATION

Appendix

APPENDIX B

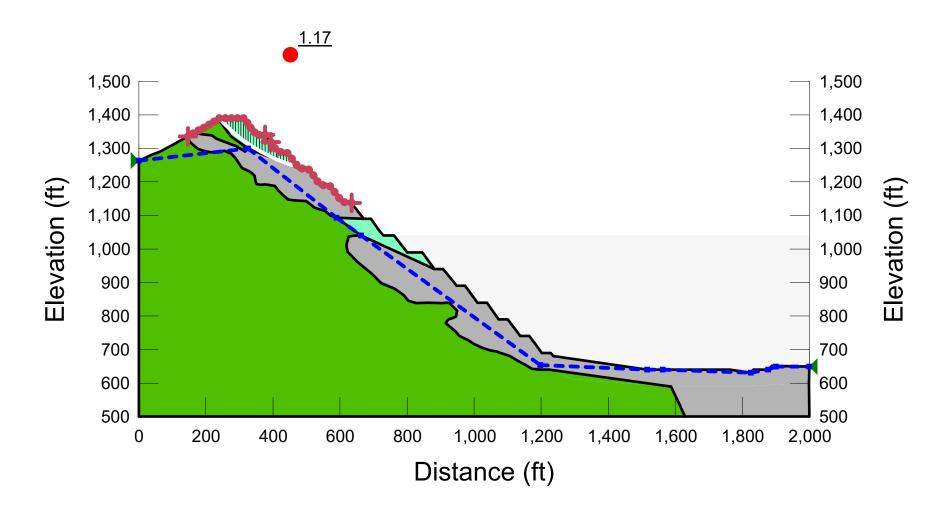

Slope Stability Analyses

Parent: 03. Mine Plan (Static with Drawdown)

Name: 03a. Upper Slope

Method: Spencer Factor of Safety: 1.50 Horz Seismic Coef.:

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1

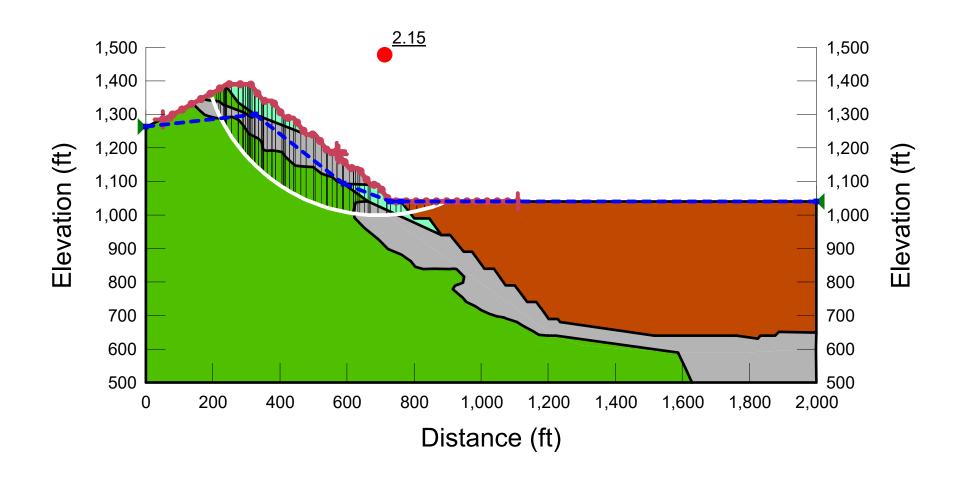


Parent: 04. Mine Plan (Pseudostatic with Drawdown)

Name: 04a. Upper Slope

Method: Spencer Factor of Safety: 1.17 Horz Seismic Coef.: 0.15

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1


Parent:

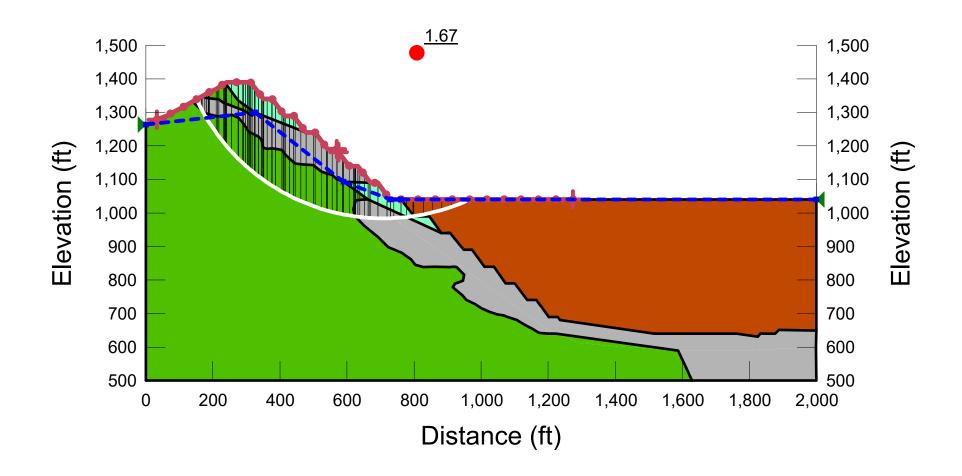
Name: 05. Reclaimed Surface (Static with Drawdown)

Method: Spencer

Factor of Safety: 2.15 Horz Seismic Coef.:

n	color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
		Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
		Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
		Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1
		Suitable Surplus Soil	Mohr-Coulomb	120	200	30	1

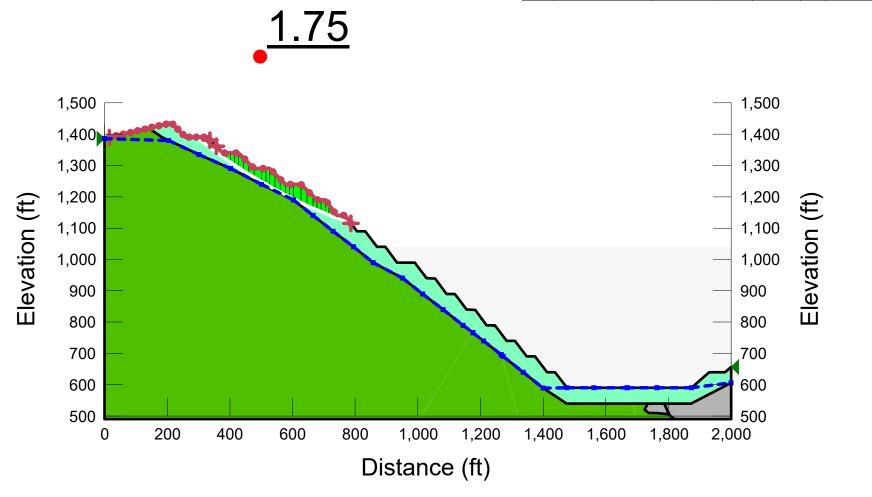
Parent:


Name: 06. Reclaimed Surface (Pseudostatic with Drave

Method: Spencer

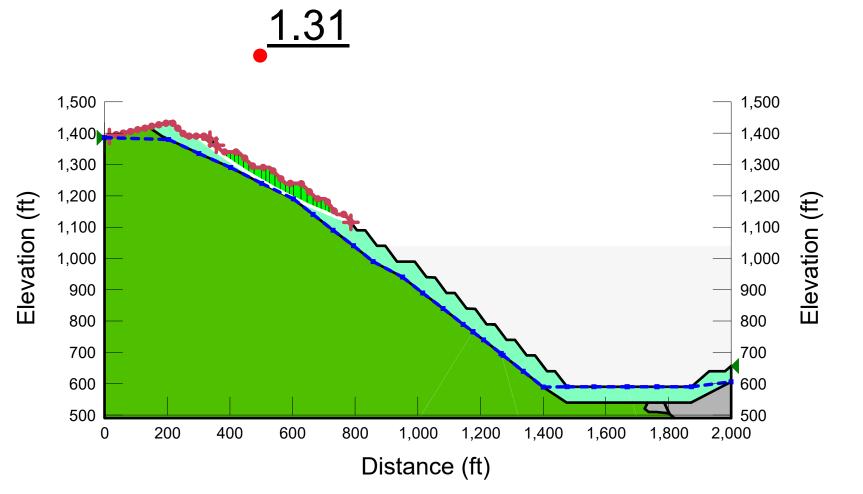
Factor of Safety: 1.67

Horz Seismic Coef.: 0.15


а	(WG)	DMMI)	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
		Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
		Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
		Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1
		Suitable Surplus Soil	Mohr-Coulomb	120	200	30	1

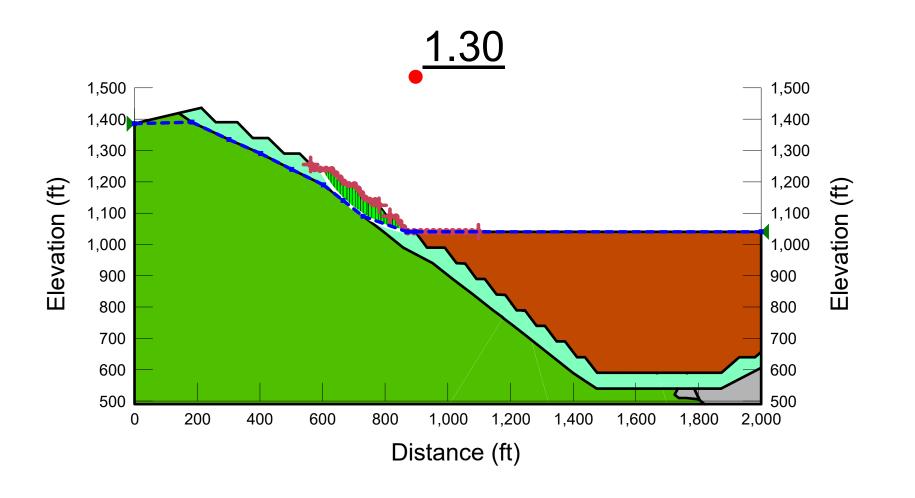
Title: Seesaw - Section B Name: 03a. Upper Slope

Method: Spencer


Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1

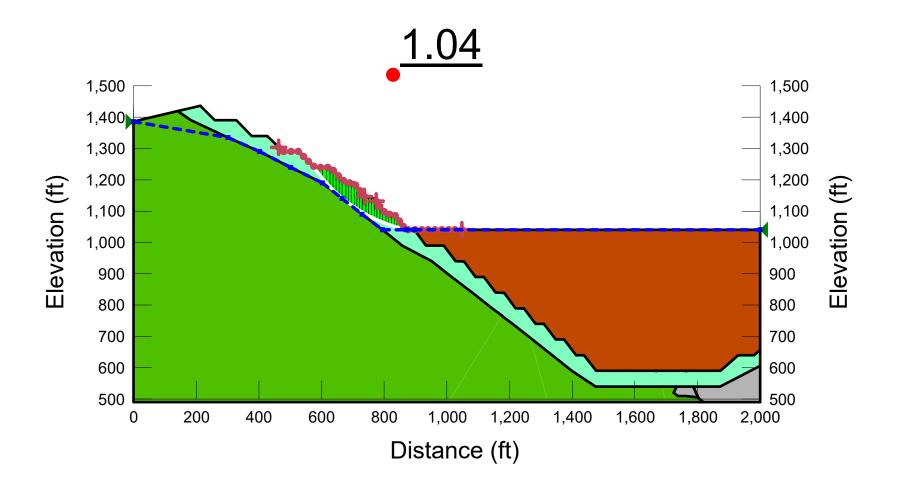
Title: Seesaw - Section B Name: 04a. Upper Slope

Method: Spencer


Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1

Name: 05. Reclaimed Surface (Static with Drawdown)

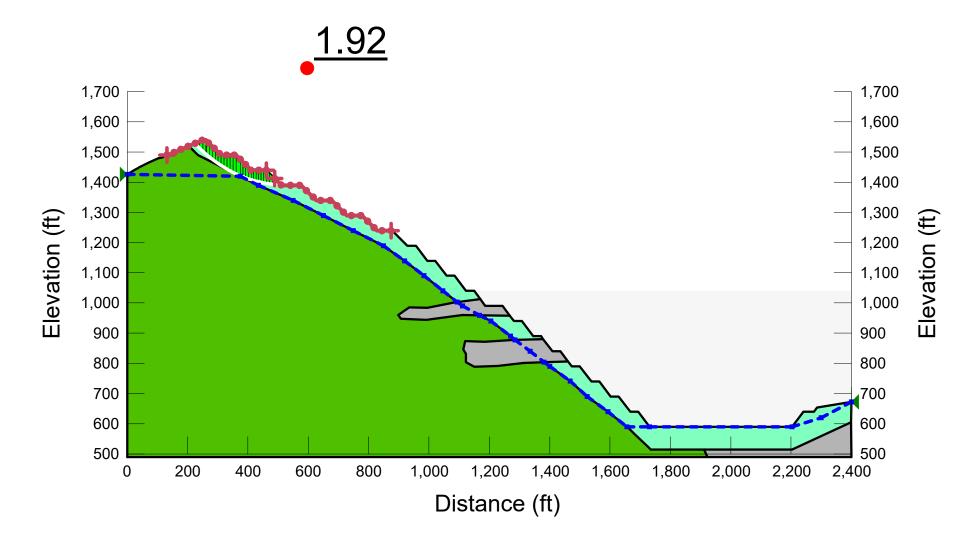
Method: Spencer


Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Suitable Surplus Soil	Mohr-Coulomb	120	200	30	1

Name: 06. Reclaimed Surface (Pseudostatic with Drawdown)

Method: Spencer

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Suitable Surplus Soil	Mohr-Coulomb	120	200	30	1



Parent: 03. Mine Plan (Static with Drawdown)

Name: 03a. Upper Slope

Method: Spencer Factor of Safety: 1.92 Horz Seismic Coef.:

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1

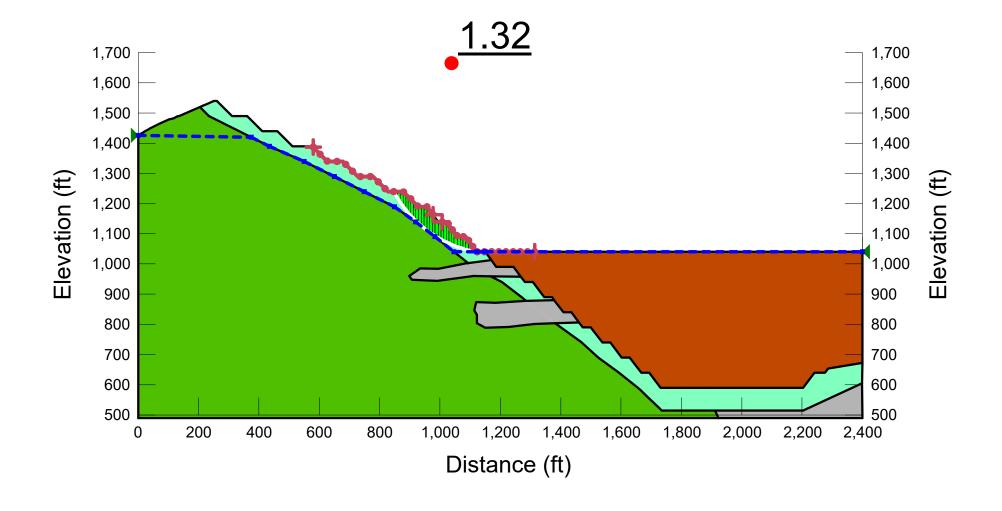
Parent: 04. Mine Plan (Pseudostatic with Drawdown)

Name: 04a. Upper Slope

Method: Spencer

Factor of Safety: 1.41 Horz Seismic Coef.: 0.15

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1

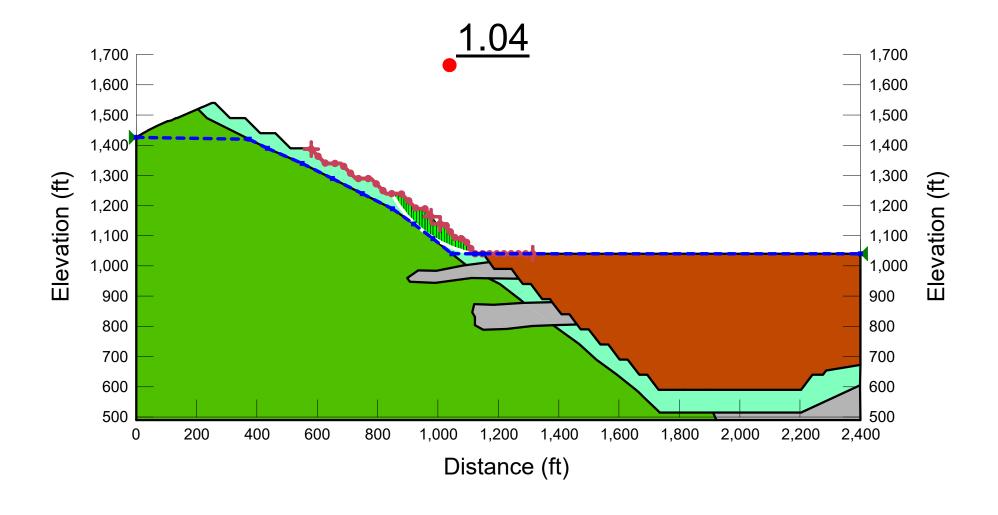


Parent:

Name: 05. Reclaimed Surface (Static with Drawdown)

Method: Spencer Factor of Safety: 1.32 Horz Seismic Coef.:

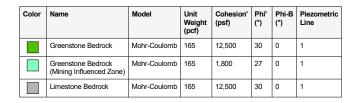
Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Suitable Surplus Soil	Mohr-Coulomb	120	200	30	1

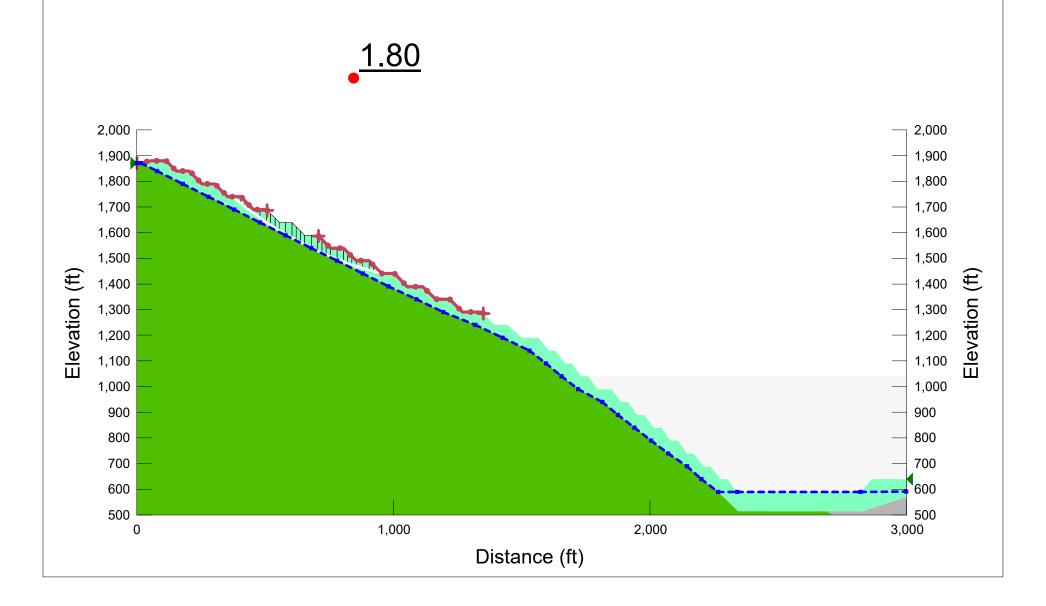

Parent:

Name: 06. Reclaimed Surface (Pseudotatic with Drawdown)

Method: Spencer

Factor of Safety: 1.04 Horz Seismic Coef.: 0.15

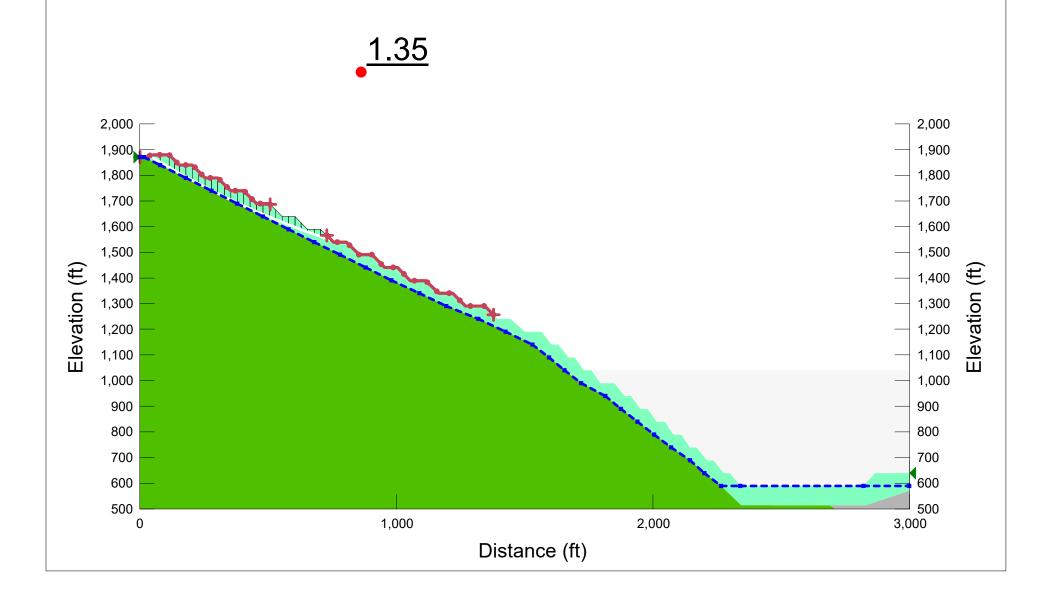

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Suitable Surplus Soil	Mohr-Coulomb	120	200	30	1



Parent: 03. Mine Plan (Static with Drawdown)

Name: 03a. Upper Slope

Method: Spencer Factor of Safety: 1.80 Horz Seismic Coef.:

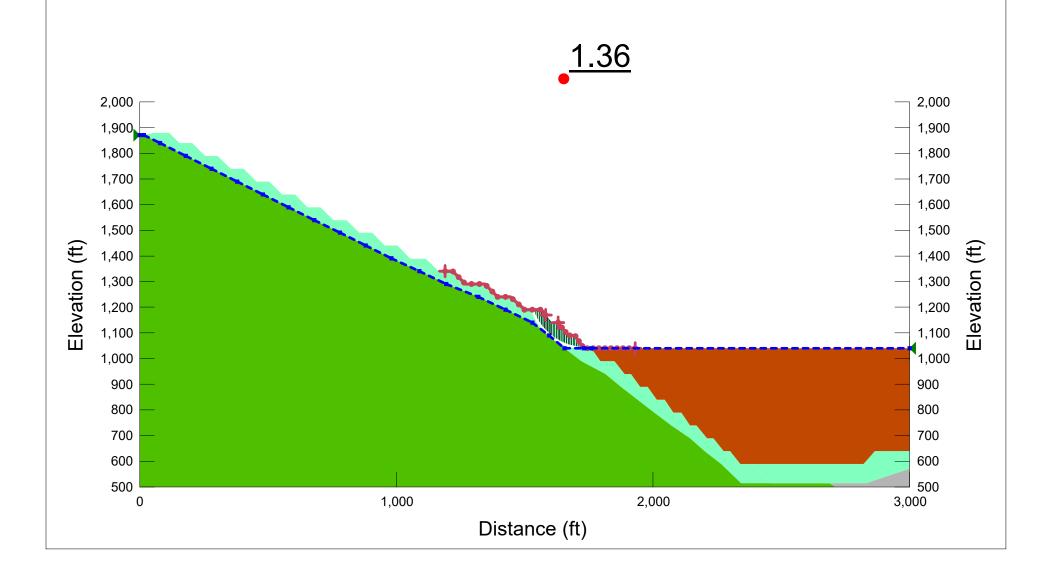


Parent: 04. Mine Plan (Pseudostatic with Drawdown)

Name: 04a. Upper Slope

Method: Spencer Factor of Safety: 1.35 Horz Seismic Coef.: 0.15

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	0	1
	Greenstone Bedrock (Mining Influenced Zone) Mohr-Coulomb		165	1,800	27	0	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	0	1

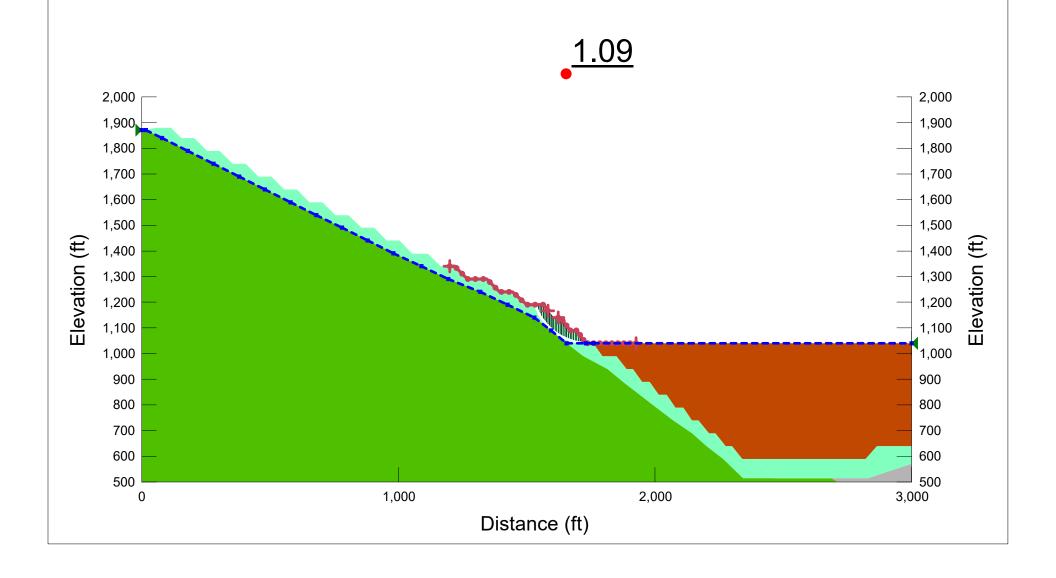


Parent:

Name: 05. Reclaimed Surface (Static with Drawdown)

Method: Spencer Factor of Safety: 1.36 Horz Seismic Coef.:

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	0	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	0	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	0	1
	Suitable Surplus Soil	Mohr-Coulomb	120	200	30	0	1

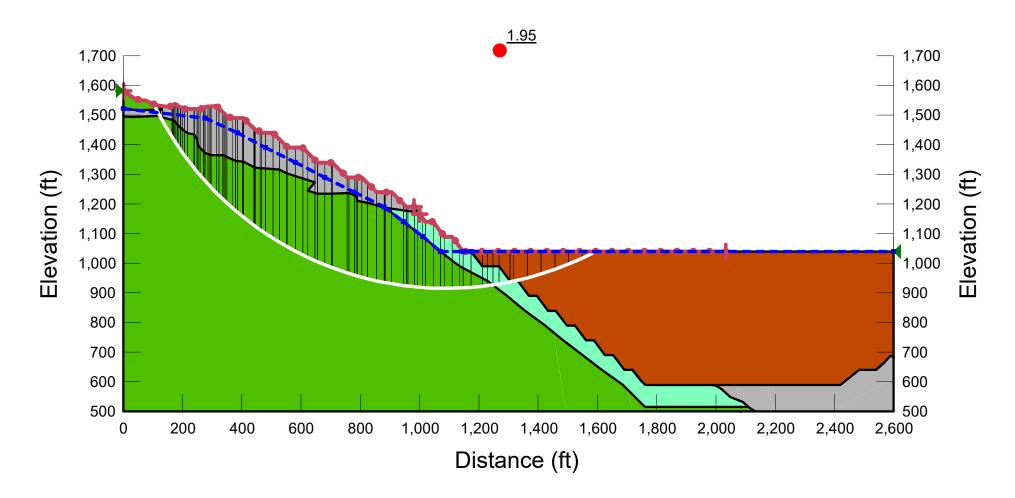


Parent:

Name: 06. Reclaimed Surface (Pseudostatic with Drawdown)

Method: Spencer Factor of Safety: 1.09 Horz Seismic Coef.: 0.15

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-B (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	0	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	0	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	0	1
	Suitable Surplus Soil	Mohr-Coulomb	120	200	30	0	1

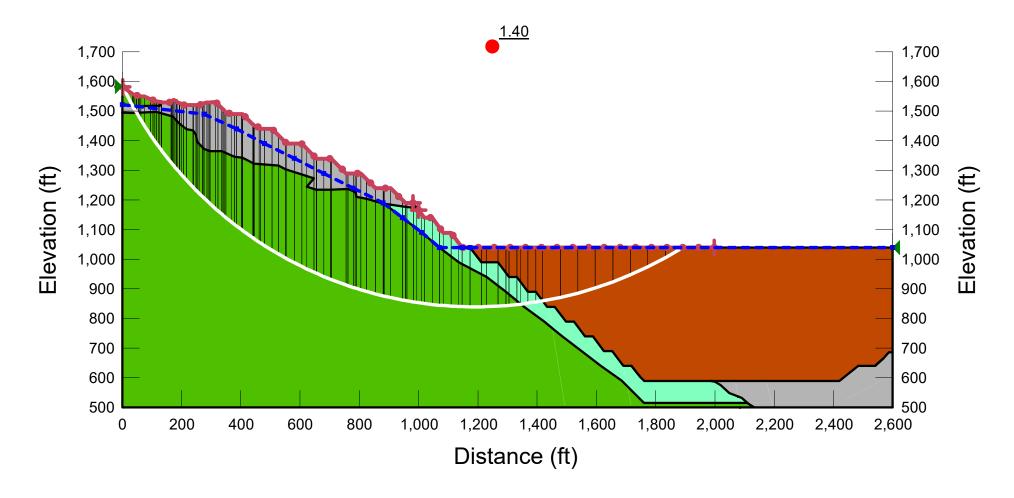


Parent:

Name: 05. Reclaimed Surface (Static with Drawdown)

Method: Spencer Factor of Safety: 1.95 Horz Seismic Coef.:

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
	Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1
	Suitable Surplus Soil	Mohr-Coulomb	120	200	30	1


Parent:

Name: 06. Reclaimed Surface (Pseudostatic with Drawdown)

Method: Spencer

Factor of Safety: 1.40 Horz Seismic Coef.: 0.15

טג	V I I	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
		Greenstone Bedrock	Mohr-Coulomb	165	12,500	30	1
		Greenstone Bedrock (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	1
		Limestone Bedrock	Mohr-Coulomb	165	12,500	30	1
		Suitable Surplus Soil	Mohr-Coulomb	120	200	30	1

Appendix

APPENDIX C

Seismic Displacement Analyses

North Highwall Reserve Seismic Displacement Analysis

Castian		Yield Acceleration	Average Failure	Seismic D	isplacement (in) (Bra	y and Travasarou
Section		ky (g)	Surface Height (ft)	Median	16% exceedence	84% exceedence
Section A	Upper Slope	na	na	na	na	na
Section A	Reclaimed	na	na	na	na	na
Section B	Upper Slope	na	na	na	na	na
Section B	Reclaimed	0.18	49	2	5	1
Section C	Upper Slope	na	na	na	na	na
Section C	Reclaimed	0.185	40	2	4	1
Section D	Upper Slope	na	na	na	na	na
Section B	Reclaimed	0.205	48	2	3	1
Section E	Reclaimed	na	na	na	na	na

Based on: Simplified Procedure for Estimating Earthquake Induced Deviatoric Slope Displacements

by Jonathan D. Bray and Thaleia Travasarou

Journal of Geotechnical and Geonvironmental Engineering, ASCE, V. 133(4), pp. 381-392, April 2007

MODEL INPUTS:	Value	Reference
Moment Magnitude Mw	7.1	Golder
PGA	0.6g	Golder
Non-ZeroStandard Deviation	0.66	Bray & Travasarou paper
Ts Coefficient	1.5	Bray & Travasarou paper

APPENDIX G-3 NORTH QUARRY BACKFILL GEOTECHNICAL EVALUATION

North Quarry Backfill Geotechnical Evaluation

Permanente Quarry

April 5, 2019

Prepared for:

Lehigh Southwest Cement Company, Division of Lehigh Cement Company LLC Heidelberg Cement Group

Prepared by:

Stantec Consulting Services Inc. American Plaza II 57 W. 200 So., Suite 500 Salt Lake City, UT 84101

Revision	Description	Author		Quality Cho	Independent Review		
3	Client Comments	Michael Davis	4/5/19	Paul Kos	4/5/19	Greg Gold	4/5/19
2	Client Review	Michael Davis	2/1/19	Paul Kos	2/1/19	Greg Gold	2/1/19
1	For Comment	Michael Davis	MD	Paul Kos	PK	Greg Gold	GG
0	For Comment	Michael Davis	11/28/18	Paul Kos	11/28/18	Greg Gold	11/28/18
В	Internal Review	Michael Davis	11/16/18	Jennifer Van Pelt	JVP	Greg Gold	GG
Α	Initial Draft	Michael Davis	11/15/18	Toni Jack	11/15/18	Paul Kos	11/15/18

Sign-off Sheet

This document entitled North Quarry Backfill Geotechnical Evaluation was prepared by Stantec Consulting Services Inc. (Stantec) for the account of Lehigh Southwest Cement Company (Lehigh), a subsidiary of Lehigh Hanson, Inc. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party because of decisions made or actions taken based on this document.

Prepared by ______(signature)

Michael Davis

Reviewed by Melson Kawamura

(signature)

Nelson Kawamura

Approved by Jegorg Hold

(signature)

Greg Gold

Table of Contents

EXE	ECUTIVE SUMMARY	1
ABB	BREVIATIONS	
GLO	DSSARY	ا
1.0	INTRODUCTION	
1.1	PURPOSE	
1.2	PROJECT BACKGROUND	
1.3	SCOPE OF WORK	1.2
2.0	NORTH QUARRY	2.1
2.1	NORTH QUARRY MINE PLAN	2.1
2.2	RECLAMATION PLAN	
2.3	FINAL SURFACE	2.1
3.0	QUARRY BACKFILL SPECIFICATIONS	2.4
3.0 3.1	MATERIAL SPECIFICATION	
3.2	BACKFILL SPECIFICATION	
4.0	GEOTECHNICAL STABILITY	4.1
5.0	SUMMARY	5.1
6.0	CONCLUSION	6.1
7.0	REFERENCES	7.1
FIGU	URES	7.1
LIST	T OF TABLES	
Table	le 3.1 Material Specifications	3.1
Table	le 3.2 Lift Thickness	3.2
	le 3.3 Quarry Backfill Plan Summary	
	le 4.1 Stability Analyses	
	le 4.2 Geotechnical Strength Parameters	
rable	le 4.3 Geotechnical Stability Analyses Results	4.2

LIST OF FIGURES

- Figure 1.1 Permanente Quarry Regional Location Map Figure 1.2 Permanente Quarry Project Overview Figure 2.1 Permanente Quarry North Quarry Backfill Existing Topography

NORTH QUARRY BACKFILL GEOTECHNICAL EVALUATION

Figure 2.2 Permanente Quarry North Quarry Backfill Extent of Mining Topography

Figure 2.3 Permanente Quarry North Quarry Backfill Reclamation Topography

Figure 2.4 Permanente Quarry North Quarry Backfill Cross-Section

LIST OF APPENDICES

Appendix A Quarry Backfill Slope Stability Analyses

Executive Summary

This North Quarry Backfill Geotechnical Evaluation has been prepared to assist Lehigh Southwest Cement Company (Lehigh), a subsidiary of Lehigh Hanson, Inc., with the upcoming Reclamation Plan amendment submission, under California's Surface Mining and Reclamation Act (SMARA). This report provides specifications to guide Lehigh in backfilling the North Quarry and documents the results of stability analyses. Stability analyses associated with mining and reclaiming the highwalls are provided in a separate report.

Lehigh will reclaim the North Quarry by backfilling the quarry to an elevation of approximately 990 feet (ft) above mean sea level (AMSL). This elevation corresponds to the lowest depression in the surrounding natural topography and will prevent the accumulation of standing water on the reclaimed surface.

A total volume of 34.5 million cubic yards (M yd³) is required to fill the North Quarry to its final design surface. This volume includes up to 14.1M yd³ of space available for on-site generated materials, and at a minimum 20.4M yd³ of space available for suitable surplus soil from off-site sources.

Backfill of the quarry will be completed in two phases.

- Phase 1 of the quarry backfill will occur from quarry bottom (approximate elevation 440 feet AMSL) to
 approximately 850 feet AMSL (the lower quarry). Backfill material consisting of greenstone overburden
 generated onsite and imported suitable surplus soil fill will be used to backfill the lower quarry. The final elevation
 of Phase 1 will depend on the amount of material available during mining operations.
- Phase 2 of the quarry backfill will occur from approximately 850 feet AMSL to 990 feet AMSL (the upper quarry).
 Suitable surplus soil, imported from offsite sources, will be used to backfill the upper quarry so that positive drainage from the quarry area is established and no water is impounded.

Geotechnical stability analyses were completed on one cross-section through the North Quarry. The minimum acceptable factors of safety for the analyses are 1.3 for static conditions and 1.0 for pseudo-static conditions based on mining industry standards. All configurations modeled as part of these analyses meet or exceed the minimum acceptable factor of safety.

Backfill of the quarry will occur from the bottom of the quarry upward. Material will be placed in lifts according to the predominant material type within the lift (either greenstone overburden or suitable surplus soil). Adequate compaction will be achieved by truck and dozer traffic, as the lifts are advanced. Phase 1 of the Plan will be completed prior to starting Phase 2. The final surface of Phase 1 will be at an elevation of approximately 850 feet AMSL.

The final backfilled quarry surface will slope at 2 percent (%) toward the east end of the south highwall, which is the lowest area of the surrounding topography. The backfilled quarry will be reclaimed following the details and specifications of the included revegetation plan.

Abbreviations

%	percent
AMSL	Above mean sea level
bgs	Below ground surface
yd ³	cubic yards
FoS	factor of safety
ft	feet
g	Gravitational force
Golder	Golder Associates Inc.
in	inches
ky	Yield acceleration
Lehigh	Lehigh Southwest Cement Company
М	Million
M yd ³	million cubic yards
pcf	Pounds per cubic foot
psf	Pounds per square foot
RPA	Reclamation Plan Amendment
SMARA	[California's] Surface Mining and Reclamation Act
Stantec	Stantec Consulting Services, Inc.
WDR	Waste discharge requirements
yd ³	Cubic yard

Glossary

Cohesion The force which holds molecules or like particles together in a rock or soil.

Factor of safety The ratio of resisting force to driving force in a slope stability problem. A

factor of safety of one represents the minimum factor of safety for which the

slope is stable.

Greenstone Common term applied to metabasalts within the Franciscan Complex, due to

unweathered, dark green color (Foruria 2004).

Greenstone overburden Material unsuitable for use as aggregate material. Typically, it is weathered

greenstone, but it may include other rock types such as low-grade limestone,

graywacke, and chert.

North Highwall Reserve Limestone and aggregate resources in the north highwall of the North

Quarry.

Phi', φ' The frictional shear resistance of soil or rock.

Pseudo-static slope stability

analysis

A pseudo-static analysis is a limit equilibrium method of analysis which represents the effects of earthquake shaking by accelerations that create inertial forces. This is the simplest way to analyze the dynamic effects of earthquake loading of a soil or slope. The output is a single factor of safety.

Rock Plant Reserve Limestone and aggregate resources at the southern extent of the

Permanente Property.

Seismic deformation analysis

An empirical calculation which estimates the extent of lateral displacement

during the design earthquake. The output is the median displacement.

Soil Native, unconsolidated material present at the surface before mining

operations began.

Suitable surplus soil Soil imported from offsite locations that is free of rubbish, trash, and other

deleterious materials

Static slope stability analysis A limit equilibrium method of analysis which satisfies moment and force

equilibrium to solve a slope stability problem. The output is a single factor of

safety.

Introduction

1.0 INTRODUCTION

1.1 PURPOSE

Lehigh Southwest Cement Company (Lehigh), a subsidiary of Lehigh Hanson, Inc., engaged Stantec Consulting Services Inc. (Stantec) to provide professional engineering services related to the development of a reclamation plan for the backfilled North Quarry at the Permanente Quarry. The Reclamation Plan involves backfilling the North Quarry to the minimum elevation of the surrounding natural topography. This elevation corresponds to the lowest depression in the surrounding natural topography and will prevent the accumulation of standing water on the reclaimed surface. To support the Reclamation Plan, static and pseudo-static slope stability analyses of the backfill have been completed to support this backfill plan.

The North Quarry Backfill Geotechnical Evaluation was prepared to assist Lehigh with the upcoming Reclamation Plan amendment submissions, under California's Surface Mining and Reclamation Act (SMARA). This report presents the Reclamation Plan, documents the results of stability analyses, and provides specifications to guide Lehigh in backfilling the North Quarry. Stability analyses associated with mining and reclaiming the highwalls are provided in the North Highwall Reserve Geotechnical Evaluation report.

1.2 PROJECT BACKGROUND

The Permanente Quarry (Quarry) is a limestone and aggregate mining operation, active since the late 1930's, in the unincorporated foothills of western Santa Clara County, approximately two miles west of the city of Cupertino, California. The Quarry occupies a portion of a 3,510-acre property (Permanente Property) owned by Hanson Permanente Cement, Inc. and operated by Lehigh.

The Permanente Property is situated in the rugged foothills along the eastern side of the Santa Cruz Mountains segment of the California Coast Ranges. This area of the Coast Ranges is characterized by moderately to steeply sloping hillsides ranging from approximately 500 to 2,000 feet (ft) above mean sea level (AMSL). The eastern side of the range is incised with eastern flowing drainages, including the Permanente Creek Drainage Basin, which flows through the central part of the Permanente Property, and drains into the southern part of the San Francisco Bay, near Palo Alto and Mountain View, California. The regional location map is included as Figure 1.1.

Operational areas at the Quarry comprise surface mining excavations, overburden stockpiling, crushing and processing facilities, access roads, administrative offices, and equipment storage facilities. Other predominantly undisturbed areas are held in reserve for future mining or to buffer operational areas from adjacent land uses. The North Quarry is where mineral extraction currently occurs and has historically taken place. The North Quarry features a large mining area, with elevations that currently range from approximately 525 feet to 1,750 feet AMSL. Limestone and aggregate mined from the North Quarry are crushed and either stockpiled for aggregate production at Lehigh's on-site rock (aggregate) plant or are used for cement manufacture at Lehigh's adjacent cement plant. Figure 1.2 shows a plan view of the site.

NORTH QUARRY BACKFILL GEOTECHNICAL EVALUATION

Introduction

Mining operations take place subject to SMARA, which mandates that surface mining operations have an approved reclamation plan that describes how mined lands will be prepared for alternative post-mining uses, and how residual hazards will be addressed. Mining operations are required to comply with the Porter-Cologne Water Quality Control Act and mining regulations adopted pursuant thereto. Waste Discharge Requirements (WDRs) were issued in 2018 that require Lehigh to address how the facility will perform reclamation activities while also protecting associated ground and surface waters. Golder Associates Inc. (Golder) completed geotechnical investigations and slope stability evaluations in 2011 to support an amended Reclamation Plan for the operational areas disturbed by mining activities. The current Reclamation Plan was approved in 2012. Changes to the current approved Reclamation Plan are being considered, which necessitate an update of the Reclamation Plan for the Permanente Quarry under SMARA. The activities described in the amended Reclamation Plan will then be utilized in preliminary and/or final closure plans required by the WDRs.

This report provides specifications and guidelines to support the amended Reclamation Plan with respect to backfilling the North Quarry and is accompanied by three other similar reports (Rock Plant Reserve Geotechnical Evaluation, North Highwall Reserve Geotechnical Evaluation, and West Materials Storage Area Geotechnical Evaluation), which provide specifications and guidelines related to the proposed amendments to the Reclamation Plan for other areas in the Quarry.

1.3 SCOPE OF WORK

Lehigh retained Stantec to prepare this report to support the amended Reclamation Plan in connection with backfilling the North Quarry. Stantec's scope of work included:

- Review previous geologic and geotechnical studies.
- Analyze current and historical aerial photographs.
- Evaluate historic and new data to determine material strength parameters for stability analyses.
- Design North Quarry backfill.
- Design a stable reclamation slope.
- Evaluate geotechnical stability of North Quarry backfill under static and seismic conditions.

North Quarry

2.0 NORTH QUARRY

2.1 NORTH QUARRY MINE PLAN

The North Quarry is located on the hillside to the west of the cement plant. The topography surrounding the North Quarry ranges in elevation from approximately 990 feet AMSL near the east end of the south highwall to approximately 1,750 feet AMSL at the top of the scarp in the northwest corner of the highwall. Mining operations are ongoing in the North Quarry, with plans to mine the southern portion of the quarry to an elevation of 440 feet AMSL. These plans are included in the North Highwall Reserve Geotechnical Evaluation. The northern portion of the quarry has been developed to an elevation of 525 feet AMSL and has been partially backfilled to an elevation of 700 feet AMSL. Figure 2.1 shows the existing topography in the North Quarry area. Concurrent mining and backfilling in separate areas of the quarry are likely to occur as mining concludes in each area of the quarry; Figure 2.2 shows the final mined surface of the North Quarry before backfilling occurs.

2.2 RECLAMATION PLAN

Lehigh will reclaim the North Quarry by backfilling the quarry to an elevation of approximately 990 feet AMSL. This elevation corresponds to the lowest depression in the surrounding natural topography and will prevent the accumulation of standing water on the reclaimed surface. The final backfilled surface will slope to the southeast at 2%. Stantec completed static and pseudo-static slope stability analyses to evaluate the stability of the regraded (post reclamation) slopes. Topsoil and other amendments will be placed on the backfilled slope and vegetation planted in a manner consistent with the revegetation plan component of the proposed Reclamation Plan amendment.

Backfill of the quarry will be completed in two phases. Phase 1 of the quarry backfill will occur from quarry bottom (440 feet AMSL) to approximately 850 feet AMSL (the lower quarry). Undifferentiated greenstone overburden, generated onsite, and imported offsite fill will be used to backfill the lower quarry. The final elevation of Phase 1 will depend on the amount of material available during mining operations. Up to 14.2 million cubic yards (M yd³) of material is required to fill the lower quarry.

Phase 2 of the quarry backfill will occur from 850 feet AMSL to 990 feet AMSL (the upper quarry). Suitable surplus soil, imported from off-site sources, will be used to backfill the upper quarry. A minimum 20.3M yd³ of material is required to fill the upper quarry. Figure 2.3 shows the final surface of Phase 2. Figure 2.4 shows a cross-section through the North Quarry at the end of Phase 2.

2.3 FINAL SURFACE

The final backfilled surface will slope toward the east end of the south highwall, toward the lowest area of the surrounding topography. Figure 2.3 shows the final contoured surface of Phase 2.

Quarry Backfill Specifications

3.0 OUARRY BACKFILL SPECIFICATIONS

A total volume of 34.5 M yd³ is required to fill the North Quarry to its final design surface. The North Quarry will be backfilled with a mixture of greenstone overburden (generated onsite) and suitable surplus soil (imported from offsite) to a minimum elevation of approximately 990 feet AMSL. This elevation corresponds to the lowest natural outlet in the surrounding topography so that the reclaimed surface of the quarry does not impound water.

It is important to note that the exact progression of backfill will depend on other operations and materials available at the Permanente Quarry. While this high-level plan shows the final surfaces and materials contained in each area, interim benches and access will be created to ensure both the adherence to plans and supply and demand of backfill products.

3.1 MATERIAL SPECIFICATION

Table 3.1 summarizes the material specifications of the quarry backfill. The total volume required for the quarry backfill is 34.5M yd³.

Table 3.1 Material Specifications

Backfill Area Volume (yd³)		Material Specification
Lower Quarry	14,200,000	Undifferentiated greenstone overburden generated from on-site sources or suitable surplus soil generated from off-site sources.
Upper Quarry	20,300,000	Suitable surplus soil generated from off-site sources.

3.2 BACKFILL SPECIFICATION

Backfill of the quarry will generally occur from the bottom of the quarry upward. However, this does not mean each lift of material will be fully completed prior to the next level being started. Material will be placed in lifts according to the predominant material type within the lift. Adequate compaction will be achieved by truck and dozer traffic, as the lifts are advanced.

Lifts of greenstone overburden, where rock makes up greater than 50% of the material within the lift, can be advanced across the quarry at a thickness ranging from 30 feet to 60 feet. This specification will apply to the lower quarry, below elevation 850 feet AMSL, where greenstone overburden generated onsite will be used to backfill the quarry.

Lifts of suitable surplus soil, where soils make up greater than 50% of the material within the lift, can be advanced across the quarry, at a thickness ranging from 10 feet to 15 feet. This specification will apply to portions of the lower quarry, where the greenstone overburden generated on-site is predominantly soil sized materials, and to the upper quarry.

Table 3.2 summarizes the lift thicknesses required for the quarry backfill.

NORTH QUARRY BACKFILL GEOTECHNICAL EVALUATION

Quarry Backfill Specifications

Table 3.2 Lift Thickness

Backfill Material	Lift Thickness
Greater than 50% rock (greater than 50% one-inch particles)	30 feet to 60 feet
Greater than 50% soil sized materials (less than 50% one-inch particles)	10 feet to 15 feet

During the quarry backfill, lifts of backfill material will be advanced across the quarry by end dumping material onto the advancing lift and dozing it into place. Lifts will be advanced, at angle of repose, across the quarry (approximately 35° slope faces for greenstone overburden and approximately 30° slope faces for soil).

Benches will be formed from a single lift of rock, or multiple lifts of rock or soil. The maximum height of each interim bench is 60 feet. Where possible, each bench should be advanced across the entire quarry before beginning the next bench; however, this may not always be practical.

When a bench cannot be advanced to completion, a 50-foot catch bench (offset) must be maintained between the crest of the lower bench and the toe of the upper bench, regardless of backfill type. This configuration will result in an overall slope angle of approximately 2H:1V and provides sufficient width for accessing the benches.

Adequate compaction will be achieved by truck and dozer traffic as the lifts are advanced, and no formal compaction specifications are required.

The final surface of Phase 2 will be at a maximum elevation of approximately 1,036 feet AMSL, and it will slope at approximately 2% to the southeast corner of the quarry at a minimum elevation of approximately 990 feet AMSL. Figure 2.3 shows the final topography, and Figure 2.4 shows a cross-section of the quarry backfill.

A high-level summary of the quarry backfill plan is shown in Table 3.3.

NORTH QUARRY BACKFILL GEOTECHNICAL EVALUATION

Quarry Backfill Specifications

Table 3.3 Quarry Backfill Plan Summary

Backfill Phase	Item	Description		
	Maximum Surface Elevation	Approximately 850 feet		
	Backfill Volume	14.1M yd³ (maximum)		
	Backfill Material	Undifferentiated fill, consisting of greenstone overburden generated on-site and suitable surplus soil imported from off site		
Phase 1	Lift Thickness of Greenstone Overburden (>50% rock).	30 feet to 60 feet		
	Lift Thickness of Suitable Surplus Soil (>50% soil)	10 feet to 15 feet		
	Compaction Effort	2 to 5 passes with truck or dozer		
	Maximum Bench Height	60 feet (vertical)		
	Catch Bench Width	50 feet (horizontal)		
	Minimum Final Surface Elevation	990 feet		
	Maximum Final Surface Elevation	1,038 feet		
	Backfill Volume	20.4M yd³ (minimum)		
Phase 2	Backfill Material	Suitable surplus soil imported from off-site sources		
Phase 2	Lift Thickness of Suitable Surplus Soil	10 feet to 15 feet		
	Compaction Effort	3 to 5 passes with truck or dozer		
	Maximum Bench Height	15 feet (vertical)		
	Catch Bench Width	50 feet (horizontal)		

Geotechnical Stability

4.0 GEOTECHNICAL STABILITY

A single cross-section of the quarry backfill was modeled to ensure that an appropriate factor of safety against slope failure is achieved. The section represents worst case conditions, including the greatest fill depths and on the steepest section of the remaining pit wall. Figures 2.1 through 2.3 show the location of the cross-section analyzed, and the cross-section is included as Figure 2.4.

The slope stability analyses were modeled using the software Slope-W[®] 2018 R2 version 9.1 by GeoStudio, released in 2018. The software used limit equilibrium on slices of potential failure surface to calculate factor of safety (FoS). The models were evaluated under static and pseudo-static conditions, with horizontal ground acceleration, for the closure configurations using the Spencer method. The two types of analysis have been summarized in Table 4.1. The minimum acceptable factors of safety for the analyses are 1.3 for static conditions, and 1.0 for pseudo-static conditions based on mining industry standards. For the pseudo-static model conditions, a horizontal seismic coefficient of 0.15 time the force of gravity (g) was applied to the static condition models to be consistent with previous studies (Golder 2011) and to follow recommendations for earthquakes with magnitudes up to 8-1/4 (Seed 1982). To evaluate the slope stabilities, cross-sections were analyzed for the reclamation surfaces.

Table 4.1 Stability Analyses

Analysis Type	Analysis Type Description			
Static Analysis	A limit equilibrium method of analysis which satisfies moment and force equilibrium to solve a slope stability problem. The output is a single FoS for the potential failure surface with the lowest FoS.	1.3		
Pseudo-static Analysis	A limit equilibrium method of analysis which represents the effects of earthquake shaking by accelerations that create inertial forces. This is the simplest way to analyze the dynamic effects of earthquake loading of a soil or slope. The output is a single FoS for the potential failure surface with the lowest FoS.	1.0		

Site specific geotechnical information on the backfill materials included material strength data on greenstone bedrock, greenstone overburden, and native soils. Imported suitable surplus soil is assumed to have similar geotechnical properties as the on-site native soils. Strength parameters for the materials have been established in previous geotechnical analyses of the Permanente Property and are based on laboratory testing, back-calculation, and published values for soil properties (Golder 2011). These strength parameters are listed in Table 4.2.

The strength parameters of the greenstone have been re-evaluated based on the results of the 2018 geotechnical investigation completed by Stantec, and have been divided into two zones as follows:

- Mining influenced zone areas which have the potential to be influenced from mining operations including
 blasting and mechanical excavation. A horizontal distance from the highwall of 75 feet is used to define the
 mining influenced zone. This distance is one and one-half times the bench height following industry design
 guidelines (Hustrulid 2000).
- Undisturbed zone greenstone which is greater than 75 feet (horizontal) into the highwall that is not considerably modified by mining operations.

NORTH QUARRY BACKFILL GEOTECHNICAL EVALUATION

Geotechnical Stability

Table 4.2 Geotechnical Strength Parameters

Material	Unit Weight (pcf)	Cohesion (psf)	Phi' (Degrees)
Suitable surplus soil	120	200	30
Greenstone overburden	125	0	35
Greenstone bedrock (mining influenced zone)	165	1,800	27
Greenstone bedrock (undisturbed zone)	165	12,500	30

Stability analyses are focused on the quarry backfill, and do not reflect the stability of the adjacent highwall. The stability of the highwall is analyzed in a separate report, entitled the North Highwall Reserve Geotechnical Evaluation. The final surface of the quarry backfill is relatively flat and; therefore, has very high factors of safety.

These analyses meet or exceed the minimum acceptable factors of safety, as defined in Table 4.1. The shallow slopes have very high factors of safety, and the results from the stability analyses are shown in Table 4.3. These high factors of safety confirm that the geotechnical conclusions reached in this report are not impacted by:

- The relative fill quantities of the greenstone and suitable surplus soil imports.
- The sequence of deposition of the greenstone and suitable surplus soil imports.

Figure 2.4 shows the location of the cross-section which was analyzed for backfill stability. Appendix A contains printouts of the slope stability sections analyzed for the quarry backfill.

Table 4.3 Geotechnical Stability Analyses Results

Description	Analysis Type	Factor of Safety
E	Static	28.5
Final surface	Pseudo-static	3.4

Seismic displacements were calculated using an empirical equation developed by Bray and Travasarou (Bray 2007). This method estimates the displacement of a rigid block on a slope and is consistent with previous displacement analyses. The peak ground acceleration (PGA) value of 0.6g was used for the calculations, which is also consistent with previous analyses. This PGA corresponds to an earthquake with a mean return time of 475 years (Petersen 2008). The yield acceleration (ky) was calculated using the Slope/W model by adjusting the seismic coefficient until the model provided a FoS = 1.0, and these values were used for the displacement calculation. Cross-sections with pseudo-static FoS greater than 1.15 will have minimal displacement during a seismic event (Seed 1982), and displacements for these cross-sections are assumed less than two inches. The actual displacements were not calculated for these sections. Literature on seismic slope displacements suggest that median displacements of less than 6 in (15 centimeters [cm]) are "minor" and displacements of greater than 3 feet (1 meter [m]) are "major" (Bray 2007). Displacements for quarry backfill are "minor" and unlikely to influence the reclaimed slope.

NORTH QUARRY BACKFILL GEOTECHNICAL EVALUATION

Summary

5.0 SUMMARY

Stantec has provided this quarry backfill geotechnical evaluation to Lehigh in support of a Reclamation Plan amendment for the Permanente Quarry located near Cupertino, California, and to assist with the preparation of plans required by the facility WDRs. The geotechnical assessment provided in this report demonstrates that the proposed Reclamation Plan for North Quarry backfill meets or exceeds SMARA requirements for factors of safety under static and seismic conditions.

Conclusion

6.0 CONCLUSION

This report provides the analysis and supporting information needed to demonstrate that Lehigh Southwest Cement Company's backfilling plan for reclamation operations at the North Quarry meets SMARA and associated design and performance requirements. The North Quarry will be backfilled in phases and once completed will establish positive drainage for reclamation operations. The geotechnical assessment provided in this report demonstrates that the proposed Reclamation Plan meets or exceeds SMARA requirements for factors of safety under static and seismic conditions.

This report has been prepared for Lehigh Southwest Cement Company to provide them with geotechnical guidance in support of the development and reclamation of the North Quarry. As mutual protection to Lehigh, the public, and Stantec, this report and its figures are submitted for exclusive use by Lehigh Cement Company. Our report and recommendations should not be reproduced in whole or in part without our express written permission, other than as required in relation to agency review and submittals. The drawings included with the report are for regulatory review and are not intended as detailed construction drawings. All information and design results contained herein have been prepared by the authors who have signed below and attached drawings have been certified by Nelson Kawamura, California PE. A draft of this report was reviewed by personnel from Lehigh Southwest Cement Company.

Stantec Consulting Ltd.

Michael Davis

Senior Geotechnical Consultant, Salt Lake City

Phone: 801-384-0942 mike.davis2@stantec.com

Nelson Kawamura G.E.

Principal, Civil Engineer, Waterpower & Dams

nelson Kawamina

Phone: 503-220-5424

nelson.kawamura@stantec.com

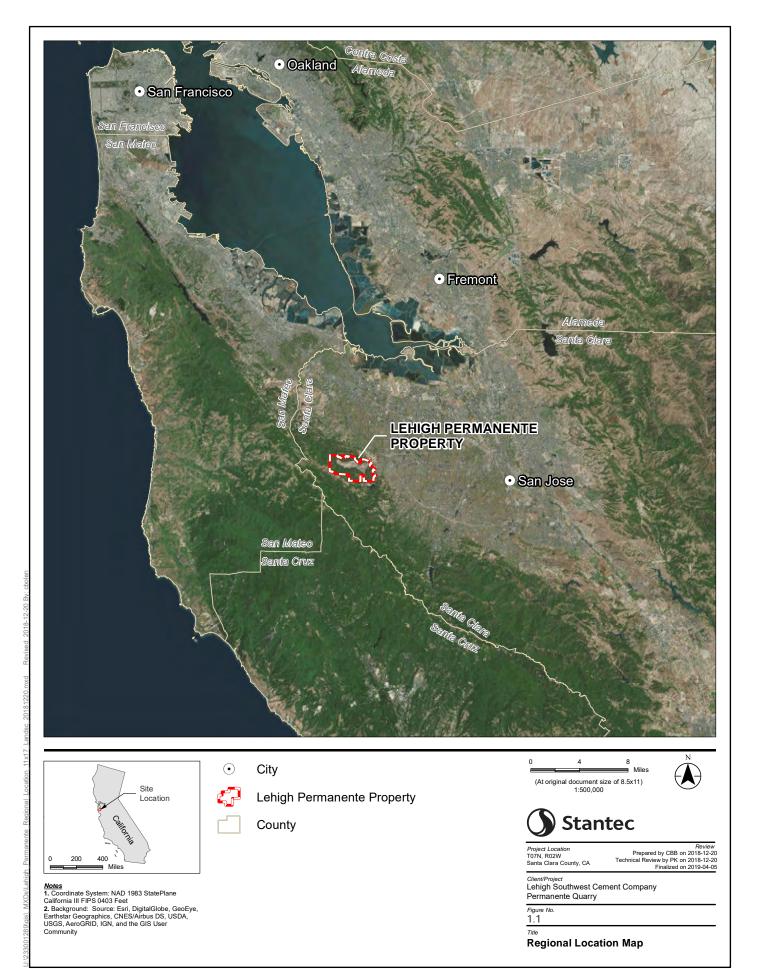
April 5, 2019

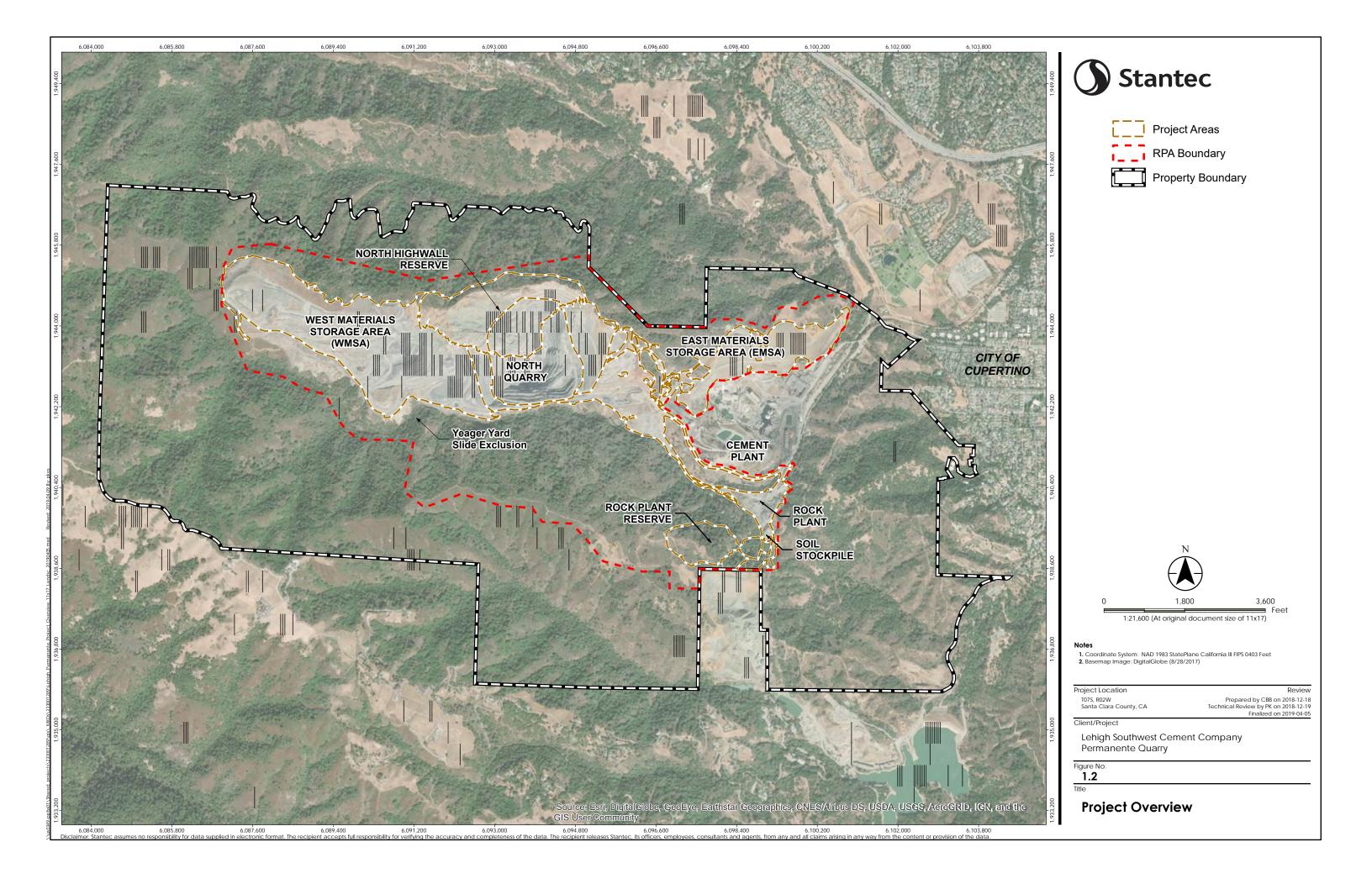
References

7.0 REFERENCES

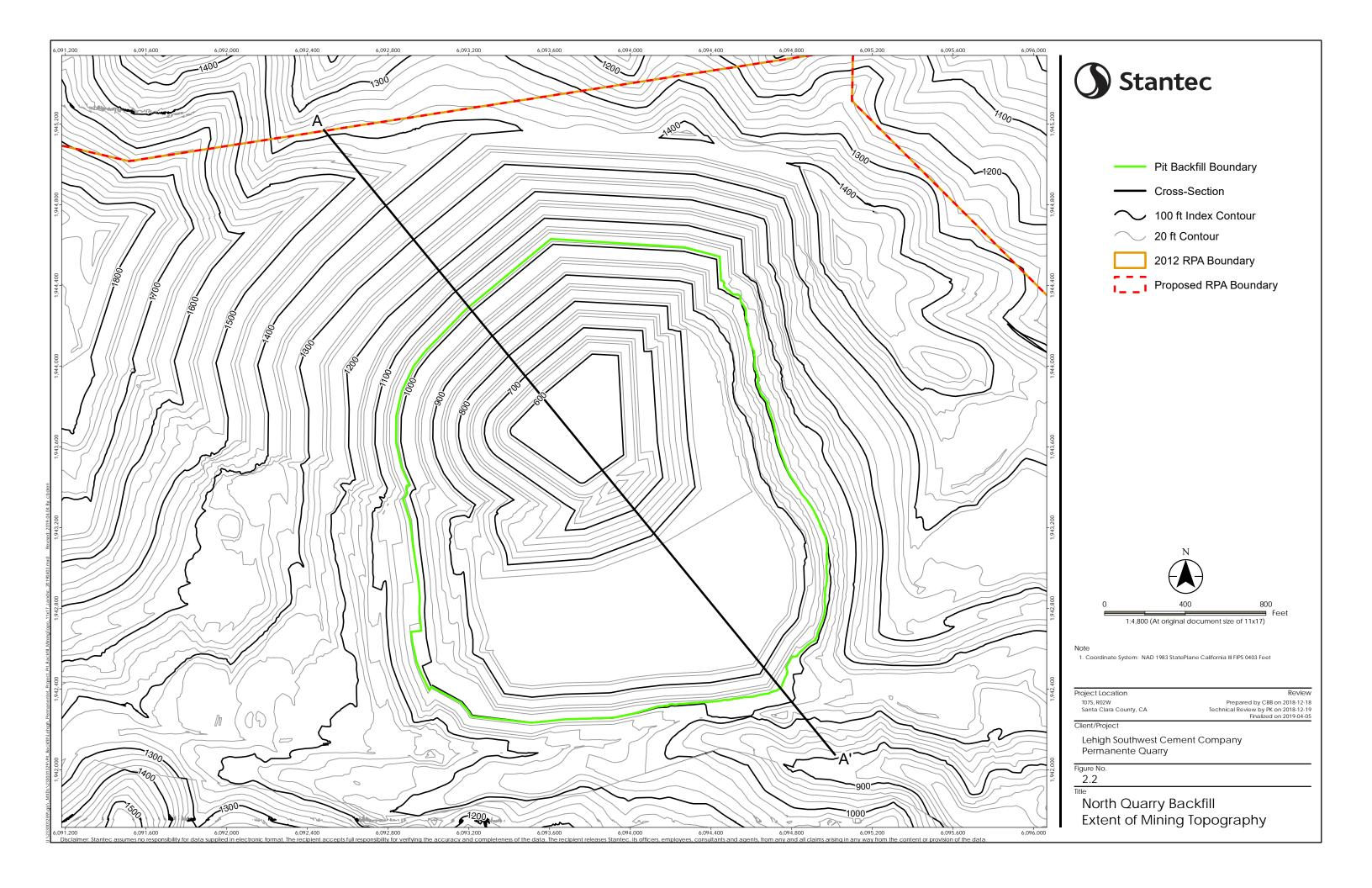
- Bray, J. D., and Travasarou, T., 2007. "Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements", Journal of the Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 4, pp. 381-392.
- Foruria, J. September 2004. Geology of the Permanente Limestone & Aggregate Quarry, Santa Clara County, California. 2004.
- Golder Associates, November 2011. Geotechnical Evaluations and Design Recommendations (Revised).

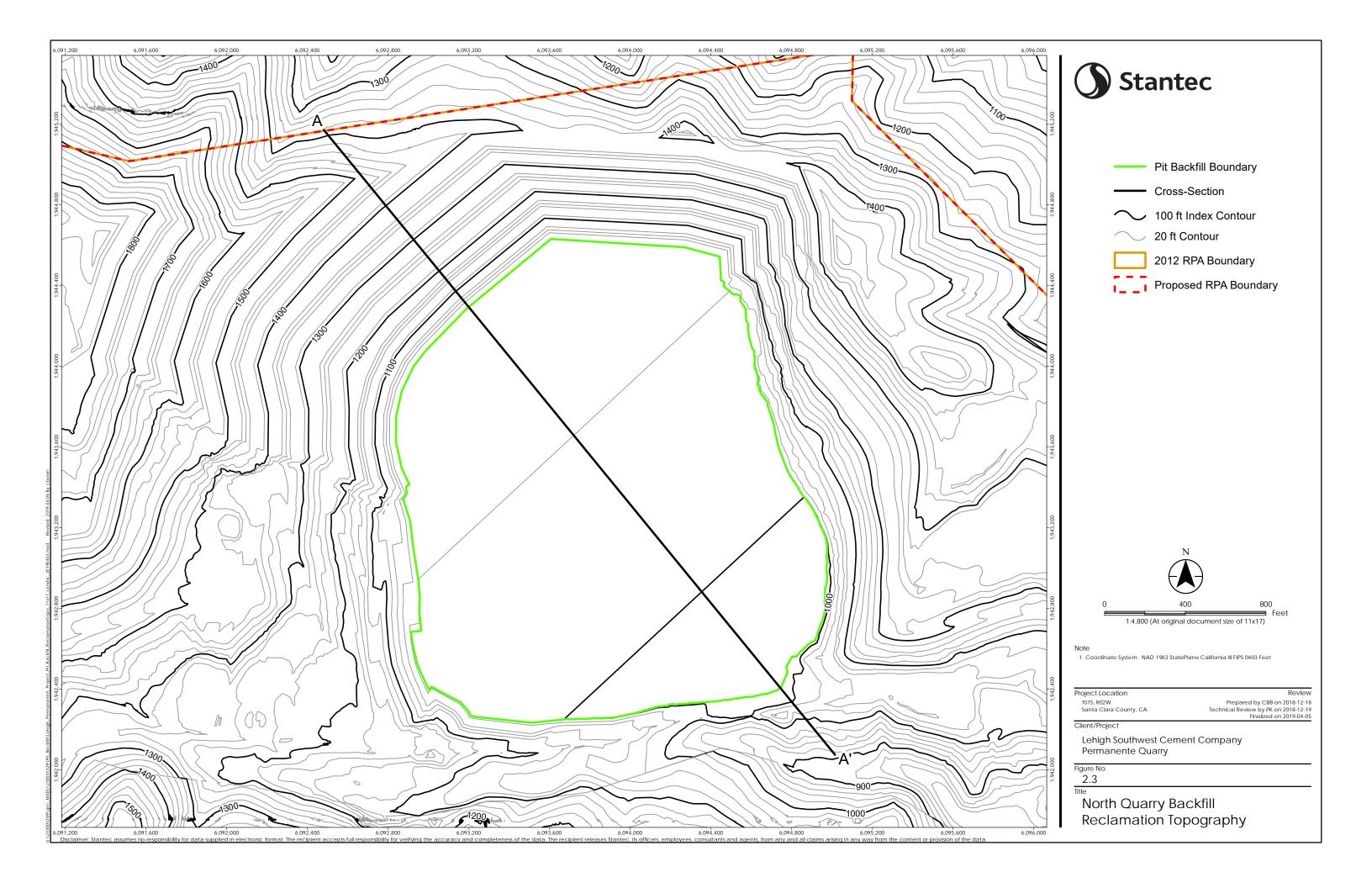
 Permanente Quarry Reclamation Plan Update, Santa Clara County, California. 2011.
- Hustrulid, William A., McCarter, Michael K., Van Zyl, Dirk J.A. 2000. Slope Stability in Surface Mining. Society for Mining, Metallurgy, and Exploration, Inc. (SME), Littleton, Colorado. 2000.
- Petersen, Mark D., Frankel, Arthur D., Harmsen, Stephen C., Mueller, Charles S., Haller, Kathleen M., Wheeler, Russell L., Wesson, Robert L., Zeng, Yuehua, Boyd, Oliver S., Perkins, David M., Luco, Nicolas, Field, Edward H., Wills, Chris J., and Rukstales, Kenneth S., 2008. Documentation for the 2008 Update of the United States National Seismic Hazard Maps: U.S. Geological Survey Open-File Report 2008–1128, 61 p.
- Seed, H. B., 1979. "Considerations in the Earthquake-Resistant Design of Earth and Rockfill Dams," Geotechnique, vol. 29, No. 3, pp. 215-263.

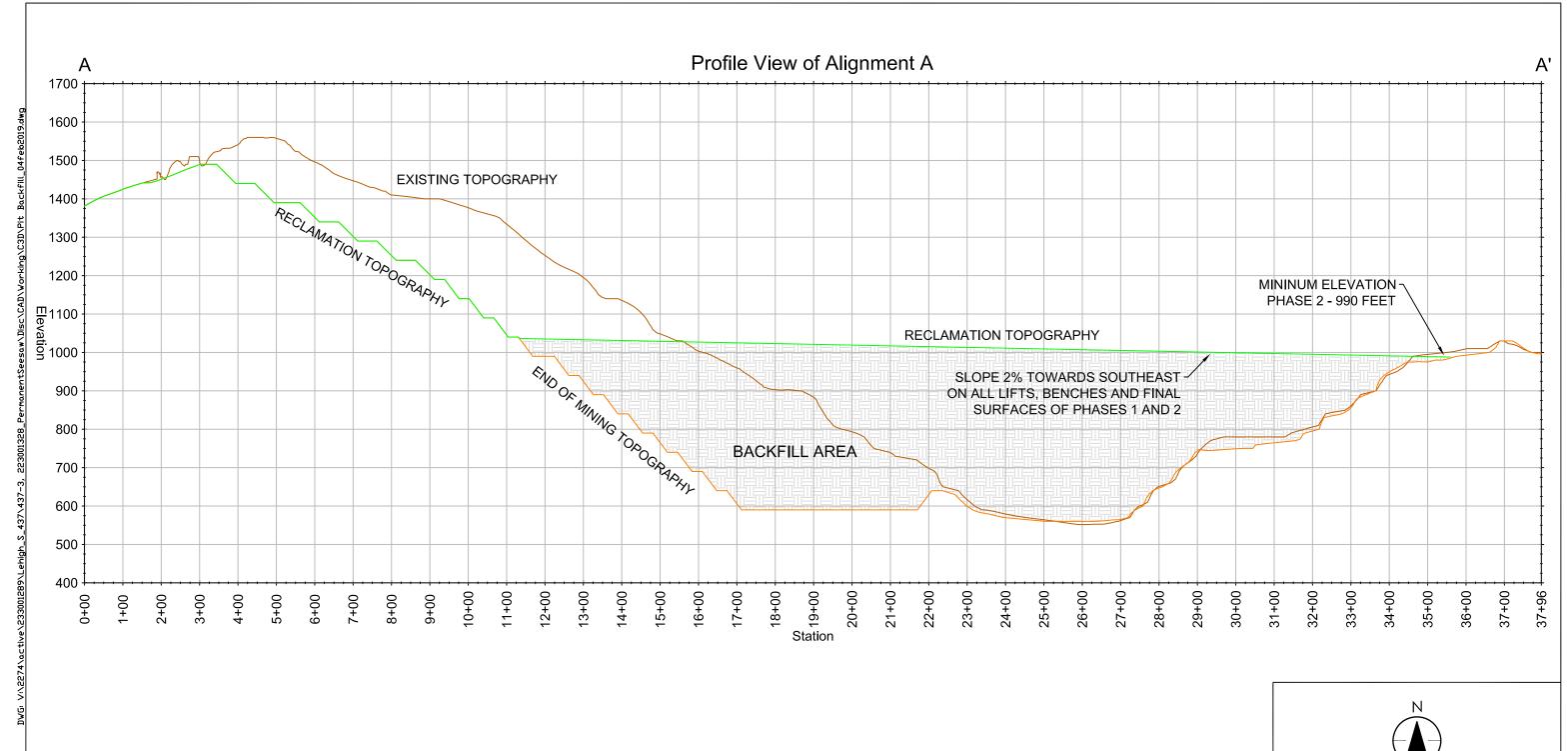


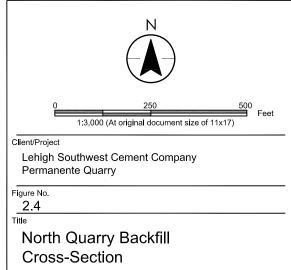

FIGURES

FIGURES


- **Figure 1.1 Permanente Quarry Regional Location Map**
- **Figure 1.2 Permanente Quarry Project Overview**
- Figure 2.1 Permanente Quarry North Quarry Backfill Existing Topography
- Figure 2.2 Permanente Quarry North Quarry Backfill Extent of Mining Topography
- Figure 2.3 Permanente Quarry North Quarry Backfill Reclamation Topography
- Figure 2.4 Permanente Quarry North Quarry Backfill Cross-Section



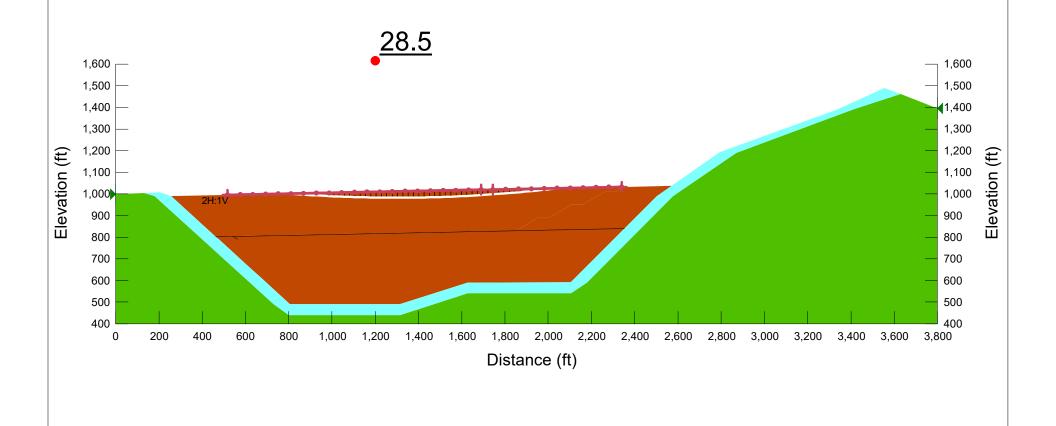




Appendix

APPENDIX A

Quarry Backfill Slope Stability Analyses

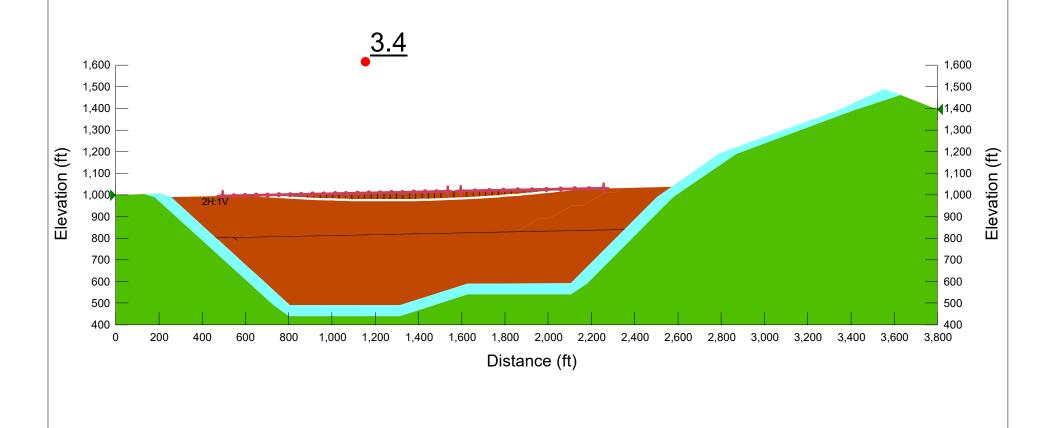


File Name: 233001329 Pit Backfill Stability Phase 2- Rev B.gsz

Name: 03. Static Soil (Final)

Method: Spencer Factor of Safety: 28.5 Horz Seismic Coef.:

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-B (°)
	Greenstone	eenstone Mohr-Coulomb		12,500	30	0
	Greenstone (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	0
	Soil	Mohr-Coulomb	127	0	30	0



File Name: 233001329 Pit Backfill Stability Phase 2- Rev B.gsz

Name: 04. Pseudostatic Soil (Final)

Method: Spencer Factor of Safety: 3.4 Horz Seismic Coef.: 0.15

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Phi-B (°)
	Greenstone	Mohr-Coulomb	165	12,500	30	0
	Greenstone (Mining Influenced Zone)	Mohr-Coulomb	165	1,800	27	0
	Soil	Mohr-Coulomb	127	0	30	0

APPENDIX G-4 ROCK PLANT RESERVE GEOTECHNICAL EVALUATION

Rock Plant Reserve Geotechnical Evaluation

Permanente Quarry

April 5, 2019

Prepared for:

Lehigh Southwest Cement 24011 Stevens Creek Blvd. Cupertino, CA 95014-5659

Prepared by:

Stantec Consulting Services Inc. 2890 E. Cottonwood Parkway, Suite 300 Salt Lake City, UT 84121

Revision	Description	Author		Quality Check		Independe	ent Review
3	Client Comments	Paul Kos	4-5-19	Toni Jack	4-5-19	Greg Gold	4-5-19
2	Client Review	Paul Kos	2-1-19	Toni Jack	2-1-19	Greg Gold	2-1-19
1	Client Review	Paul Kos	12-12-18	Toni Jack	12-12-18	Greg Gold	12-12-18
0	Client Review	Paul Kos	11-30-18	Helene Wieting	11-30-18	Greg Gold	11-30-18

Sign-off Sheet

This document entitled Rock Plant Reserve Geotechnical Evaluation was prepared by Stantec Consulting Services Inc. (Stantec) for the account of Lehigh Southwest Cement Company (Lehigh), a subsidiary of Lehigh Hanson, Inc. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party because of decisions made or actions taken based on this document.

Prepared by ______(signature)

Paul Kos

Reviewed by Reviewed by

(signature)

Nelson Kawamura

Approved by (signature)

Greg Gold

Table of Contents

Table of Contents

EXEC	CUTIVE SUMMARY	1
ABBR	REVIATIONS	
GLOS	SSARY	II
1.0	INTRODUCTION	
1.1	PURPOSE	
1.2	PROJECT BACKGROUND	
1.3	SCOPE OF WORK	1.2
2.0	SITE INVESTIGATION	2.1
2.1	DRILLING PROGRAM	2.1
2.2	FAULTING	2.3
3.0	MINING AND RECLAMATION PLAN	3.1
3.1	MINING PLAN	
3.2	RECLAMATION PLAN	
		-
4.0	GEOTECHNICAL EVALUATION	
4.1	ROCK MASS CHARACTERIZATION	
4.2	UNIAXIAL COMPRESSIVE STRENGTH OF INTACT ROCK	
4.3	ROCK QUALITY DESIGNATION	
4.4	RMR SUMMARY AND CLASSIFICATION	
4.5	GEOTECHNICAL STABILITY	4.3
5.0	RECOMMENDATIONS	5.1
6.0	CONCLUSION	6.1
7.0	REFERENCES	7.1
FIGUE	RES	7.1
LIST (OF TABLES	
Table	2.1 Borehole Details	2.2
	2.2 Major Rock Types	
	3.1 Highwall Guidance	
	4.1 UCS Data Summary	
	4.2 RQD Summary	
	4.3 RMR ₈₉ Summary	
	4.4 Stability Analyses	
	4.6 Greenstone Strength Parameters	
	4.7 Geotechnical Stability Analyses Results	

ROCK PLANT RESERVE GEOTECHNICAL EVALUATION

Table of Contents

Table 4.8 Seismic Displacement Analyses Results			
LIST OF FIGURES			
Figure 1.1 Permanente Quarry Regional Location Map Figure 1.2 Permanente Quarry Project Overview Figure 2.1 Permanente Quarry Regional Geology Map Figure 2.2 Rock Plant Reserve Geology Map Figure 2.3 Rock Plant Reserve Fault and Discontinuity Mapping Figure 3.1 Rock Plant Reserve Existing Topography Figure 3.2 Rock Plant Reserve Reclamation Topography Figure 3.3 Rock Plant Reserve Cross-Sections			

LIST OF APPENDICES

Appendix A Drilling Program Data Appendix B Stability Evaluation Appendix C Seismic Displacement Calculations

Executive Summary

This Rock Plant Reserve Geotechnical Evaluation has been prepared to assist Lehigh Southwest Cement Company (Lehigh), a subsidiary of Lehigh Hanson, Inc., with the upcoming Reclamation Plan amendment submission, under California's Surface Mining and Reclamation Act (SMARA). This report presents the proposed mining and reclamation plan, documents previous and recent investigations of the Rock Plant Reserve area and provides results of stability analyses to support Lehigh's proposed operation in the Rock Plant Reserve.

Previous and recent investigations of the Rock Plant Reserve area include drilling programs, geologic mapping, laboratory testing, and visual inspections, and these investigations were used to develop this investigation. This recent investigation included aerial photograph interpretation and field mapping of faults, bedding, and structure for potential impacts to highwall stability. A key finding is that bedding dip slope and direction appear to have a negative impact on slope stability, and highwalls sloped in the dip direction (generally southeast) need to be sloped at less than the dip angle. The investigation also included drilling, geotechnical sampling, and geophysical logging of the boreholes to evaluate rock strengths in the proposed highwall. These data were used to design a stable highwall.

Lehigh will mine the Rock Plant Reserve to recover economic limestone resources. The mining will begin at the 1340-foot AMSL elevation, and the slope will be mined from top to bottom to the 920-foot AMSL elevation. The current practice of 50-foot high slopes between benches will be continued. The inter-bench slope gradients range from 26.5° to 35° depending on rock types, wall orientation, structure, and wall height. Quarry wall heights range from 420 feet in the northwest wall to daylight on the eastern side of the quarry. The quarry floor elevation was established to prevent a lake from being formed.

Geotechnical stability analyses were completed on four cross-sections through the Rock Plant Reserve. These cross-sections represent a variety of slope angles and combinations of lithology. The minimum acceptable factors of safety for the analyses are 1.3 for static conditions and 1.0 for pseudo-static conditions, based on mining industry standards. All configurations modeled as part of these analyses meet or exceed the minimum acceptable factor of safety. Generally, geotechnical stability is governed by the near surface geology, which will have reduced strengths due to mining activities. The geotechnical analyses require that groundwater, where present, be lowered along some of the highwalls so that it does not coincide with this surficial "mining impacted zone". Passive dewatering of the highwall is assumed as part of the ongoing operation during development. Ongoing monitoring of the highwall dewatering during development would be required to determine and/or confirm conditions.

Abbreviations

0	Degree(s)
AMSL	above mean sea level
BFA	Bench Face Angle
cm	centimeter(s)
FoS	factors of safety
ft	feet
g	Gravitational force
GSI	Geological Strength Index
Golder	Golder Associates Inc.
Н	hardness
In	inches
IRA	Inter-ramp Angle
ksi	Kips per square inch
ky	Yield acceleration
Lehigh	Lehigh Southwest Cement Company
m	meter(s)
mm	millimeter(s)
psi	Pounds per square inch
pcf	Pounds per cubic foot
PGA	peak ground acceleration
RMR ₈₉	Rock Mass Rating system (1989)
RPA	Reclamation Plan Amendment
RQD	rock quality designation
SMARA	Surface Mining and Reclamation Act
Stantec	Stantec Consulting Services Inc.
Т	tons
UCS	unconfined compressive strength

Glossary

Cohesion The force which holds molecules or like particles together in a rock or soil.

Factor of safety The ratio of resisting force to driving force in a slope stability problem. A

factor of safety of one represents the minimum factor of safety under which

the slope is stable.

Greenstone Common term applied to metabasalts within the Franciscan Complex, due to

unweathered, dark green color (Foruria 2004).

Greenstone overburden Material unsuitable for use as aggregate material. Typically, it is weathered

greenstone, but it may include other rock types such as low-grade limestone,

graywacke, and chert.

North Highwall Reserve Limestone and aggregate resources in the north highwall of the North

Quarry.

Phi' (φ') The frictional shear resistance of soil or rock.

Pseudo-static slope stability

analysis

A limit equilibrium method of analysis which represents the effects of earthquake shaking by accelerations that create inertial forces. This is the simplest way to analyze the dynamic effects of earthquake loading of a soil

or slope. The output is a single factor of safety.

Rock Plant Reserve Limestone and aggregate resources in an approximately 30.5-acre area at

the southern extent of the Permanente Property.

Seismic deformation analysis

An empirical calculation which estimates the extent of lateral displacement

during the design earthquake. The output is the median displacement.

Soil Native, unconsolidated material present at the surface before mining

operations began.

Static slope stability analysis A limit equilibrium method of analysis which satisfies moment and force

equilibrium to solve a slope stability problem. The output is a single factor of

safety.

Introduction

1.0 INTRODUCTION

1.1 PURPOSE

Lehigh Southwest Cement Company (Lehigh), a subsidiary of Lehigh Hanson, Inc., engaged Stantec Consulting Services Inc. (Stantec) to provide professional engineering and geologic services for the Permanente Quarry and specifically to investigate the limestone and aggregate resources associated with the proposed Rock Plant Reserve, an approximately 30.5-acre extraction area in the south-central portion of the Permanente Property. The mining and reclamation plans are described herein to provide guidance to Lehigh for completing and reclaiming the quarry. In addition, static and pseudo-static slope stability analyses of the reclamation surface have been completed to support these plans.

This Rock Plant Reserve Geotechnical Evaluation was prepared to assist Lehigh with the upcoming Reclamation Plan amendment submissions under California's Surface Mining and Reclamation Act (SMARA). This report presents the reclamation plan for the Rock Plant Reserve, documents the results of stability analyses, and provides specifications to guide Lehigh in reclaiming the Rock Plant Reserve.

1.2 PROJECT BACKGROUND

The Permanente Quarry (Quarry) is a limestone and aggregate mining operation, active since the late 1930's, in the unincorporated foothills of western Santa Clara County, approximately two miles west of the city of Cupertino, California. The Quarry occupies a portion of a 3,510-acre property (Permanente Property) owned by Hanson Permanente Cement, Inc. and operated by Lehigh.

The Permanente Property is situated in the rugged foothills along the eastern side of the Santa Cruz Mountains segment of the California Coast Ranges. This area of the Coast Ranges is characterized by moderately to steeply sloping hillsides ranging from approximately 500 to 2,000 feet (ft) above mean sea level (AMSL). The eastern side of the range is incised with eastern flowing drainages, including the Permanente Creek Drainage Basin, which flows through the central part of the Permanente Property and drains into the southern part of the San Francisco Bay, near Palo Alto and Mountain View, California. The regional location map is included as Figure 1.1.

Operational areas at the Quarry comprise surface mining excavations, overburden stockpiling, crushing and processing facilities, access roads, administrative offices, and equipment storage facilities. The Rock Plant Reserve area is at the southern end of the Permanente Property. Other predominantly undisturbed areas are held in reserve for future mining or to buffer operational areas from adjacent land uses. Mined limestone and greenstone will be sold directly, crushed and processed into aggregate products at Lehigh's on-site rock (aggregate) plant, or used for cement manufacture at Lehigh's adjacent cement plant. Figure 1.2 shows a plan view of the site.

Mining operations take place subject to SMARA, which mandates that surface mining operations have an approved Reclamation Plan that describes how mined lands will be prepared for alternative post-mining uses, and how residual hazards will be addressed. Golder Associates Inc. (Golder) completed geotechnical investigations and slope stability evaluations in 2011 to support an amended Reclamation Plan for the operational areas disturbed by mining activities.

ROCK PLANT RESERVE GEOTECHNICAL EVALUATION

Introduction

The current Reclamation Plan was approved in 2012. Changes to the current approved Reclamation Plan are being considered, which necessitate an update of the Reclamation Plan for the Permanente Quarry under SMARA.

This report summarizes the recent investigations and provides specifications and guidelines to support the amended Reclamation Plan with respect to the Rock Plant Reserve and is accompanied by three other similar reports (North Highwall Reserve Geotechnical Evaluation, West Materials Storage Area Geotechnical Evaluation, and North Quarry Backfill Geotechnical Evaluation), which provide specifications and guidelines related to the proposed amendments to the Reclamation Plan for other areas in the Quarry.

1.3 SCOPE OF WORK

Lehigh commissioned Stantec to provide professional engineering and geologic services to investigate the limestone resource in the Rock Plant Reserve area at the southern end of the Permanente Quarry property and to prepare this report to support the amended Reclamation Plan. A geologic field investigation to confirm or expand the delineations of the existing model for the resource model was conducted between April 24, 2018, and May 14, 2018. Additional geologic mapping of faults was conducted in October 2018. Stantec's scope of work included:

- Review previous geologic and geotechnical studies
- Analyze current and historical aerial photographs
- Map geological structures and lithology
- Plan and oversee drilling operations
- Log core and cuttings for geotechnical and geological properties
- Procure core and drill cutting samples for geotechnical laboratory analysis
- Evaluate historic and new data to determine rock strength parameters for stability analyses
- Revise geologic model with new drilling data and prepare cross-sections
- Design stable highwalls
- Evaluate geotechnical stability of highwalls under static and seismic conditions.

Site Investigation

2.0 SITE INVESTIGATION

Lehigh is seeking a Reclamation Plan amendment, which will include reclaiming areas to be mined within the vested Rock Plant Reserve area of the site enabling Lehigh to expand its resource base in the area and support its nearby cement operations. This section provides a summary of the site investigation, which included a drilling program and field mapping to characterize resources, rock strength, and geologic structures in the project area. This evaluation relies on previous reports for both the Rock Plant Reserve area and other areas of the Quarry as well as site investigations completed by others (2011, 2015).

The Rock Plant Reserve area is located within the greater Permanente Property and southwest of the Rock Plant location, as shown in Figure 1.2. Figure 2.1 shows the regional geology that has been mapped for the greater project area, and Figure 2.2 shows the geology in the Rock Plant Reserve area. The study area is bounded on the south by the Stevens Creek Quarry property line.

2.1 DRILLING PROGRAM

The subsurface investigation of the Rock Plant Reserve area concentrated on better defining the extent of the limestone bodies identified in previous investigations. Five boreholes were drilled in 2018 as part of the Rock Plant Reserve characterization program. Drill holes from current and previous investigations are shown on Figure 2.2. The available relevant geologic information identified in the previous work was used as a basis for the development of this program.

Figure 2.2 shows the site plan with borehole locations from the 2018 drilling program and previous drilling programs. Table 2.1 summarizes details for previously completed boreholes, which provide geotechnical information. In general, the previous drilling programs were focused on resource delineation and allowed for identification of lithology with some indications of rock mass quality (e.g., rock quality designation (RQD) or percentage recovery), and the 2018 drilling allowed for the calculation of rock mass ratings (in particular, GT2-14). A simplified lithological classification of borehole GT2-14 is included in Appendix A.

ROCK PLANT RESERVE GEOTECHNICAL EVALUATION

Site Investigation

Table 2.1 Borehole Details

			Collar			Total Depth
Borehole ID ¹	Easting (ft) ³	Northing (ft) ³	Elevation (ft)	Dip (°)	Azimuth (°)	(ft)
Geo 2-1A-08	-2,531	-37	779	-90	-	280
Geo 2-4A-07	-670	-2,470	897	-50	225	232
Geo 2-4AA-07	-670	-2,470	897	-90	-	433
Geo 2-6A-07	-25	-2,810	877	-90	-	350
Geo 2-6A-08	Unknown	Unknown	Unknown	-90	-	279
Geo 2-6B-07	-19	-2,809	877	-45	225	397
Geo 2-10A-08	-593	-3,223	1,215	-90	-	292
GT 2-1A-08	-491	-2,897	1,059	-60	250	349
GT 2-7-07	-818	-3,182	1,281	-90	-	477
P2-3-07	388	-3,256	855	-50	210	350
P2-7-07	-221	-2,971	1,012	-50	290	501
P2-11-07	-699	-3,386	1,255	-90	-	397
P2-11A-07	-699	-3,386	1,255	-50	90	542
P2-11B-07	-699	-3,386	1,255	-60	15	800
GEO 2-12	-282	-3,239	1,060	-90	-	250
GEO 2-13	-1,454	-3,037	1,270	-90	-	250
GEO 2-17	-1,069	-3,072	1,270	-90	-	356
GEO 2-19	-1,094	-2,938	1,232	-90	-	468
GT 2-14 ²	-851	-3,274	1,267	-90	-	265
	Tota	al Actual Foota	ge Drilled (ft)		'	7,268

Notes:

Table 2.2 summarizes the major rock types identified from core logging and the amount present by footage as a percentage of total drill length. It is important to note that fault breccia was logged as making up approximately one third of the intersected rock types. This drilling was performed to determine the extents of the limestone resource resulting in a large percentage of the rock types being greenstone or fault breccia.

¹Holes from 2011 were limited to recovery and/or RQD data.

² Borehole GT-2-14 included information sufficient to calculate RMR values.

³ Coordinates are local mine grid

Site Investigation

Table 2.2 Major Rock Types

Major Rock Type	Actual Footage Drilled (ft)	Actual Amount Present ¹ (%)	Vertical Footage Drilled (ft)	Vertical Amount Present ² (%)
Greenstone Overburden	558	8%	504	7%
Limestone	1,664	23%	1,505	22%
Graywacke	769	11%	731	11%
Fault Breccia	2,431	33%	2,247	33%
Metabasalt / Greenstone	1,408	19%	1401	21%
Chert	25	0%	22	0%
Unconsolidated Conglomerate	320	4%	245	4%

Notes:

2.2 FAULTING

The current understanding of major fault structures in the area is based on surface mapping, drill hole intercepts, aerial photography, mapping, and published reports. As noted from the previous reports for the site and available regional geological information, the Rock Plant Reserve area location is less than two miles from the San Andreas Fault and the Berrocal Fault. The Berrocal Fault has been mapped with multiple trace locations and has been mapped as running through the Permanente Property. The North Quarry area has numerous shear zones and faults running through it, which include both high and low angle faults (Foruria 2004). Similar faults are assumed to be present in the Rock Plant Reserve area. Given the potentially controlling nature of these faults on overall highwall stability, the development of a fault structure model was a critical step in evaluating the quarry. In consideration of potential structural impacts on quarry stability, conservative values for rock strength and quarry wall slopes were used for the design.

Fault and discontinuity mapping were performed by Stantec personnel in October 2018. Stantec concentrated on mapping exposed larger scale discontinuities and shear zones and collecting data on dominant discontinuities and fracture and bedding sets in the North Quarry and across the Permanente Property that comprises the Rock Plant Reserve area. Stantec acquired structural orientations along many of the discontinuities and shear zones exposed within the Quarry, with an emphasis on the larger structures that could be traced across the Quarry as these features are more likely to have an impact on the Rock Plant Reserve stability. In total, 145 discontinuity data points on joints, shears, shear-zones, and bedding were obtained while mapping the Permanente Property. In addition, Stantec accessed the Rock Plant Reserve area and the Steven's Creek Quarry Property (with permission) to investigate potential faults in this area. Fault mapping by Stantec indicated numerous moderate to high angle, north-south and northwest-southeast trending structures present throughout the both the North Quarry and Stevens Creek Quarry, and the results of the mapping are presented on Figure 2.2. The northwest oriented sets appear to be in agreement with the northwest trending faults mapped by Foruria (2004). It may be likely that the two distinct orientation groups represent a change in the overall faulting regime for the region; however, the timing of which of the orientations are more recent was not evident in the exposures.

^{1.} Actual amount present calculated by normalizing actual footage drilled by total actual footage drilled.

^{2.} Vertical amount present calculated by normalizing the equivalent vertical footage by the total equivalent vertical footage drilled.

ROCK PLANT RESERVE GEOTECHNICAL EVALUATION

Site Investigation

Stantec's review of historical stereo-photographs from as early as 1960 indicated a large northwest trending fault, or wide fault zone, to the west of the proposed Rock Plant Reserve location. This fault is clearly visible in the stereo-paired historical photos, but it is difficult to identify on the ground due to vegetation and modifications to the terrain that have occurred since the photo was obtained. The fault zone trends to the northwest and appears to dip steeply to the northeast. The fault may be made up of multiple strands (en echelon), with the main strand trending northwest along the slope break of the ridge south of Permanente Creek, southeastward across the top of the ridge, and down a southeast trending drainage toward the Stevens Creek Quarry's northern and western highwall (Figure 2.2). While it is likely that this fault traverses the North Quarry to the northwest, it is difficult to identify how the numerous faults that traverse the North Quarry are connected, as the bottom of the quarry is obscured, and there appears to be two dominant trends as identified above. The interpretation is that the major fault visible on the historic aerial photos is possibly the western trace of the Berrocal Fault, with many other strands of faulting contained within the North Quarry walls. The eastern fault identified intercepts in the Rock Plant Reserve wall, and the quarry design considers the potential impacts of this structure.

Discontinuity orientations were obtained in multiple locations within the North Quarry and accessible locations in the Rock Plant Reserve area. Additional discontinuity data was also acquired from down hole geophysical logging. Dips software by Rocscience (ref, Version 7.006) was used for creating a stereonet of the surficial data collected in order to conduct a discontinuity analysis. The main discontinuity orientations delineated are shown on Figure 2.3.

Discontinuity data collected across the site suggests roughly three prominent orientations of discontinuities. Bedding is encountered within several of the limestone units exposed along the surveyed area, and generally dips moderately out of the slope with an average dip and dip direction of 33°/147° to the southeast (set 5m, Figure 2.3). Areas along the 1,200 to 1,300-foot levels along the western portion of the North Quarry exhibit more steeply dipping beds.

The collected discontinuity data indicated a prominent high angle, north-south trending series of faults exposed along the north, east, and south wall of the North Quarry (sets 1m and 2m, Figure 2.3). These discontinuities primarily dip westward with an average dip of 76° and dip direction of 270°, though some eastward dipping discontinuities are also present with an average dip of 75° and dip direction of 087°. Faults among this group typically exhibit moderately wide to wide zones of deformation, including gouge, drag folds, and mapped minor to moderate lithologic offset. These faults tend to persist over a range from tens to hundreds of feet, with the largest faults potentially traversing across the North Quarry and beyond. Other kinematic indications, such as slickensides, are sparse, but do appear on several surfaces. These largely indicate a combination of right lateral and reverse motion, but it is important to mention that the determination of recency of movement along these faults was beyond the scope of this mapping, and the presence of faults within the quarry does not imply that they are active. These discontinuities likely exist due to the extensively deformed nature of the Franciscan Formation Melange unit of the Permanente Block.

Collected data also indicated a second dominant orientation that is a high angle, northwest-southeast trending group of faults, exposed along the western, northern, and southern North Quarry highwalls (sets 3m and 4m, Figure 2.3). Discontinuities and faults along this trend are high angle and dip primarily to the southwest. Faults along this orientation persist on the order of hundreds of feet at minimum, and many likely traverse the Quarry and persist for thousands of feet to the northwest and southeast. Larger faults along this orientation exhibit wide shear zones, on the order of feet to tens of feet across, with clay gouge and brecciation along the shear zone. Few kinematic indicators were encountered along these discontinuities, shears, and deformation zones to indicate direction of offset. However, these are likely also present due to the deformation in the Permanente Block of the Franciscan Formation.

Mining and Reclamation Plan

3.0 MINING AND RECLAMATION PLAN

3.1 MINING PLAN

Stantec has developed mine shell configurations based on Lehigh's geological resource models in order to delineate the potential quarry footprint and ultimate highwall heights. The existing topography for the Rock Plant Reserve area is shown on Figure 3.1. The database for the Rock Plant Reserve area shows that the rock mass properties are similar to those in other areas of the Permanente Property (Golder 2011). Based on this correlation, Stantec has provided geotechnical guidelines for the Rock Plant Reserve highwalls. The design vertical extents ranged from 1,340 feet to 920 feet elevation. Quarry wall heights range from 420 feet in the northwest wall to daylight on the eastern side of the quarry. The bench height of 50 feet is based on current operating practice and equipment sizing and assumes a multiple number of mining cuts make up the 50-foot bench height. This guidance is summarized in Table 3.1. The ultimate quarry design is shown in Figure 3.2, and cross-sections of the quarry are included in Figure 3.3.

This design focused on achieving long-term slope stability that takes into consideration the performance of the slopes in the North Quarry and the neighboring Stevens Creek Quarry. The quarry floor elevation was established to prevent a quarry lake from being formed. Benches will be mined in 25-foot intervals, with a catch bench every other bench or 50 vertical feet apart. Inter-ramp or inter-bench cut slope angles are 26.5° or 2H:1V for the south walls and 35° for the remaining walls. The slope gradients are appropriately conservative considering the presence of dipping limestone, weathered greenstone, and faults near the highwalls.

Table 3.1 Highwall Guidance

Component	Specification	
Bench Height (competent rock)	50 ft	
Bench Width	20-50 ft	
Bench Face Angle (BFA)	1H:1V (45°)	
Inter-ramp Angle (IRA)	Max. 26.5-35°	
Cut slope in overburden (RMR<25)	2H:1V (26.5°)	

These guidelines follow the general configuration for other highwalls within the Permanente Property. These guidelines assume adequate dewatering of the walls has been completed. Passive dewatering of the highwall is assumed as part of the ongoing operation during development. Ongoing monitoring of the highwall dewatering during development would be required to determine and/or confirm conditions. Additional development of a hydrogeological model including groundwater measurements for the Rock Plant Reserve area may be required to confirm the highwall guidelines if adverse or unexpected conditions are encountered.

3.2 RECLAMATION PLAN

Quarry highwalls will be mined to reclamation grade and limits. Topsoil and other amendments will be placed on the slopes and vegetation planted in a manner consistent with the revegetation plan component of the proposed

ROCK PLANT RESERVE GEOTECHNICAL EVALUATION

Mining and Reclamation Plan

Reclamation Plan amendment. Stormwater will be managed according to the included plans and the quarry will be left in a condition that all water naturally drains from the quarry. The reclamation topography is shown on Figure 3.2.

Geotechnical Evaluation

4.0 GEOTECHNICAL EVALUATION

4.1 ROCK MASS CHARACTERIZATION

The rock mass has been characterized using the 1989 version of the Rock Mass Rating system (RMR₈₉). The RMR₈₉ system provides an empirical methodology for estimating rock mass shear strengths for different rock units using guidelines set forth by Hoek et al. (2000) and Bieniawski (1989). Each rock unit is classified from "Very Poor Rock" to "Very Good Rock" based on a rating system with a maximum value of 100. Ratings are assigned based on the following categories:

- Uniaxial Compressive Strength (UCS) of intact rock.
- Rock Quality Designation (RQD).
- Spacing of discontinuities.
- Condition of discontinuities (persistence, aperture, roughness, infill and weathering).
- Groundwater conditions (typically set to dry or damp for boreholes where the data will be used in stability analyses that will account for groundwater conditions).

RMR₈₉ ratings are then correlated to the Geological Strength Index (GSI). It should be noted that the current characterization is based on a single geotechnical borehole and additional information is recommended to confirm the rock strength calculations. Consequently, the quarry design includes conservative rock strength parameters which result in relatively shallow quarry slopes.

In general accordance with the RMR₈₉, inputs and numerical values are presented in metric system units where applicable.

4.2 UNIAXIAL COMPRESSIVE STRENGTH OF INTACT ROCK

Design UCS values for each rock type consider field estimates using a geological hammer, point load testing, and/or laboratory UCS test results. Typical values will be considered for rock types with limited information.

Rock hardness "H" was estimated in the field based on standardized criteria from the RMR₈₉ procedures. Laboratory testing was carried out to quantitatively assess the compressive strength of core samples. Four UCS tests were carried out and verification testing is recommended to develop a more detailed database for the Rock Plant Reserve area and determine the correlation with the regional geotechnical database. Table 4.1 summarizes the field estimates and laboratory results for UCS.

Table 4.1 UCS Data Summary

Dook Time	Field Estimate		Lab UCS Testing	
Rock Type	Hardness (H)	UCS Range (psi)	# of Tests	Mean UCS (psi)
Limestone	R3	>7,250	1	15,225
Fault Breccia	R1-R2	145 to 2,175	1	145
Metabasalt / Greenstone	R2-R3	580 to 7,250	2	3,770

Geotechnical Evaluation

4.3 ROCK QUALITY DESIGNATION

All recovered rock cores were evaluated for an RQD. RQD is defined as the summation of recovered core pieces of minimum length of 100 millimeters (mm) over the total length of the core run and is a good measure of the degree of jointing and discontinuity within a rock mass. A higher RQD generally indicates a higher quality, less fractured rock mass.

RQD values appear to fall into two different groupings. The breccia with clay zones and clay zones (fault gouge) have low RQD values (0 to 30) while the intact rock (limestone and metabasalt/greenstone) and breccia typically have higher RQD values based on the weighted averages (47 to 68). RQD values in excess of 80 occur in lengths of competent rock within the core so the weighted values for the more competent lithologies may be affected by disturbance due to movement along the faults that have been noted in the area of the quarry. Table 4.2 summarizes the weighted RQD values for each major rock type based on borehole GT2-14. The results from borehole GT2-14 are consistent with previous drilling conducted at the Permanente Property; therefore, the results are representative of the final highwalls.

Table 4.2 RQD Summary

Major Rock Type	Weighted RQD (%)	RQD Range (%)
Limestone	47	0 - 87
Metabasalt/Greenstone	68	0 - 100
Breccia	67	34 - 85
Breccia with clay	13	0 - 100

4.4 RMR SUMMARY AND CLASSIFICATION

Major rock types encountered are generally described as Fair Rock based on weighted average RMR₈₉ values. However, similar to RQD, the weighted RMR₈₉ values reflect a range including lower values likely resulting from fault related deterioration. Zones of competent intact rock have relatively high values (>61) which would place the rock in the "Good" rock quality category. RMR₈₉ values for each rock type are shown in Table 4.3. These values correspond well with information from the North Quarry provided in earlier studies (Golder 2011).

Table 4.3 RMR₈₉ Summary

Major Book Type	RMR ₈₉ Summary		
Major Rock Type	Weighted Average	Classification	
Limestone	54	Fair Rock (40-60)	
Metabasalt/Greenstone	57	Fair Rock (40-60)	
Breccia	48	Fair Rock (40-60)	
Breccia with Clay	45	Fair Rock (40-60)	

Geotechnical Evaluation

4.5 GEOTECHNICAL STABILITY

The slope stability analyses were modeled using the software Slope-W® 2018 R2 version 9.1 by GeoStudio, released in 2018. The software used limit equilibrium on slices of potential failure surface to calculate factor of safety (FoS). The models were evaluated under static and pseudo-static conditions, with horizontal ground acceleration, for the closure configurations of the highwalls using the Spencer method. The minimum FoS for each model evaluation is included in this report. The two types of analysis have been summarized in Table 4.4. The minimum acceptable factors of safety for the analyses are 1.3 for static conditions, and 1.0 for pseudo-static conditions based on mining industry standards. For the pseudo-static model conditions, a horizontal seismic coefficient of 0.15 times the force of gravity (g) was applied to the static condition models to be consistent with previous studies (Golder 2011) and to follow recommendations for earthquakes with magnitudes up to 8-1/4 (Seed 1982). To evaluate the slope stabilities, cross-sections were analyzed for the reclamation surface. The cross-section locations are shown on Figure 3.1 and 3.2, and sections are shown on Figure 3.3.

Table 4.4 Stability Analyses

Analysis Type	Description	Minimum Acceptable Factor of Safety
Static Analysis	A limit equilibrium method of analysis which satisfies moment and force equilibrium to solve a slope stability problem. The output is a single FoS for the potential failure surface with the lowest FoS.	1.3
Pseudo-static Analysis	A limit equilibrium method of analysis which represents the effects of earthquake shaking by accelerations that create inertial forces. This is the simplest way to analyze the dynamic effects of earthquake loading of a soil or slope. The output is a single FoS for the potential failure surface with the lowest FoS.	1.0

Site-specific geotechnical information is available for each rock type on the property, and strength parameters for the material have been established in previous geotechnical analyses. These strength parameters are based on laboratory testing, back-calculation, and published values for material properties. These strength parameters are listed in Table 4.5.

Table 4.5 Geotechnical Strength Parameters

Material	Unit Weight (pcf)	Cohesion (psf)	Phi' (Degrees)
Greenstone (Mining Influenced Zone/Weathered)	165	1,800	27
Greenstone	165	12,500	30
Limestone	165	12,500	30

As previously discussed, the greenstone strengths can vary significantly depending on the degree of weathering, and Stantec focused on evaluating the greenstone strengths as part of the 2018 geotechnical investigation. The greenstone strengths were re-evaluated based on RMR classifications. The historic greenstone strength (φ'=27° and cohesion=1,800 pounds per square foot [psf]) is suitable for areas that have been influenced or will be influenced by

ROCK PLANT RESERVE GEOTECHNICAL EVALUATION

Geotechnical Evaluation

mineral extraction; designated as the "Mining Influenced Zone". A stronger strength for greenstone is expected for the area "beyond" the mining operation. A 75-foot horizontal distance from the highwall was used to define the mining influenced zone. This distance is one and one-half times the bench height following industry design guidelines (Hustrulid 2000).

The greenstone parameters from RMR classification were provided to estimate Mohr-Coulomb strength parameters. RocLab(1.0) free software from Roc Science were used to do the calculation. The calculations were based "General" application for failure envelope range. The disturbance factor D = 0 is used for the greenstone beyond the "Mining Influenced Zone". The calculated friction angle and cohesion are listed in Table 4.6.

Table 4.6 Greenstone Strength Parameters

DH ID	RM Unit	Depth (ft)	Friction Angle (Degrees)	Cohesion (ksi)	Cohesion (psf)
GT-2-2018-14	RM-3	49.5 - 70.5	26.1	0.077	11,088
GT-2-2018-14	RM-5	78.0 - 104.0	31.9	0.269	38,736
GT-2-2018-14	RM-8	145.0 - 239.0	32.7	0.197	28,368
GT-1-2018-1	RM-1	1.0- 54.3	21.8	0.022	3,168
GT-1-2018-1	RM-4	144.0 - 410.0	34.9	0.313	45,072
GT-1-2018-1	RM-5	410 - 500	30.5	0.108	15,552
	Average		30	0.164	23,664

The average value of calculated friction angle (30°) was selected for the greenstone. The average cohesion is 23,664 psf from the calculations; however, the cohesion is capped at 12,500psf based on the strength parameters used for limestone.

The configurations modeled as part of this analysis meet or exceed the minimum acceptable factor of safety, as defined in Table 4.4. Generally, geotechnical stability is governed by the mining influenced zone and the presence of limestone remaining in the highwall. Results from the stability analyses are shown in Table 4.7. Appendix B contains printouts of the slope stability sections.

Table 4.7 Geotechnical Stability Analyses Results

Section	Analysis	FoS
A-A'	Static	1.37
	Pseudo-static	1.06
D D'	Static	1.43
B-B'	Pseudo-static	1.10
C-C'	Static	1.65
U-U	Pseudo-static	1.27
D-D'	Static	1.94
ט-ט	Pseudo-static	1.42

ROCK PLANT RESERVE GEOTECHNICAL EVALUATION

Geotechnical Evaluation

Seismic displacements were calculated using an empirical equation developed by Bray and Travasarou (Bray 2007). This method estimates the displacement of a rigid block on a slope and is consistent with previous displacement analyses. The peak ground acceleration (PGA) value of 0.6g was used for the calculations, which is also consistent with previous analyses. This PGA corresponds to an earthquake with a mean return time of 475 years (Petersen 2008). The yield acceleration (ky) was calculated using the Slope/W model by adjusting the seismic coefficient until the model provided a FoS = 1.0, and these values were used for the displacement calculation. The ky values and displacement results are listed in Table 4.8. The displacement calculations are included in Appendix C. Cross-sections with pseudo-static FoS greater than 1.15 will have minimal displacement during a seismic event (Seed 1982), and displacements for these cross-sections are assumed to be less than two inches. The actual displacements were not calculated for these sections. Literature on seismic slope displacements suggest that median displacements of less than 6 in (15 centimeters [cm]) are "minor" and displacements of greater than 3 feet (1 meter [m]) are "major" (Bray 2007). All displacements for the Rock Plant Reserve Quarry are "minor" and unlikely to impact the reclaimed slope.

Table 4.8 Seismic Displacement Analyses Results

		Se	ismic Displacem	ent (in)
Section	Yield Acceleration ky (g)	Median	16% Exceedance	84% Exceedance
A-A'	0.185	2	4	1
B-B'	0.195	2	4	1
C-C'	na	<2	<2	<2
D-D'	na	<2	<2	<2

The geotechnical analysis assumes that groundwater does not impact the highwall slope stability, and these conditions must be confirmed, or drains must be installed wherever groundwater is present to lower the groundwater elevations beneath the mining influenced zone. The geotechnical analysis also assumes that discontinuities that may create slide planes or wedge failures are not present beyond those identified by the fault and structure mapping. The design considers the presence of these faults and adverse dipping structure, and geotechnical monitoring will continue during development to confirm conditions.

Recommendations

5.0 RECOMMENDATIONS

The development of site-specific highwall design criteria and the completion of stability analyses require that rock strength values be confirmed for the proposed Rock Plant Reserve. The following recommendations are provided to support future verifications of the quarry design for the Rock Plant Reserve:

- The current slope design is conservative and based on available information. Additional delineation of geologic structures, geotechnical drilling and analyses may generate data allowing for steepening or refinement of the slope design.
- Stantec recommends that Lehigh verify the absence of groundwater in the quarry slopes during development, which may include installation of additional groundwater monitoring instruments (standpipes, vibrating wire piezometers) during mining operations.
- Additional laboratory testing of representative rock lithologies during development and operation, and fault gouge
 zones if encountered during development and operation, should be completed as part of any future drilling
 programs to verify or refine the existing rock strength database. This would also allow for correlation with the
 existing Quarry geotechnical database.

Conclusion

6.0 CONCLUSION

This report provides the analysis and supporting information needed to demonstrate that Lehigh Southwest Cement Company's plan for reclamation operations at the Rock Plant Reserve Quarry meets SMARA and associated design and performance requirements. The Rock Plant Reserve Quarry will be excavated so that stable slopes remain, and positive drainage will remain for operational and reclamation periods. The geotechnical assessment provided in this report demonstrates that the proposed Reclamation Plan meets or exceeds the SMARA requirements for factors of safety under static and seismic conditions, and that these stable conditions are met during both the operational and reclamation periods.

This report has been prepared for Lehigh Southwest Cement Company to provide them with geotechnical guidance in support of the development and reclamation of the Rock Plant Reserve. As mutual protection to Lehigh, the public, and Stantec, this report and its figures are submitted for exclusive use by Lehigh Cement Company. Our report and recommendations should not be reproduced in whole or in part without our express written permission, other than as required in relation to agency review and submittals. The drawings included with the report are for regulatory review and are not intended as detailed construction drawings. All information and design results contained herein have been prepared by the authors who have signed below and attached drawings have been certified by Nelson Kawamura, California, PE. A draft of this report was reviewed by personnel from Lehigh Southwest Cement Company.

Stantec Consulting Ltd.

Paul Kos P.E.

Senior Geological Engineer Phone: 720-889-6122 paul.kos@stantec.com

Nelson Kawamura G.E.

Principal, Civil Engineer, Waterpower & Dams

nelson Kawamura

Phone: 503-220-5424

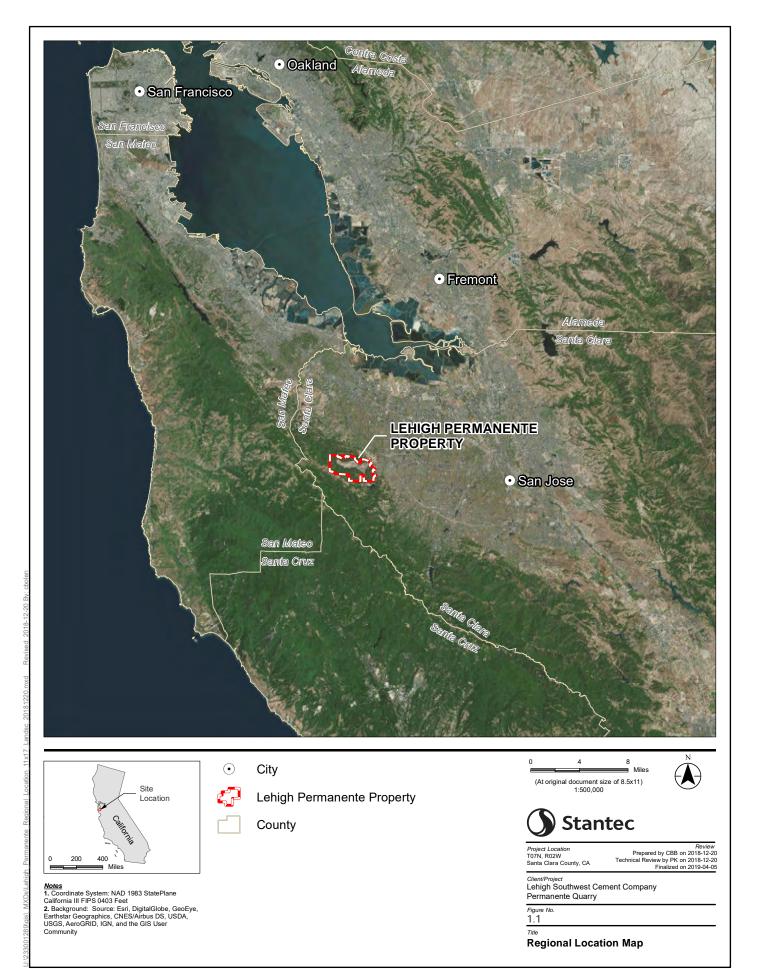
nelson.kawamura@stantec.com

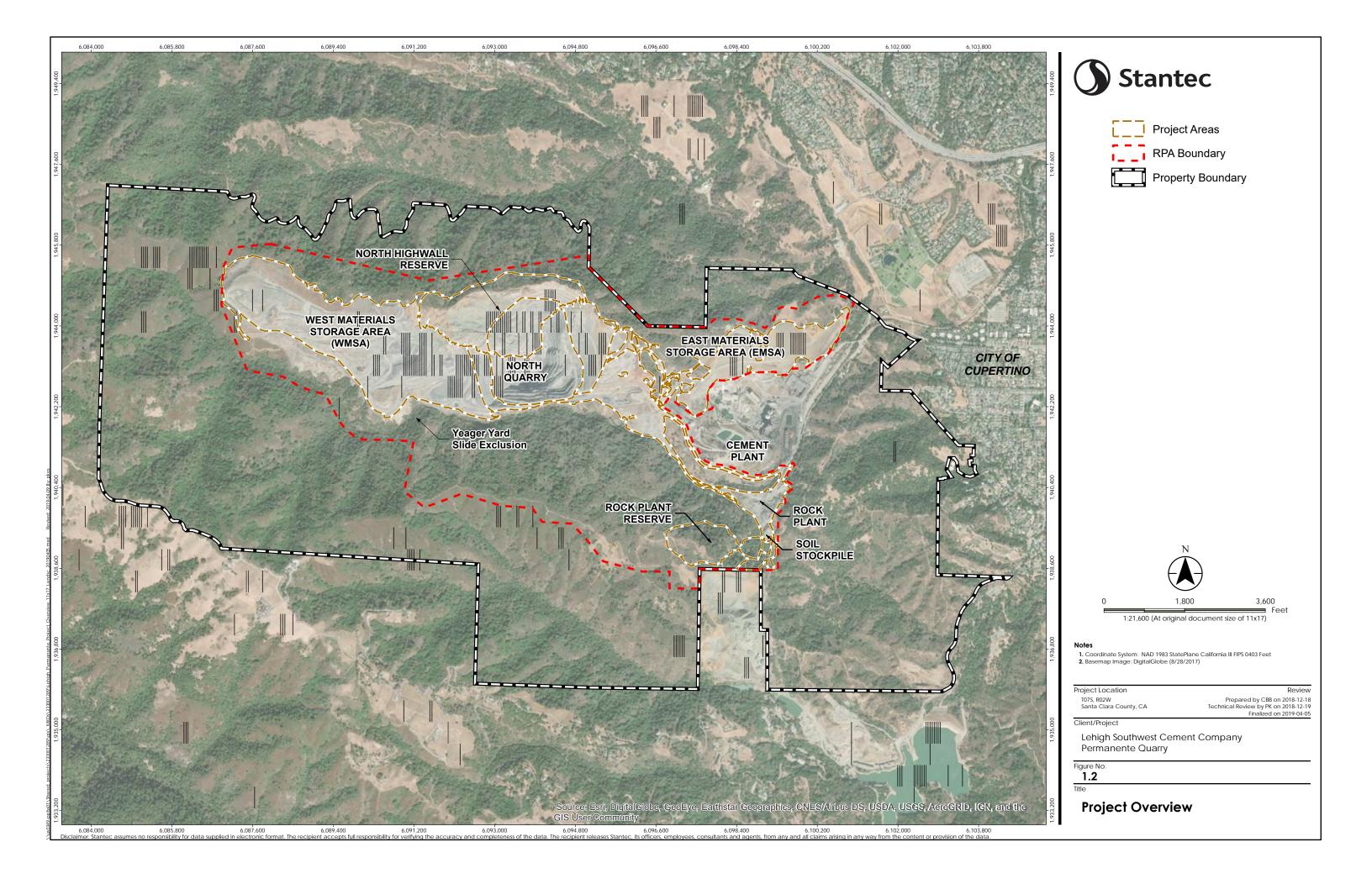
April 5, 2019

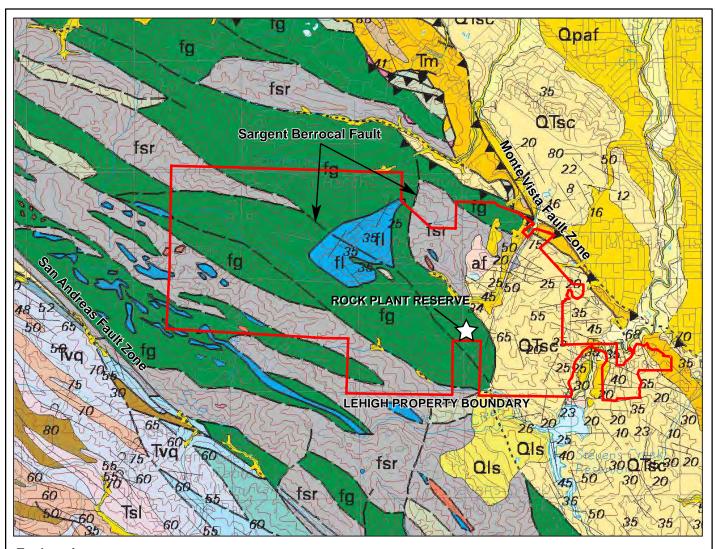
References

7.0 REFERENCES

- Bieniawski, Z.T. 1989. Engineering Rock Mass Classifications. New York: Wiley. 1989.
- Bray, J. D., and Travasarou, T., 2007. Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements, Journal of the Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 4, pp. 381-392.
- Foruria, J. September 2004. *Geology of the Permanente Limestone & Aggregate Quarry*, Santa Clara County, California, 2004.
- Golder Associates, November 2011. *Geotechnical Evaluations and Design Recommendations*. (REVISED). *Permanente Quarry Reclamation Plan Update*, Santa Clara County, California. 2011.
- Hoek et al, November 2000. *Rock Slopes in Civil and Mining Engineering*. Proceedings of the International Conference on Geotechnical and Geological Engineering, GeoEng2000. Melbourne. 2000.
- Hustrulid, William A., McCarter, Michael K., Van Zyl, Dirk J.A. 2000. Slope Stability in Surface Mining. Society for Mining, Metallurgy, and Exploration, Inc. (SME), Littleton, Colorado. 2000.
- Petersen, Mark D., Frankel, Arthur D., Harmsen, Stephen C., Mueller, Charles S., Haller, Kathleen M., Wheeler, Russell L., Wesson, Robert L., Zeng, Yuehua, Boyd, Oliver S., Perkins, David M., Luco, Nicolas, Field, Edward H., Wills, Chris J., and Rukstales, Kenneth S., 2008. Documentation for the 2008 Update of the United States National Seismic Hazard Maps: U.S. Geological Survey Open-File Report 2008–1128, 61 p.
- Seed, H. B., 1979. *Considerations in the Earthquake-Resistant Design of Earth and Rockfill Dams*, Geotechnique, vol. 29, No. 3, pp. 215-263.




FIGURES


FIGURES

- **Figure 1.1 Permanente Quarry Regional Location Map**
- **Figure 1.2 Permanente Quarry Project Overview**
- Figure 2.1 Permanente Quarry Regional Geology Map
- Figure 2.2 Rock Plant Reserve Geology Map
- Figure 2.3 Rock Plant Reserve Fault and Discontinuity Mapping
- Figure 3.1 Rock Plant Reserve Existing Topography
- Figure 3.2 Rock Plant Reserve Reclamation Topography
- Figure 3.3 Rock Plant Reserve Cross-Sections

Explanation

Map symbols

Contact - dashed where approximately located; dotted where covered by alluvium

Fault - Dashed where approximately located; short dashed where inferred; dotted where concealed by

> Reverse or Thrust Fault - Dashed where approximately located, dotted where concealed by alluvium. Sawteeth

> > db

fsr

db - diabase and gabbro

fl - limestone

fs - sandsone

fc - chert

Franciscan Assemblage Rocks

fg - greenstone (metabasalt)

fsr - sheared rock (melange)

Strike and dip of Strike and dip of bedding overturned bedding

Map units

Tvq

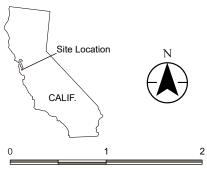
af artifical fill

landslide deposits Qls

alluvial fan and fluvial deposits **Qpaf**

Santa Clara Fm (conglomerate, sandstone, mudstone) QTsc

Monterey Fm (shale) Tm


Tvq - Vaqueros Sandstone (sandstone/mudstone/shale) San Lorenzo FM

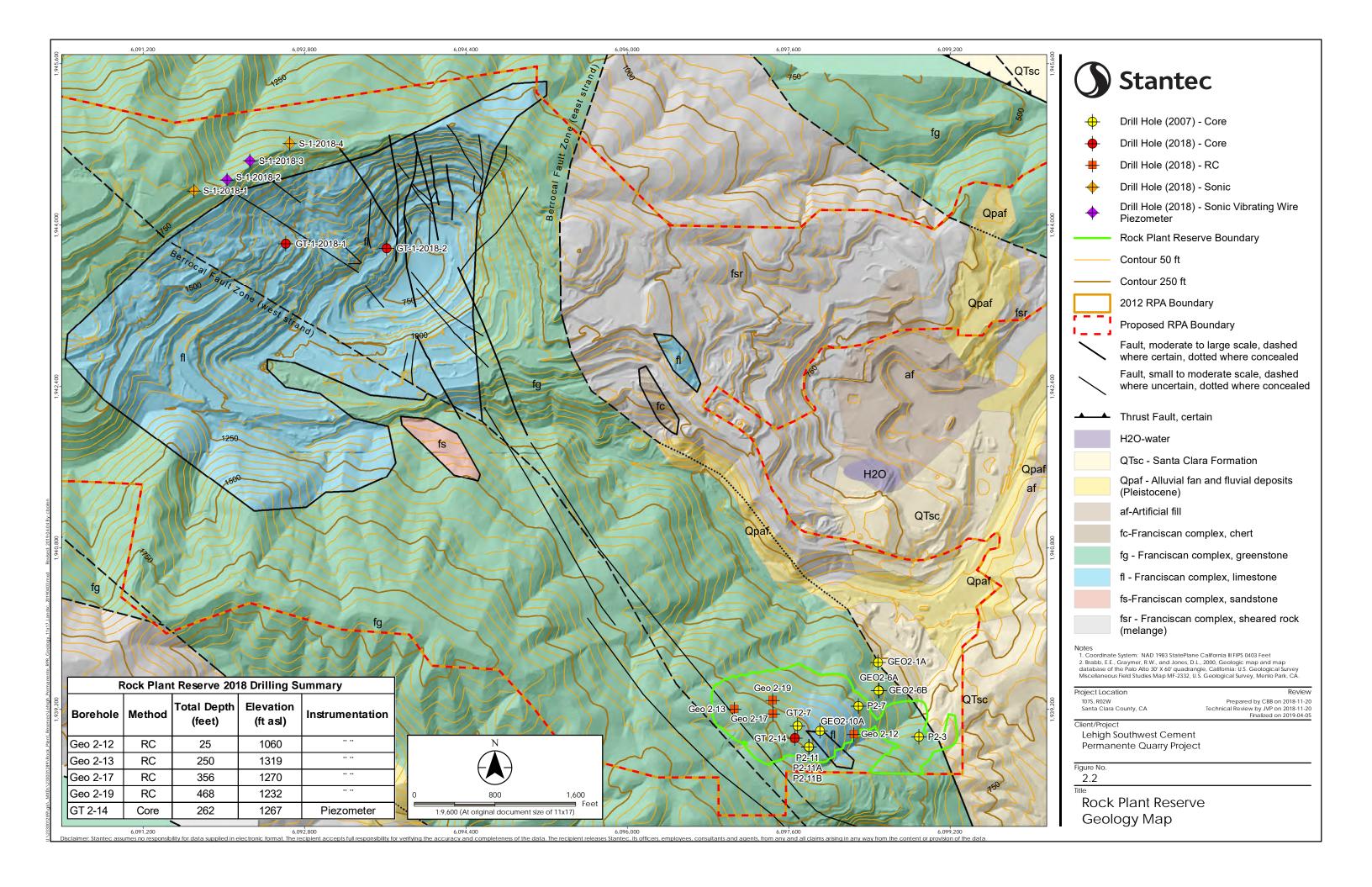
Tsl (shale/mudstone/siltstone)

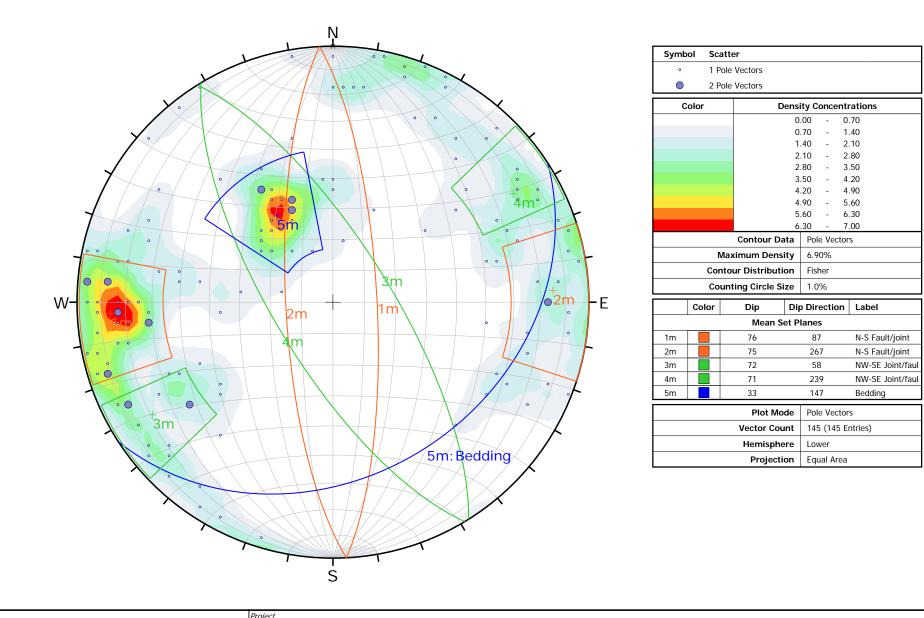
Butano Formation - undifferentiated Tbu (sandstone/conglomerate/shale)

Tblc **Butano Conglomerate**

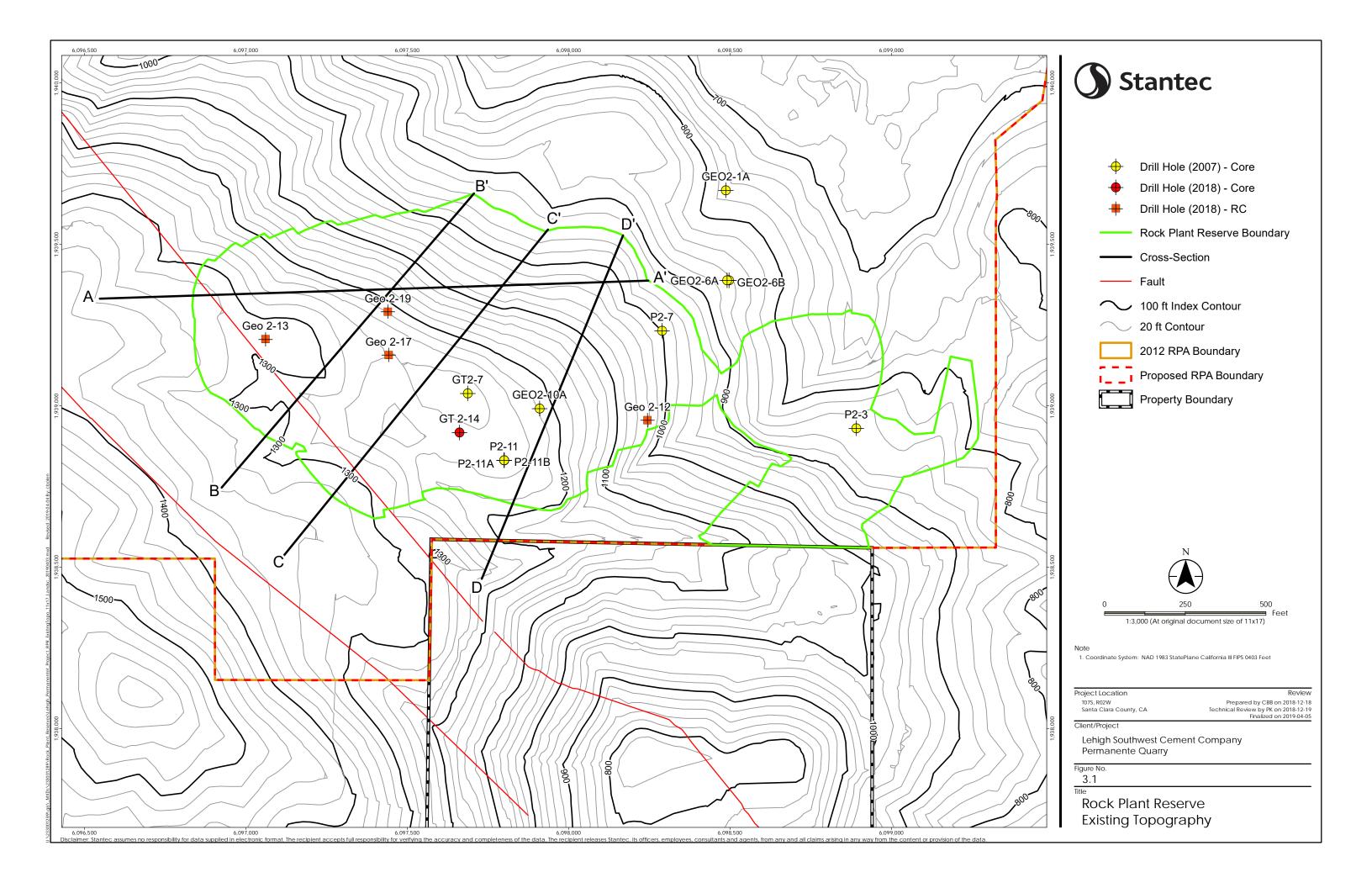
Butano Sandstone Tbs

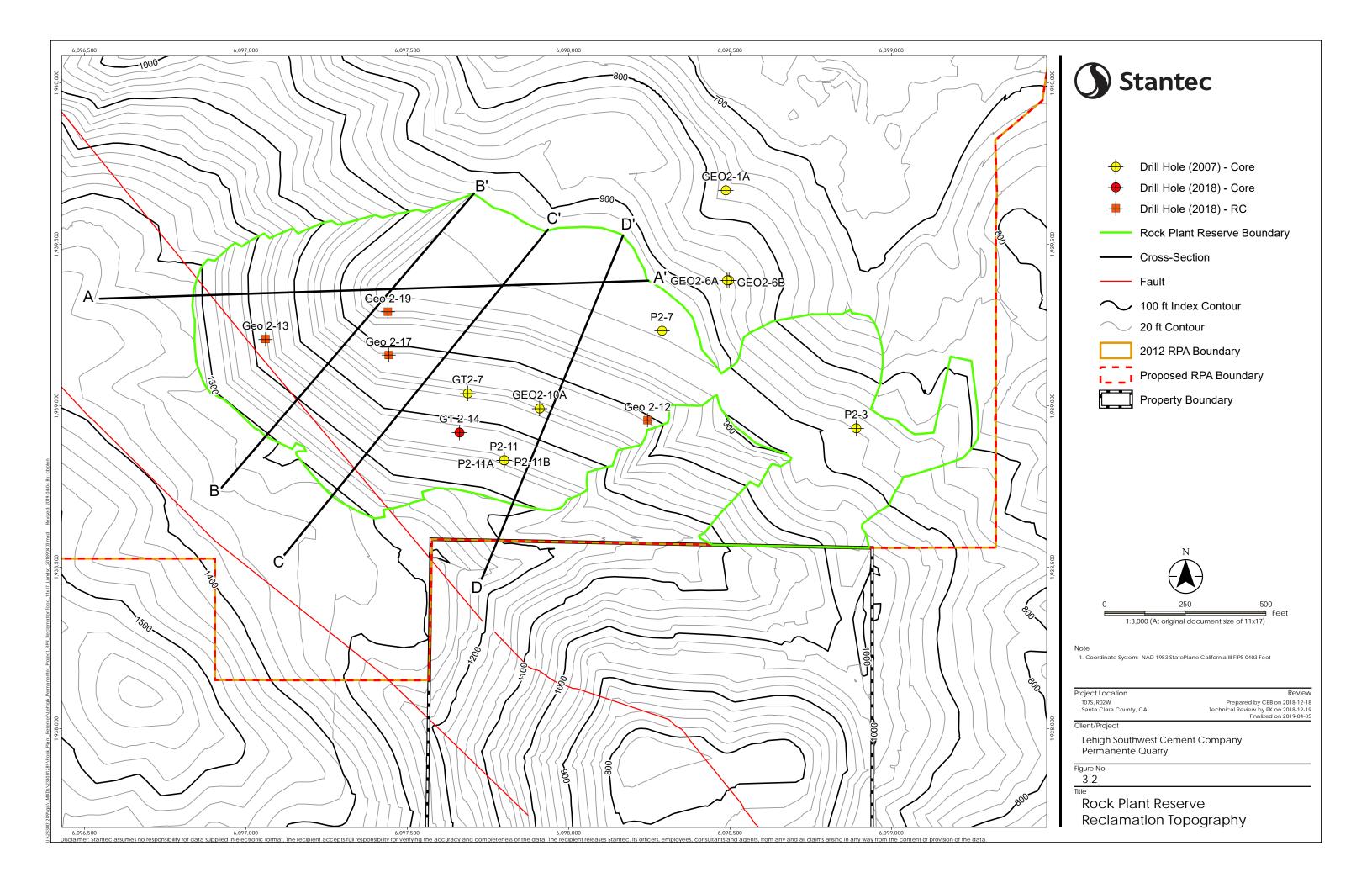
1. Coordinate System: NAD 1983 StatePlane California III FIPS 0403 Feet 2. Brabb, E.E., Graymer, R.W., and Jones, D.L., 2000, Geologic map and map database of the Palo Alto 30' X 60' quadrangle, California: U.S. Geological Survey Miscellaneous Field Studies Map MF-2332, U.S. Geological Survey, Menlo Park, CA.


Project Location Prepared by EDZ on 2018-07-05 Technical Review by JVP on 2018-07-05 Finalized on 2019-04-05 T07S, R02W Santa Clara County, CA


Client/Project

Lehigh Southwest Cement Permanente Quarry Project


Figure No. 2.1


Regional Geology Map

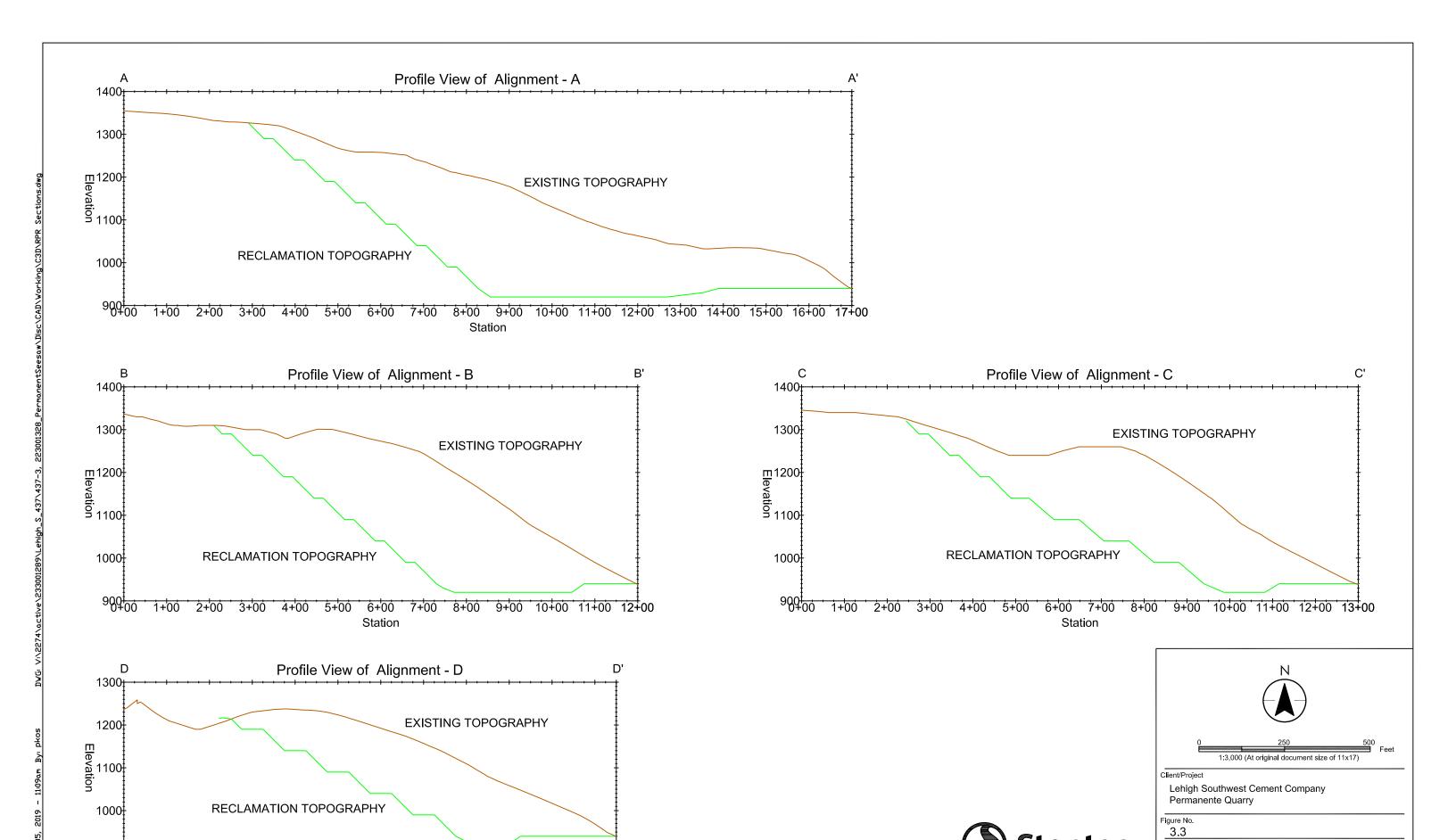


	Figure 2.3 Ro	ck Plant Reserve Fault and Discontinuity Mapping
1015	Analysis Description	
siglence	Drawn By J. Van Pelt	Company Stantec
DIPS 7.006	Date 04/05/2019, 9:29:21 AM	Fault and discontinuities mapping.dips7

Rock Plant Reserve

Cross-Sections

900100 1+00 2+00 3+00 4+00 5+00 6+00 7+00 8+00 9+00 10+00 11+00+50

Station

ROCK PLANT RESERVE GEOTECHNICAL EVALUATION

APPENDIX ADrilling Program Data

Loca	ition: hing:	t: 5/15 Cup -3274	ertin / Ea	o, C	A g: -8	5/30 51 eet Al		Drilling Co.: Gregg Drilling Inc. Drill Rig: CME 075X / Drilling Method: HSA/WLC Drill Bit Type/Size: Diamond Impregnated / HQ3 Logged By: SRC/JVP Total Depti										Sh	eet	t N		GT 2 1 of 27	2-14			
Botto	om El	evatio	n:	10	05 f	eet Al		Prepare	ed By: S	SRC											ter Data			9.89	ft bgs, 07	/20/2018
Azin	uth:	/ Incli	natio T	n: -9	90			Checke	ed By: (CRL			\perp						Dis	conti	nuity Dat	a		Ц,		
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	1	Description				cover		RC %	•	Fractures per ft.	Drawing	Dip		Width	Type of Infilling	lug	Surface Shape	Roughness	Cor	mments
264 - - - 262 -	2						Poorly-graded SAN (SP-SM), orangish to very dense, dry	ID with silt a red with gra	nd trace g	gravel dense															SPT-01 - 5.0- J.8/1-5' 5/24/26 N=50	
	6																									
DISCO	NTINUI	TY TYP	A	PERA	ATURI	E	INFILLING TYPE	INFILLING AMOUNT	SHAPE		RC	UGH	NESS			DIS	CONT	LINOI	TY S	PACII	NG	w	EATI	HERII	NG	STRENGTH
F - Fault J - Joint Fz - Frac S - Shea Sz - Shea V - Vein Fo - Folia B - Bedd MB - Med Bz - Brok	ture Zone or Zone otion or Joint chanical B		Very Narro Open Wide	Narrow (w (N) (O)	(Vn) <0 0.05 0.1	0.05" Ci Ci -0.1" Ep -0.5" G	- Biotitie Mn - Manganest - Clay My - Mylonite a - Calcite My - Mylonite h - Chiorte Py - Pyrte - Epidote Cz - Quartz - Iron Oxide Sd - Sand - Gypsum Si - Sitt - Healed I - Mica	Clean (No) Stained (Su) Spotty (Sp) Partial Filled (Pa) Filled (F) Cemented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Slickenside Smooth (S) Slightly Ro Rough (R) Very Rough	ugh (Sr)	Visual ev and stric Surface a smooth Asperitie and can Asperitie some rid feels abr Near-vert surface	ations appears a s are dis be felt as are cle ges evid asive	nd feels tinguish arly visa ent, surf	able ble,	Wide (V Modera Close (C Very Clo	V) te (M) C) ose (V(Wide (EW) >6ft Fresh (W1) Extremely Weak (R0) Very Weak (R1) Wash (R2) Extremely Weak (R3) Weak (R2) Weak (R2) Weak (R2) Weak (R2) Weak (R2) Weak (R2) Weak (R3) Weak (R4) Weak (R4) Weak (R4) Weak (R5) Weak (R						Weak (R1) (R2) erately Strong (R3) ng (R4)		

		t: 5/15				: 5/30	/18	Drilling		Gregg [_								C	ORI	ΕL	C)G	G	Г 2-14
_		-3274				251			g: CME 0 :Type/Siz			_					_								2 of	
_		-3274 Elevati			_	feet A	MSL	Logged		SRC/JV		iu IIII	hi e (jiiatt	.u /	100		Tot	al C)ep	th: 262					
		levatio		10	005 f	feet A	MSL		ed By: S															9.89	ft bgs	s, 07/20/2018
Azin	nuth:	/ Incli	nati	on: -	90			Checke	ed By: (CRL																,
۳			0.																Dis	cont	inuity Da	ata		П		
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	1	Description				covery		RQI %		Fractures per ft.	Drawing	Dip	Type	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	l	Comments
1256 -	12 -						Well-graded SAND (SW-SC), brown, d	with clay ar ense, dry	nd trace gr	ravel															N=39	- 10.0-11.5° 4
1250 -	16 -		1	W2-	R2		LIMESTONE, light grained, completely extremely weak, su 1/2" to 1 1/4" in dia visible on surfaces, weathers to well-gr trace gravel (SW-S	y weathered bangular cli meter, some , highly brok aded SAND (C), brown, c	to residua asts rangir i iron stair en. Limesi with clay lense, dry	al, ng from ning tone		21		0		>10									l	onvert to HQ3 drilling to 15.0' ling 5/15/2018 rilling 5/16/2018
DICCC				W3		井	INCH LING TOT	INFILLING	011125						4					D46					L	OTDENOTH
F - Fault		TY TYP	E /	APER/	AIUR		INFILLING TYPE i - Biotitie Mn - Manganese	AMOUNT Clean (No)	SHAPE Wa - Wavy	Slickenside		Visual evid	ence of	polishing	1.		ely Wid			PAC		Fresh (/EAT	нER	ING	STRENGTH Extremely Weak (R0)
Fz - Frac S - Shea Sz - She V - Vein Fo - Foli B - Bedd MB - Me			Very	Narrow ow (N) n (O)	0.05	5-0.1" E 1-0.5" G	i- Biotitie Mn - Manganese a - Calcite My - Mylonite a - Calcite No - None h - Chlorite Py - Pyrite p - Epidote Qz - Quartz - Iron Oxide y - Gypsum Si - Silt - Healed Un - Unknown i - Mica	Clean (No) Stained (Su) Spotty (Sp) Partial Filled (Pa) Filled (Fi) Cemented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Roi Rough (R) Very Rough	ugh (Sr)	and striati Surface ap smooth	ons pears ar are disti felt are clea es evide ive	nd feels inguishab rly visabl nt, surfac	e,	Wide (V Modera Close (V Very Cl	V) ite (M)	· ()		2. 0.75i	2ft-6ft 8in-2ft 4in-8in n-2.4in	Fresh (Slightly Modera Highly Comple Residu	y (W2 ately (W4) etely	(W3) (W5)		Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

—		t: 5/1				5/30	/18	Drilling			Drilling Inc.							C	∩RF	- : i) <u>C</u>	GT 2-14
		Cup				054					Drilling Meth							U					3 of 27
-		-327 ² levati			_	eet A	MSL	Logged	<i></i>	SRC/J\	amond Impr /P	egr	iated /	пQз		Tot	al D	epi	th: 262.				0.2.
Botte	om El	levation	on:	10	005 f	eet A	MSL		ed By: S						-			÷				9.89	9 ft bgs, 07/20/2018
Azin	nuth:	/ Incl	inati	on: -	90			Checke	d By: C	CRL												L	
SL			Q											-			Dis	cont	inuity Data	a			
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery		9 0 0 % 4 0 0	Fractures per ft.	Drawing	Dip	Type	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
_	-	_		W2- W3	R0		LIMESTONE, continu poorly-graded coarse washed out, loose, pr gravels	GRAVEL	(GP), fine	s													losing water drive casing to 20 ft.
1246 - 	-		2								35		0	>10									
_	22 –			<u>/ \</u>	/ \									>10									
- 1244 -	-	20	3	W2- W3	R0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	GREENSTONE, dark fine-grained, complet extremely weak, very	tely weather soft. Gree	ered to res	eathers	73		0	>10									
-	24 -	9	4			> > > > > > > > > > > > > > > > > > >	to clayey SAND with coarse, angular to su plasticity clay matrix	gravel (SC ibangular, :), medium sands in k	n to ow	0		0	>10									
1242 - 	-	- 19	5	W2- _W3_	R0)))) >					50		0	>10									Change bit to lower strength bit
-	26 -		6	W2-	R0	>					30		0	>10									Drive casing to 25 ft.
- 1240 -	-				R0	(BRECCIA, sheared 0	SREENST	ONE and	CI AV:				>10		90	С	0 1	-ē, Ca	Pa - Fi	PI	Sr	
_	28 -	26	7	W2- W3			clay gouge matrix wit gravel sized greensto plasticity clay is soft v extremely weak, shea METABASALT/GREE	th coarse sone/metaba when wet, aring at 25	and to fine asalt clast stiff when of to core a	e s, low dry, ixis.	83		18	>10		55 55	Sz J Sz	Vn (CI, Fe, Ca, Sd CI, Fe, Ca, Sd CI, Fe, Ca, Sd	Fi Fe Fi	PI PI PI	Sr Sr Sr	
- 1238 –	-				R2- R3	>>>> >>>> >>>> >>>>> >>>>>	green, fine to mediun moderately weathere strong, hard, chloritic	n grained, d, weak to	slightly to moderate	ely				>10		30 70 40 0-10 45 30 40	J	Vn I Vn I Vn I Vn I Vn I	Fe, Ca, Sn Sa, Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca	Sp Sp, Sp, Pa Sp Sp Pa Pa Su	PI Wa-Ir PI Wa-PI PI	R Sr-R Sr R Sr-R R-Sr	
-	-						METABASALT/GREE gouge matrix with co- sized greenstone/me plasticity clay is soft v extremely weak, she	arse sand tabasalt cl when wet,	to fine gra asts, low stiff when o to core a	vel dry,		×		>10									
DISCO F - Fault			_	APER/	ATURI		INFILLING I TPE	AMOUNT	SHAPE	Slickenside	ROUGHNES	e of no	lishing		CONT			AC			EAT	HER	
J - Joint Fz - Frac S - Shea Sz - Shea V - Vein Fo - Folia	(Discontin ture Zone r ar Zone ation ing Joint chanical B		Very Narr Ope	t (T) Narrow ow (N) n (O) e (W)	0.05	0.05" C C 5-0.1" E F- I-0.5" G	I - Clay My - Mylonite St a - Calcite No - None Sp h - Chlorite Py - Pyrite Pa	lean (No) lained (Su) pootty (Sp) artial Filled (Pa) lled (Fi) emented (Cm)	Wa - Wavy Pi - Planer St - Stepped Ir - Irregular	Smooth (S	and striations Surface appea smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	rs and disting t clearly vident,	feels juishable visable, surface	Extreme Wide (V Modera Close (I Very Cle Extreme	/) te (M) C) ose (VC)		2. 0.75i	2ft-6ft SI Bin-2ft M 4in-8in Hi n-2.4in Co	odera ighly omple	(W2 ately ((W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 5/15/18		Drilling Co.: Gregg Dr		COF	RE LOG GT 2-14
Location: Cuperti		Drill Rig: CME 075X / Dri			Sheet No. 4 of 27
Northing: -3274 / E Surface Elevation:		Drill Bit Type/Size: Diam Logged By: SRC/JVP	· •	Total Depth: 2	
Bottom Elevation:	1005 feet AMSL	Prepared By: SRC			Data: 169.89 ft bgs, 07/20/2018
Azimuth: / Inclinat		Checked By: CRL		Groundwater E	703.03 1t bg3, 0772072010
				Discontinuity	Data
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No.	Weathering Index Strength Index Graphic Log		Recovery & 80 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Drawing Dip Type Width Type of Infilling	
	W3- R2- R3 W4			60 J Vn Cl, Fe 50 C T Sa	SP SF
1236	W2 R4 31.3-33.3': shear z	one, extremely weak,	6	70 J Vn Fe, Ca 80 J Vn Fe, Ca 90 J Vn Fe	Su PI R Su Ir R Su PI Sr
32 -	sharp transition		4	85 J Vn Cl 30 V O Ca BZ	Fi PI Sr Cm C Sr
1234	W2- R1 W3		8 4	50 J Vn Cl 90 J Vn Cl 80 J Vn Cl	FI PI R FI PI R Pa PI R
34 -			>10		
1232	CLAY with sand (CL), (drilling), low plasticity wet, very stiff to hard v	dark gray to black, moist , moderately soft when when dry. [gouge]	>10	BZ Fe, Ca	Casing to 35 ft.
36 -	W2 R0		>10		
- 30 9			56 0 >10	SZ CI, Ca	Fi Sr-R Sp Sr-R
1228			>10		
	<u> </u>		>10		
DISCONTINUITY TYPE	APERATURE INFILLING TYPE	AWOUNT		CONTINUITY SPACING	WEATHERING STRENGTH
Fz - Fracture Zone S - Shear Zone V - Vein Fo - Foliation B - Bedding Joint MD Mechanical Break	CI - Clay My - Mylonite Stai ery Narrow (Vn) <0.05" Ca - Calcite No - None Spo Ch - Chlorite Py - Pyrite Parrow (N) 0.05-0.1" Ep - Epidote Oz - Quartz Fille	ined (Su) Wa - Wavy Smooth (S) PI - Planer	Surface appears and feels smooth (Sr) Aspertites are distinguishable and can be felt Aspertites are clearly visable, some ridges evident, surface feels abrasive Cextrem	e (M) 8in-2ft	Completely (W5) Strong (R4)

		t: 5/1				5/30	/18	Drilling			Drilling In							C	ORE	ΞL)G	GT 2-14
-		-3274				51		_	g: CME 0 :Type/Siz						_		•						5 of 27
		Elevati				eet Al	MSL	Logged		SRC/J\		ihie	nateu	, 1100		Tot	al D	ept	h: 262				
		levation		10	005 f	eet Al	MSL		ed By: S													9.89	9 ft bgs, 07/20/2018
Azin	nuth:	/ Incl	inatio	on: -	90			Checke	ed By: (CRL													
۱,,			o i														Disc	onti	inuity Dat	a			
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log		Description			Recover	·	RQD %	Fractures per ft.	Drawing	Dip	Type	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
-				W1	R0- R2		CLAY, continued.										SZ	c	CI, Ca, Fe	Pa		Sr	
1226 -	42 -	- 20	10								12		0	>10									
 							BRECCIA/sheared	zone with c	lay, sand,	and				>10									driller indicates that material may be washing away
-	46 -	-		W2	R0 		gravel, dark gray a plasticity clay, mod 45.5": moderatel 45.9": grades to	erately soft, y calcareous	moist [gou	uge]				0			MBZ						
1220 -	48 -	- 18	11								28		28	>10									
- 1218 - -		-												>10									
		ITY TYP	E A	PER	ATUR	■	INFILLING TYPE	INFILLING AMOUNT	SHAPE	L	ROUGHN			DIS	CONTI	NUI	TY SP	ACI	NG	w	EAT	HER	ING STRENGTH
Fz - Frac S - Shea Sz - She V - Vein Fo - Foli B - Bedd MB - Me	(Discontii ture Zone r ar Zone	,	- 1	Narrow ow (N) ı (O)		0.05" Ci Ci -0.1" Ep -0.5" G	- Biotitie - Clay - Clay - Clay My - Mylonite - Clay My - Mylonite - Chlorite - Chlorite - Chlorite - Py - Pyrite - Cy - Cuartz - Iron Oxide - Gysum - Healed - Mica - Mica	Clean (No) Stained (Su) Spotty (Sp) Partial Filled (Pa) Filled (Fi) Cemented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S	smooth ugh (Sr) Asperitie and can l Asperitie some rid feels abr	ations appears as s are dist be felt s are clea ges evide asive	nd feels nguishable rly visable, nt, surface	Wide (V Modera Close (Very Cl	ite (M))		2.4 2.75i	2ft-6ft S 3in-2ft N 4in-8in H n-2.4in C	resh (lightly lodera lighly comple esidu	y (W2 ately (W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

—		t: 5/1				5/30	/18	Drilling			Drilling Inc.				CORE LOG GT 2-14								GT 2-14
		Cup				\F.4		 			Orilling Meth				_			•					6 of 27
_		-3274 Elevati				feet A	MSI	Logged		ze: Dia SRC/J\	amond Impr	egi	nated /	HQ3		Tot	al D	on.	th: 262				0 01 21
		levation				feet A			ed By: S		, i				-							a 80	ft bgs, 07/20/2018
—		/ Incl						+	d By: C							Oit	June	VVC	itor Dat	.a	100	7.03	11 bgs, 01/20/2010
								'									Disc	ont	inuity Da	ta		Н	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery		RQD %	Fractures per ft.	Drawing	Dip	Type	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
				W5	R0		BRECCIA, continued.										S7		Cl, Ca	Fi		Sr	
1216 –		-			R3- R4	M_Y > > > > > > > > > > > > > > > > > > >	METABASALT/GREE gray, green, fine-grair strong to strong, clost with open and healed joints	ned, fresh, e to moder	moderate	ely tured				6		80 0 60 20 50 60 80 10 70 80		Vn Vn T T T Vn Vn	CI, Ca CI, Ca CI, Ca CI, Sn, Ca Sn, Ca Un, H Py, Ca Py, Ca Py, Ca No	Pa Sp Sp Pa Fi Cm Sp Sp Sp No	Ho Ho Cu Cu Pl	Sr Sr R Sr R R	
-	52 -	- 13	12	W1			METABASALT/GREE above at 29.2	ENSTONE	and CLA	Y, as	78		8	2		90 40 25		Vn)	No Cl, Cu Cl, Cu	No Sp Sp, Pa	PI Cu PI	R Sr Sr-R	
1214 -	54 -				R0- R2									0									
1212 –	54	-					55': grades to extre			atrix,				>10									
-	56 -	-		W1	R0- R3		moderately strong	greenston	e clasts					0			sz		Cl, Sd, Ca	Fi- Pa		Sr	
1210 - 		- 18	13		R2- R3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	METABASALT/GREE gray, very fine-grained to strong, hard to very	d, fresh, m			44		20	4		30 45 40 30	J	Vn Vn	CI, Sd CI, Sd CI CI, Ca	Su Sp Sp Pa	PI PI PI	Sr Sr R Sr R-Sr	
-	58 -	_)								>10									
1208 -		-				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								>10									
DISCO	NTINI	ITY TYP	E ,	PER	ATURI	E	INFILLING TYPE	INFILLING	SHAPE		ROUGHNES	<u></u>		nia Piu	SCONT	INI	TY SI	יאר	ING		EAT	HERI	NG STRENGTH
F - Fault J - Joint	(Disconti ture Zone r ar Zone ation ing Joint chanical E	nuity)	Tight	Narrow (N) (N)	(Vn) <0 0.05 0.1	0" E 0.05" C 5-0.1" E 1-0.5" G	i - Biotitie	ean (No) ained (Su) botty (Sp) artial Filled (Pa) lied (Fi) bemented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S)	ed (SIk) Visual evidenc and striations Surface appea smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	of poors and disting clearly vident	feels guishable y visable, , surface	Extrem Wide (V Modera Close (Very Cl	ely Wid V) ite (M)	e (EV	/)	2. 0.75i	>6ft F 2ft-6ft S 8in-2ft M 4in-8in H n-2.4in (Fresh (Blightly Modera Highly Comple Residu	(W1) y (W2 ately (W4) etely	2) (W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

		t: 5/1				5/30	/18		Drilling Co.: Gregg Drilling Inc. Drill Rig: CME 075X / Drilling Method: HSA/WLC									\overline{C}	∩RI	= I	_) <u>C</u>	GT 2-14
_		Cup																J					7 of 27
_		-3274 Ievati			_	eet Al	MSI			ze: Dia SRC/J\	amond Imp	reg	nated	/ HQ3		Tot	al D	on	th: 262				1 01 21
		levation				eet Al			red By: S		VF							÷				2 80	ft bgs, 07/20/2018
		/ Incl				00171			ked By: C							GIC	Julic	IVV	alei Dai	.a.	108	9.09	11 bgs, 07/20/2016
									, -								Disc	con	tinuity Da	ta		\Box	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log		Description	1		Recovery %		RQD %	Fractures per ft.	Drawing	Dip		Width	Type of Infilling	Amount of Infilling		Roughness	Comments
						> > >	METABASAL	T/GREENSTON	IE, continue	d.						5-10 60	J	Vn VN	CL Ca, Cl	Su		Sr R	
- 1206 - 		-		W1	R4 R1 R0	\$	wet, very stiff 61.1'-63.9'	and (CL), dark gi plasticity, mode to hard when di : shear zone 40- vith brecciated b	y 50 degrees	from				4		80 60 40 80 75 85	S S J J BZ	2 2 2 0 0 2 2 2	Ca CI, Sd, Ca CI, Sd, Ca CI, Sd, Ca Ca, Py Ca, Py CI, Ca Ca, CI, Sd Ca	Pa, F Pa-F Sp Sp Pa Pa-F	PI, Wa TI PI PI PI PI r-Wa	Sr Sr Sr Sr Sr Sr	
-	62 -	-					to 1" diame 61.1'-61.7'	eter : very weak, she	ared rock, g	ouge						40-30) J	VN	Ca, Cl	Sp	PI-Wa	R	
- 1204 -		17	14		R3						62		20	2		50 50		VN	Ca, Cl, Fe Ca	Su	Wa Wa	R-Sr R	
-	64 -			$\left\langle \right\rangle$										>10									
1202 -	66 -			W1	R0 R3 R0 R3 R0		65': clay go	ouge, as above						>10		80 75 50	J	VN VN	CI	Pa-F Sp Fi	PI PI	Sr-R Sr R Sr	
 1200 - - 1198 - -	68 -	21	15								32		0	>10									
						<u> </u>		infilling	i		<u> </u>			>10								Ш	
F - Fault J - Joint Fz - Frac S - Shea Sz - She V - Vein Fo - Foli	(Disconting ture Zone ar Zone ation and Joint Change Joint Chanical E		Tight	Narrow Nw (N)	0.1	0" B C 0.05" C C -0.1" E F -0.5" G	INFILLING TYF I - Biotitie I - Clay My - M a - Calcite No - Nh Cholorite Py - P P - Epidote Calcine Py - Py - Cypsum Healed I - Mica Mi	langanese (Clean (No) Stained (Su) Spotty (Sp) Partial Filled (P. Filled (Filled (Cm))	Wa - Wavy PI - Planer St - Stepped	Smooth (S	smooth bugh (Sr) Asperities are and can be fe Asperities are some ridges feels abrasiv	ce of posts ars and distinuit to clearly evident	l feels guishable y visable, s, surface	Extrem Wide (Moder Close Very C	ate (M)	le (EV	/)	2. 0.75	>6ft 2ft-6ft 38in-2ft 4in-8in 6in-2.4in 6in-	Fresh Slightl Moder Highly Compl Residu	(W1) y (W2 ately (W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

—		t: 5/1				5/30	/18	Drilling			Drilling Inc.					C	OR.	FI	0	G	GT 2-14
		Cup				754					Drilling Met					U					8 of 27
		-3274 levati			_	eet A	MSI	Logged	, i	ze: Dia SRC/J\	amond Impr /P	egnated /	HQ3	To	ntal	Der	oth: 26			<u> </u>	0 0. 2.
		levation				eet A			ed By: S		•									9.89	ft bgs, 07/20/2018
Azin	nuth:	/ Incl	inati	on: -	90			Checke	d By: C	CRL											J
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery %	RQD %	Fractures per ft.	Drawing			Type of Infilling	ng	Surface Shape	Roughness	Comments
					R0		CLAY, continued.				2 4 8 8	20 80 80									
1196	- - 72 -	19	16	W2	R3- R4		LIMESTONE, light gr. calcite veins & black s fine-grained, moderat moderately soft to mo calcite veining, some	tely strong oderately h	to strong,		82	42	9	44 66 77 22 44 42 22 77 71 33 66 66 71 77 76 67 77		Vn O-W Vn Vn Vn Vn Vn Vn Vn Vn Vn Vn Vn Vn Vn	CI, Fe, Ca CI, Ca Ca	Sp-Su Sp Pa-Fi Su Sp-Pa Sp	PI-Wa PI PI PI PI PI PI PI PI PI PI PI PI PI	55 55 55 RRS5 RS5 RS5 S5 S5 RRS5	
1194 -	- 74 - -				R0R2/R3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	METABASALT/GREE very fine-grained, slig moderately strong, m moderately hard	htly weath	ered,	green,			3 >10	81 81 61		V T Vn Vn Vn	CI, Ca	Pa-Fi Sp-Pa-I Sp-Pa-I	Wa Pl Pl, Wa	Sr Sr R-Vr	additional recovery likely from
-	- 76 - -	. 10	17		R4		LIMESTONE, light to white veining, very fin weathered to fresh, si	ne-grained,	, slightly		110	87	3	71 44 84 7:		Vn Vn Vn	CI, Ca Fe, Ca Ca	Pa No Sp-Pa	PI PI PI	Sr-R R	additional recovery likely from above run (Run 16)
1190 -	78 -			W1- W2			METABASALT/GREE	ENSTONE	, dark gre	yish			8	21 91 61 61 71 22) .) .	Vn Vn Vn Vn B Vn Vn	CI, Fe, Ca Ca, Fe, CI Fe, Ca	Su Sp I Su, Sp	Wa PI PI-Wa Ir PI	R Sr	
1188 -	-	11	18		R4- R5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	green, very fine-grain weathered, strong to soft to moderately ha	very strong	o siightly g, modera	tely	100	40	9	44 66 88 51 11 11 84 61 44 81 77 44 31		Vn Vn Vn Vn Vn Vn Vn Vn Vn Vn Vn Vn Vn V	Fe, Ca Fe, Sd Fe, H Fe, Sd Fe Fe Fe, Ca, Ch Fe Fe	Sp-Pa Pa Pa Pa Pa Pa-Fi Sp Sp	PI-Ir PI PI PI-Wa	Sr Sr Sr Sr Sr-R Sr-R	
DISCO	NTINUI	TY TYP	E	APER.	ATURI	E		INFILLING AMOUNT	SHAPE	L	ROUGHNES		DIS	CONTINU	JITY	SPA	CING	w	EATI	HERI	NG STRENGTH
Fz - Frac S - Shea Sz - Shei V - Vein Fo - Folii	r Zone ition ing Joint hanical B		Narr	Narrow ow (N)	0.1	0.05" C C 5-0.1" E F- I-0.5" G	I - Clay My - Mylonite Sta a - Calcite No - None Sp h - Chlorite Py - Pyrite Pa	ean (No) ained (Su) botty (Sp) artial Filled (Pa) lled (Fi) emented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S	smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	rs and feels distinguishable t clearly visable, vident, surface	Wide (W Moderat Close (C Very Clo	te (M)			>6ft 2ft-6ft 8in-2ft 2.4in-8in 5in-2.4in <0.75in	Fresh (I Slightly Modera Highly (I Completed Residue	(W2) tely (W4) tely ((W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 5/15/18	Drilling Co.: Gregg Drilling Inc.	CORE LOG GT 2-14
Location: Cupertino, CA Northing: -3274 / Easting: -851	Drill Rig: CME 075X / Drilling Method: HSA/WLC Drill Bit Type/Size: Diamond Impregnated / HQ3	Sheet No. 9 of 27
Surface Elevation: 1267 feet AMSL	Logged By: SRC/JVP	Total Depth: 262.0 feet
Bottom Elevation: 1005 feet AMSL	Prepared By: SRC	Groundwater Data: 169.89 ft bgs, 07/20/2018
Azimuth: / Inclination: -90	Checked By: CRL	Discontinuity Data
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Recovery RQD % 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8	Dip Type Width Type of Infilling Amount of Infilling Surface Shape Roughness
1186 W1 R2-R3 82 20 19	enstone, continued. 7 aderately hard 10 9 >10	90 J Vn-O-Fe, CI Sp, Pa PI Sr 60 J Vn BZ Ir R 40 J Vn Ca, H Pa-Sr, PI Sr 30 J N Ca, H Sp-Pa PI Sr 20 J Vn Fe, Cl, Ca Sp, Ir-W BZ Ir R 80 J Vn Fe, Cl, Ca Sp, Ir-W Sr 70 J Vn Ca, H Sp PI Sr 50 J Vn Ca, Su PI Sr 50 J Vn Ca, Su PI Sr 50 J Vn Ca, Su PI Sr 50 J Vn Ca, Su PI Sr 50 J Vn Ca, Su PI Sr 50 J Vn Ca, Su PI Sr 50 J Vn Ca, Su PI Sr 50 J Vn Ca, Su PI Vr 50 Ir RV/r 50 Vr 50 Vr 50 Vr 50 Vr 50 Vr 60
W1 R0- R2 S S S S S S S S S S S S S S S S S S	zone, gravelly clay with tenstone cobble in clay and	BZ Vr
1180 16 20	>10 	
DISCONTINUITY TYPE APERATURE INFILLING TYPE	NFILLING SHAPE ROUGHNESS DISCO	ONTINUITY SPACING WEATHERING STRENGTH
F - Fault J - Joint (Discontinuity) Tight (T) 0" Bi - Biotitie Mn - Manganese Cl Cl - Clay My - Mylonite St Sheer St - Sheer Zone Narrow (N) - 0.05" Ch - Chlorite Py - Pyrite Pr - Chlorite Py - Pyrite Pr - Chlorite Py - Pyrite Pr - Chlorite Py - Pyrite Pr - Pyrite Pr - Pyrite Pr - Pyrite Pr - Pyrite Pr - Pyrite Pr - Pyrite Pr - Pyrite Pyr	san (No) sined (Su) Pl. Planer fulls (Filed (Pa) led (Fil mented (Cm) Ir - Irregular St Stepped were the full (Filed (Pa) led (Filed (Pa)	2ft-6ft Slightly (W2) Very Weak (R1)

Date	Star	t: 5/1	5/18		End:	5/30	/18	Drilling	Co.: G	Gregg	Drilling Inc.							~			$\overline{}$		GT 2-14	
-		Cup		_				 			Drilling Met						•	او					10 of 27	
—		-3274			_		MOL	+			amond Impi	reg	nated /	HQ3			al Da					J.	10 01 21	
		levati levatio				feet A feet A		Logged	ed By: S	RC/J\	/P				-			÷	tor Dot				0 ft has 07/20/2019	
		/ Incl				CCLA	WIOL	Checke		RL						אכ	ouna	wa	iler Dat	a:	108	9.89	9 ft bgs, 07/20/2018	_
																_	Disco	ont	inuity Dat	ta				$\overline{}$
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery %		RQD % 9 0 8	Fractures per ft.	Drawing	Dip	Type	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments	
- 1176 - - - - - 1174 -	92 -	21	21	W2- W3	R3-R4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	METABASALT/GREE similar to above, mod moderately strong to 50-70%, calcite veinir boudinage fabric. 90.0': iron staining	derately we strong, mo ng, thinly la	eathered, oderately h aminate		89		26	>10		5 70 80 65 40 65 55 65 40 45 85 55 45 40 60 80 40 80 40 80 80 80 80 80 80 80 80 80 8	J V V V J V V J V V J J V V J V V J J V V J J V V J J V V J J V V J V V J J V V J V V J J V V J V V J J V V V J J V V J V V J J V V J V V J J V V J J V V J J V V J V V J J V V J V V J J V V J J V V J V V J J V V J V V J J V V J V V J J V V J V V J V V J J V V J V V J V V J V V J V V J V V J V V J V V J V V J V V J V V J V V J V V J V V J V V J V V V J V V V J V V V J V V V J V V V J V V V J V V V V J V	\(\lambda\) \(\lam	CI,Sa CI,Sa CI,Sa CI,Se	Pa (Sp-Pa Sp Pa Pa Pa Pa		R RR R ST ST ST ST ST ST ST ST ST ST ST ST ST	Initial groundwater at 91 fee 05/31/2018	ət
- - 1172 –	- 94 – -	5	22	W2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					100		0	7	70	45 30 35 0-20 60	1 //	/n F /n F /n F /n O	Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca Cl, Fe, Ca	Sp-Pa Sp Pa/Sp Sp F Sp Sp, Su	Cu Pl Wa, St Pl, Cu Pl	R Sr Sr Sr Sr		
- - 1170 –	96 -	. 15	23	w3	R3	<pre>'<'>'>'<''</pre> ''''''''' <pre>'</pre> ' <pre>'<pre>'</pre>'<pre>'</pre>'<pre>'</pre>'<pre>'</pre>'<pre>'</pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'<pre>'</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	95.8': increase in ir increase in degree			nt	93		20	6		65 75 55 65 65 20 80 65 75 50 30 60 85 50 70	J	/n	re, Ca, H Fe, Ca Fe, Ca Fe, Ca Fe, CaH Fe, Ca Fe, Ca, H Cl, Sn, Fe, Ca Fe, Ca, H Cl, Sn, Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca, Sn Fe, Ca Fe, Ca, Sn Fe, Ca Fe, Ca, Sn Fe, Ca Fe, Ca, Sn Fe, Ca Fe, Ca, Sn Fe, Ca Fe, Ca, Sn Fe, Ca Fe, Ca, Sn Fe, Ca Fe, Ca, Sn Fe, Ca	Sp,Pa Pa Pa,Fi Sp,Pa Pa,Fi Fi,Cm Fi,Cm	PI PI Cu PI PI PI/St Ir PI PI	ST R ST R ST R ST R R R ST R R ST R ST		
-1168 -	98 -	. 5	24	W3		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					100		20	8	100	40 35 40 60 45 60 0 80 30 0)-20 70 30 60	J V J V J J V BZ V BZ J V V BZ J	/n	Fe, Sn, Ca Fe, Cl, Ca Fe, Ca Fe, Ca Fe, Ca, Ch Fe, Ca, Ch Fe, Ca, Ch Fe, Ca, Cl Fe, Ca, Sn Fe, Ca	Pa Sp Pa,Sp Pa Pa Sp Sp,Pa Pa Pa,Sp	PI,Cu PI,Cu PI PI Wa PI Ir Ir Wa,ir Wa,ir	Sr		
DISCO	NTINUI	TY TYP	E /	APER	ATUR	E		INFILLING AMOUNT	SHAPE		ROUGHNES	s		DIS	CONTIN	IUI	TY SP	ACI	NG	W	EATI	HERI	RING STRENGTH	
Fz - Frac S - Shea Sz - She V - Vein Fo - Foli B - Bedd MB - Me	(Discontin ture Zone r ar Zone		Narr		0.1	0.05" C 5-0.1" E 1-0.5" G	I - Clay My - Mylonite Sta a - Calcite No - None Sp h - Chlorite Py - Pyrite Pa	ean (No) ained (Su) botty (Sp) artial Filled (Pa) lled (Fi) emented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S	smooth bugh (Sr) Asperities are and can be fe Asperities are some ridges e feels abrasive	s ars and distin It clearl evident	l feels guishable y visable, r, surface	Wide (V Modera Close (Very Cl	ite (M)		0.	2. 2.75i	2ft-6ft S 3in-2ft N 4in-8in H n-2.4in C	resh (lightly lodera lighly comple tesidu	(W2) tely ((W4) etely	(W3) (W5)	Moderately Strong (F	R3)

		t: 5/15				5/30	/18	Drilling			Drilling Inc.	lI		MI 0				C	ORE	ΞL	.C)G	GT 2-14
_		-3274				351					Orilling Met amond Imp							_					11 of 27
Surf	ace E	levati	on:	12	267 f	eet A		Logged		RC/J\	/P								th: 262.				
		levation Incl				eet A	MSL		ed By: Sed By: C							Gro	ounc	lwa	ter Data	a:	169	9.89 	ft bgs, 07/20/2018
	iutii.	/ IIICI		511				Officere	а Бу.	/I \L							Dis	con	inuity Dat	a		┧	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	Des	escription			Recovery %		6 8 8 % SGD	Fractures per ft.	Drawing	Dip	Туре	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
-	_					> > > > > > > > > > > > > > >	METABASALT/GREE above, calcite veining halos along joints.	ENSTONE to 40-50%	, continue %, weather	d, as ing						60 20	FZ J J	İ	Fe, Ca Fe, Ca Fe, Ca, H Fe, Cl, Ca	Pa Sp Cm	Ir PI Ir Pi,Wa	R/Sr Sr Sr	
1166 - 	-					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								7		15 60 50 35 50 25	J	VN VN VN VN	Fe, Ca No, Ca Fe, Ca Ca, Fe Fe, Ca	No Su Su,Sp Sp,Pa	PI PI PI PI	Sr R Sr/R R R	
	102 -	19	25	W3	R3- R4	>					94		38	>10		60 0-10 0-10 60 40 40	J J	VN VN VN VN VN	Fe, Ca, Cl Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca Fe, Ca	Pa,Fi Sp,Su Su,Pa Pa Su Pa Pa,Fi	Ir PI PI PI	R Sr R/Vr Sr Sr R R	
1164 - 						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	103.1': 1.5" calcite	vein						8		50 F 60 0-50	J J J J	VN N T	Fe, Ca Fe, Ca Fe, Ca Fe, Ca, H Fe, Ca, H	Pa,Pi Pa Pa,Fi Fi,Cm	PI/Cu PI W/Ir	R/Vr Vr	
-	104 -)	103.6': .5" calcite v	rein						4		0-60 0-60 80	J	VN VN	Fe, Ca, H CI, Fe, Ca Fe, Ca Fe, Ca	Fi,Cm Sp,Pa Sp,Pa Pa,Fi	Cu Pl	Sr R Sr	
1162 -	-			X	R3		LIMESTONE, dark gra to slightly weathered, moderately hard.	ay and bla moderate	ack, moder ly strong,	ately				7		20	J	N	Ca	Un	PI	Sr	Run 26: air used to extract core instead of water
-	106 -	10	26	W3	R0		106': intact rock is i	moderatel	v strong n	natrix	90		0	5	1	0-70 80 80 60	J J	VN VN VN	Ca, Fe Fe, Ca Fe, Ca Fe, Sn, Ca, CI Fe, Sn, Ca, CI		PI/St PI PI PI-Wa	Sr Sr	blew core out in pieces.
1160 -	-			\times	R0- R3		is extremely weak	moderate.	y outong, i					>10			Bz		Fe, Cl, Ca, Sn			Sr/R	
. 100 -				W3										9		60 0 0		T N/O	Fe Fe, H Fe, Ca	Sp H Pa,Fi	PI PI	Sr R R/Vr	
- 1158 -	108 -		27	W1- W2	R3		108.0': dark gray to shale banding	o medium (gray with b	olack	777		0	5		85 80 20 60 70 30 60 60 60	J J J J BZ J	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fe, CI Fe, CI Fe, CI Fe, CI Fe Fe, CI, H Fe, CI Fe, CI, Sn Fe, Cm Fe, Ca, CI Fe, CA Fe, CA Fe, Fe, CI	Pa Sp,Su Su Pa,Fi Fi,Cm Sp,Su Pa,Fi Pa,Sp	PI PI PI W PI-Wa	Sr Sr R/Sr Sr R/Vr Sr Sr/R R/Vr	Drilled casing down to 75 ft.
-	-						 	INIEIL LINIO						>10									
F - Fault		TY TYP	+		ATUR		INFILLING TIPE	AMOUNT	SHAPE	Slickenside	ROUGHNES	e of pol	lishing		CONTI			PAC				HERI	
J - Joint Fz - Frac S - Shea Sz - She V - Vein Fo - Foli B - Bedo MB - Me	(Discontir ture Zone r ar Zone		- 1	Narrow ow (N) n (O)	0.05	0.05" C 5-0.1" E 1-0.5" G	I - Clay My - Mylonite Sta a - Calcite No - None Spo th - Chlorite Py - Pyrite Par	ean (No) ained (Su) pootty (Sp) rrtial Filled (Pa) lled (Fi) emented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S)	and striation Surface apper smooth ugh (Sr) Asperities are and can be fe Asperities are some ridges feels abrasive	s ars and disting It clearly evident,	feels uishable visable, surface	Wide (V Modera Close (⊄ Very Cl	te (M)			2.	2ft-6ft SI 8in-2ft M 4in-8in H n-2.4in C	resh (lightly lodera ighly omple esidu	(W2) tely ((W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date	e Star	t: 5/1	5/18		End:	5/30	/18	Drilling	Co.: C	Gregg [Orilling Inc.						_	_		= 1	$\overline{}$	<u></u>	GT 2-14	
_	ation:					254					Orilling Meth				\Box		•	<u>ر</u>					2 of 27	
-	hing: ace E					351 feet Al	MSI	Drill Bit Logged		ze: Dia SRC/JV	amond Impr	egr	nated /	HQ3		ota	ıl De	≏nt	h: 262			<i>)</i> . I	2 01 21	
	om El					eet Al			ed By: S		'1											89	ft bgs, 07/20/20	18
Azin	nuth:	/ Incl	inati						d By: C										10. Dai				11 290, 01720/20	
Elevation, ft MSL	ft	Drill Time (min)	Run No./Box No.	ering	Strength Index	: Log	Des	scription						s			Disc	onti	nuity Da		Shape	SS	Comments	ı
Elevati	Depth, ft	Drill Tir	Run Nc	Weathering Index	Strengt	Graphic Log	LIMESTONE, continue				Recovery %		4 8 8 % M	Fractures per ft.		20	J \	√n F	Type of Infilling	上 Amount of Infilling	. □ Surface Shape	. ж Roughness		
1156 -	-			W3	R3		stong, thinly laminated	I with sha	le and che	ert.				7		10	1 /	√n F	e, Ca e, Cl, Ca e, Ca e	Cm Sp-Pa Fi/Cm Sp-Pa Sp-Su	PI N	Vr Vr R		
-	-	11	28	\bigvee	\bigvee						36		16	>10										
-	112 -			$/ \setminus$	$/ \setminus$												37		e, Ca	Pa	lr	R-Sr		
 1154 - 	_													6	6	55 40 I	S \	√n F √n F √n C	e, Ca e, Ca	Su Fi Pa Sp	PI PI Ir PI	Sr R R R Sr		
	114 -	9	29	W3	R3						100		0	>10	ĺ	10 50 50 20	1 / 1 / 1 /	√n F	e, Cl e, Cl e	Su Su-Sp Pa Sp	Ir PI PI/Cu Va/PI/I PI	R-Vr Vr R Vr rR-Vr R		
- 1152 -	-				110		115':grades to sligh	tly weath	ered					9	8	30 30	J N	Vn F Vn F Vn F Vn F	e, Cl e e	Sp-St	i Ir Cu/Pl	Sr R R R		
-	-	9	30					,			100		27	4	3	30 30 10	1 /	√n F √n F	e/H	Pa Su Su Su-Sp	PI PI PI/St PI	Vr R R		
-	1116 -				R0- R1		116-116.1': clay, sh	eared, we	eak						1	70 8	SZ J \	T C	1	Fi Su Sp-Fi	PI PI	R		
 1150 - 	-			W2										5	3	30	J		e, Ca	Su	PI	R/Vr Sr		
-	118 –	7	31		R2		117.6'-118.0': clay z	zone, she	ared		100		74	3	3	30	С		il, Br il, Br e	Fi Fi Su	PI PI PI	R		
1148 – 	-						BRECCIA, black to da limestone clasts up to sand and silt matrix, m	1.5" in di	ameter, cla	ay with d.				0	6	60	V	H0 C	il, Ca	Fi	PI			
DISCO	NTINUI	TY TYP	E /	l Aper/	I	<i>[//ረ/]</i> E	INFILLING TYPE	NFILLING	SHAPE		ROUGHNES	&₩ S		DIS	CONTIN	IUIT	Y SP	ACI	NG	w	EAT!	HERIN	NG STRENG	ЭТН
F - Fault J - Joint Fz - Frac S - Shea Sz - She V - Vein Fo - Foli B - Bedd MB - Me	(Discontin ture Zone ir ar Zone	nuity)	Tigh Very Narr Ope		(Vn) < 0.05 0.1	0" Bi Cl 0.05" Ci Cl 5-0.1" E _I Fe 1-0.5" G	- Biotitie Mn - Manganese I - Clay My - Mylonite Stai a - Calcite No - None Spo h - Chlorite Py - Pyrite Pari	an (No) ned (Su) tty (Sp) tial Filled (Pa) dd (Fi) nented (Cm)	Wa - Wavy Pi - Pianer St - Stepped Ir - Irregular	Smooth (S)	od (SIk) Visual evidenc and striations Surface appea smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	e of pol rs and t disting t clearly vident,	feels uishable visable, surface	Extreme Wide (W Modera Close (C Very Clo	ely Wide (/) te (M)	EW)		2.4 2.4 .75ir	>6ft 1 2ft-6ft 5 in-2ft 1 lin-8in 1 1-2.4in 0	resh (Blightly Modera Highly Comple Residu	(W1) y (W2) ately ((W4) etely) W3) (W5)	Extremely Wea Very Weak (R1) Weak (R2) Moderately Str Strong (R4) Very Strong (R Extremely Stro	ık (R0)) ong (R3)

—		t: 5/15				: 5/30	/18		Drilling			Drilling Inc		\\/\ C			С	ORI	ΞL	_C)G	GT	2-14
		Cup -3274				351							thod: HSA/ regnated /									13 of	
Surf	ace E	levati	on:	12	267 1	feet A			Logged		SRC/J\	/P						oth: 262					
		levatio / Incli				feet A	MSL			ed By: Sed By: C					(irou	ındw	ater Dat	a:	169	9.89	ft bgs	, 07/20/2018
		111011		J					Oncore	ou by.	OTTE						Discor	ntinuity Da	ta		\Box		
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log			Description			Recovery %	8 8 8 8 % RQD	Fractures per ft.	Drawing	를 H	lype Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness		Comments
- 1146 - - - - -		10	32	W1	R2		120. brec 121.	ciated	ed. greenstone o			74	54	0 >10			J VN		Pa-F		VR VR		
- 1142 -	124 -	8	33				125'	grades to	Ne ak			0	0	>10									
	-126 -			W1	R2			grade to	. Suk					>10		E	32		Pa			rapid dril	ling 1 ft/2 min
	-128 -	10	34	w3	R2		slightly	weathered	to dark gray moderately		ned,	18	0	>10		E	Z Z		Pa				
DISCO	NTINUI	TY TYP	E ,	APER/		E		ntely hard NG TYPE	INFILLING AMOUNT	SHAPE		ROUGHNE	ss	DIS	CONTIN			CING		/EAT	HERI	ING	STRENGTH
F - Fault J - Joint Fz - Frac S - Shea Sz - She V - Vein Fo - Foli B - Bedc MB - Me	(Discontin ture Zone ir ar Zone	nuity)	Tigh Very Narr Ope		(Vn) < 0.08 0.1	0" B 0.05" C 5-0.1" E 1-0.5" G	ii - Biotitie ii - Clay ia - Calcite h - Chlorite ip - Epidote e - Iron Oxide by - Gypsum - Healed li - Mica	Mn - Manganes My - Mylonite No - None Py - Pyrite Qz - Quartz		Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S)	ed (SIk) Visual evider and striation Surface app smooth ugh (Sr) Asperities a and can be! Asperities a some ridget feels abrasit	nce of polishing ns ears and feels e distinguishable elt e clearly visable, evident, surface	Extreme Wide (V Modera Close (C	ely Wide (V) te (M)	EW)	:	>6ft 2ft-6ft 8in-2ft 2.4in-8in 5in-2.4in	Fresh (Blightly Modera Highly Compl Residu	y (W2 ately (W4) etely	(W3) (W5)		Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date						5/30	/18	Drilling			Drilling Inc.						C	ORE	ΞL)G	GT 2-14
Locat						151			·		Drilling Met amond Imp			_			•					14 of 27
Surfa					_	eet Al	MSL	Logged		SRC/J\		cgriated /	1100		Tot	al D	ept	h: 262				
Botto				10	05 f	eet Al	MSL		ed By: S					-							9.89) ft bgs, 07/20/2018
Azim	uth:	/ Incl	natio	on: -	90			Checke	ed By: 0	CRL												<i>,</i>
٦			Э.													Dis	cont	inuity Da	ta			
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	I	Description			Recovery	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Fractures per ft.	Drawing	Dip	Туре	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
					R2	\Box	LIMESTONE, conti	nued.								BZ		Ca, Cl, Fe	Sp	lr	Sr	
1134 -	- - - - - - -	. 14	35	W2	R2º		BRECCIA/CLAY, n fine-grained, grayis moderately strong, moderately weathe	h green, ext slightly wea	remely we thered to	ak to	62	40	0 1 7 >10 >10		30 30	J	VN F		SP Fi Fi Fi	PI PI	Vr R R	lost water circulation
1130 -	- - - - - - - -	15	36	W2			135.0-136.2': CL greenstone clast grayish-green, s low plasticity, an	s up to 2.5", oft (wet) to s gular to sub	medium tiff/hard (d dangular cla	lry),	24	0	>10 >10 >10 >10			BZ						
DISCON	TINUI	TY TYP	E	APER/	ATUR	E	INFILLING TYPE	INFILLING AMOUNT	SHAPE		ROUGHNES	is	DIS	CONT	NUI	TY SI	PACI	NG	w	EAT	HER	ING STRENGTH
F - Fault J - Joint (D Fz - Fractu S - Shear Sz - Shear V - Vein Fo - Foliati B - Beddin MB - Mech Bz - Broke	Zone ion g Joint anical B		- 1	Narrow ow (N) n (O)		0.05" Ci Ci -0.1" Ep -0.5" G	- Biotitie	Clean (No) Stained (Su) Spotty (Sp) Partial Filled (Pa) Filled (F) Cemented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S	smooth ugh (Sr) Asperities are and can be fe Asperities are some ridges feels abrasiv	distinguishable	Wide (V Modera Close (Very Cl	te (M))		2. 2.75i	2ft-6ft S 3in-2ft M 4in-8in H n-2.4in C	resh (dightly lodera lighly comple tesidu	y (W2 ately (W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

	Star					5/30	/18	Drilling			Drilling Inc.						C	ORE	ΞL	C	G	GT 2-14
—	ation: thing:					351					Drilling Metl amond Impr						_					15 of 27
_	ace E					feet A	MSL	Logged		RC/J\					Tot	al D	ep	th: 262.	0 fe	et		
\vdash	om El					feet A	MSL		ed By: S						Gro	unc	lwa	iter Data	a:	169	9.89	ft bgs, 07/20/2018
Azir	nuth:	/ Incl	inati	on: -	90 			Checke	ed By: C	RL						Disc	cont	inuity Dat	а		\perp	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	Des	scription			Recovery % 00,000	8 8 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9	Fractures per ft.	Drawing	Dip		Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
	_						BRECCIA/CLAY, conf	tinued.														
1126 -	-				R1- R2								1		50	J	VN (CI	Pa	PI	R	
	142 -	13	37	W1	R2						95	95	0		70	V MB	N/O	Ca	Fi	PI/W		
1124 -	-				R3		142.7': intact, unsho moderately strong 143.3-144.4': extrer	_		eak			0			МВ						
	144 -			\times	R1- R2 R1- R2								5		_			n. a.				
1122 -		6	38		R2 R3		144.4-144.6': mode 144.6'- 146.2': grad	erately stro les to extr	ong emely wea	ak	100	0	5		70 40 70 70	J	VN O	CI, Ch CI, Ch CI, Ch CI, Ch	Fi Fi Fi	PI PI PI PI	Vr R Vr Vr	
	146 –			W1	R1- R2								1		05		VN (Ca, Cl	0-	PI	Sr	
	-	14	39		R2	\frac{1}{2}\frac{1}{2	METABASALT/GREE fine-grained, fresh, ex some shear zones	ENSTONE tremely w	i, very veak to stro	ong,	100	63	7		65 0 70 40 45 60 50	J J J	T O	Ca, Cl Ca, Cl Cl, Ca Cl, Ca Cl, Ca Ch, Cl	Sp Su Su Sp Sp Fi	PI/St PI PI Wa Cu PI/Wa	Sr R R R Vr	
1120 -	_					> > > > > > > > > > >	147': moderate cald	cite veinin	g (10%)						35	J MB J	VN (Ch, Cl	Fi	PI	R	
	148 –			W2	R1- R2	> ` > ` > > ` > ` > > ` > ` > > ` > ` > > ` > ` >							>10			BZ MBZ			Pa	Ir		
1118 -	-	7	40		R3 R1 R3 R1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					90	50	5		65 60 30	BZ J J	D-W (/N/N (VN)	CI, Ca CI, Ca CI, Ca CI, Ca, Fe Fe, CI, Ca	Pa/Sp Pa Fi Pa Sp/Pa	PI PI PI	Sr R Sr/S Sr Sr	
	-			\times	R3		 	NEILL INC					>10		10 55		VN I	Ca, H Fe, Ca, Cl	Fi/Cm Sp	PI	Sr/R	
F - Faul	NTINUI		_		ATUR		INFILLING TIPE	NFILLING AMOUNT	SHAPE	Slickenside	ROUGHNES	e of polishing		CONTI			PAC				HERI	
J - Joint Fz - Fra S - Shea Sz - Shea V - Vein Fo - Fol B - Bed MB - Me	(Discontin cture Zone ar ar Zone			Narrow ow (N) n (O)	0.05	0.05" C 5-0.1" E 1-0.5" G	I - Clay My - Mylonite Stai a - Calcite No - None Spc h - Chlorite Py - Pyrite Par p - Epidote Qz - Quartz Fills	ean (No) sined (Su) otty (Sp) rtial Filled (Pa) ed (Fi) mented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S)	and striations) Surface appear smooth sugh (Sr) Asperities are and can be fel Asperities are some ridges efeels abrasive	distinguishable tt clearly visable, vident, surface	Wide (Nodera Close (Very Cl	ite (M))		2. 0.75i	2ft-6ft Si Bin-2ft M 4in-8in H n-2.4in C	resh (lightly lodera ighly omple esidu	y (W2 ately ((W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

		t: 5/1				5/30	/18	Drilling			Drilling Inc.						C	ORE	= 1	\overline{C}	G	GT 2-14
_		-3274				251		_	•		Orilling Metl amond Impr			_			_					6 of 27
		-3272 Elevati				feet Al	MSL	Logged		RC/JV		egnateu /	nus		Tot	al D	ep	th: 262				
		levation		10	05 f	feet Al	MSL		ed By: S												9.89	ft bgs, 07/20/2018
Azin	nuth:	/ Incl	natio	on: -	90			Checke	d By: C	RL											Ι.	
ا ا			ю.										-			Disc	cont	tinuity Da	ta		\dashv	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log		escription			Recovery % 02 04 08	8 0 8 8 0 8 8 0 0 8 8 0 0 8	Fractures per ft.	Drawing	Dip	Type	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
						>>>>	METABASALT/GREE	ENSTONE	, continue	d.												
1116 -	152 -	20	41		R2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	151.1': grades to s 151.1'-151.9': brec	strong cciated			199	8	>10		50 50 40 65 85 85 20 70 90]]]	VN /N/N VN VN	Fe, Ca, Cl Cl Cl, Fe Cl, Fe	Sp	lr PI/Wa	R Sr-R S-Sr	
1114 -	154 -	20	41		R4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					100	0.8	5		20 55 35 70 70 65 45	j J	VN)	CI CI	Sp-Pe Su Su Pa Fi Fi	PI PI PI PI	Sr R R Sr	
1112 -				·W1	R0	>	154.7': grades to e iron staining 155': grades to stro 155.2': moderate c	ong		erate			5	1	45 30 0-20 80		O N/O VN		Su Fi Fi-Pa	PI PI Cu/Wa	Sr Sr	
-	156 -	-)							7		10 70 75	J	VN	Ca, Fe, Cl Ca, Cl Cl, Ca	Sp Su Su-No	Ir PI	R Sr	
1110 -	158 -	- 21	42		R4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					106	60	4		65 70 60		VN VN	CI, Ch Fe, Ca Ca No, CI	Fi Su Fi Su-No	PI PI	Sr Vr Sr	
- 1108 - 		_				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							5		70 10 50 50 55 60 10 60 50]	VN VN VN VN VN VN	Ca, Ch Ch, Ca Ch, Ca Ch, Ca Cl, Fe No No Fe, No Fe, Ca Ca, Fe, Cl	Fi Fi Fi Su-No No Su Sp Fi	PI PI PI Ir Wa	R Vr R Sr Vr R Sr	
						<u> </u>		INFILLING	01=		<u> </u>										Ц	
F - Fault J - Joint Fz - Frac S - Shea Sz - She V - Vein Fo - Foli B - Bedd MB - Me	(Disconti cture Zone ir ar Zone	,	Tight	Narrow ow (N) n (O)	(Vn) <0 0.05 0.1	0" B C 0.05" C C 5-0.1" E F 1-0.5" G	i - Biotitie Mn - Manganese Cle I - Clay My - Mylonite Sa - Calcite No - None Sp h - Chlorite Py - Pyrite Pa - D - Epidote Oz - Quartz Fill	AMOUNT lean (No) lained (Su) popty (Sp) artial Filled (Pa) lled (Fi) emented (Cm)	SHAPE Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S)	smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	e of polishing s rs and feels distinguishable tt clearly visable, wident, surface	Extrem Wide (V Modera Close (Very Cl	te (M)	(EW)	2. 0.75i	>6ft F 2ft-6ft S 8in-2ft F 4in-8in F in-2.4in C	Fresh (Blightly Modera Highly Comple Residu	(W1) y (W2 ately (W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 5/15/18 End: 5/30	0 00	Drilling Inc.		COR	E LOG G	T 2-14
Location: Cupertino, CA Northing: -3274 / Easting: -851		Drilling Method: HSA/WLeamond Impregnated / HQ			heet No. 17 o	
Surface Elevation: 1267 feet A	MSL Logged By: SRC/J			Total Depth: 26	62.0 feet	
Bottom Elevation: 1005 feet Al				Groundwater D	ata: 169.89 ft bg	s, 07/20/2018
Azimuth: / Inclination: -90	Checked By: CRL			Discontinuity [Data	
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index Graphic Log	Description	Recovery RQD % 84 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	per ft. Drawing	Dip Type Width Type of Infilling	Amount of Infilling Surface Shape Roughness	Comments
1106 R3 > > > > > > > > > > > > > > > > > >	METABASALT/GREENSTONE, continued. 161.1' - 163.1': shear zone, weak zones of calcite, chlorite, clay	100 888 2		0 V I Ca, H 10 J VN CI 55 J VN Ca 30 J T Ca, CL 20 V H Ca, H Ca, H Ca 10-26 Z/SZ T Ca, CI H 15 SZ Cl, Ca	FIUCHT ST FI Wa Su Wa Sr FI PI FIUCHT IT Sp Wa FI IT Cm IT	
1104 R1		5	5	40 J VN Cl, Ca	Sp Pl Vr	
-164 - 6 44	164': grades to extremely weak within matrix, strong greenstone clasts 164.8'-166.5': shear zone, weak zones of calcite, chlorite, clay	100 376		20 J O CI, Ca 25 J VN-N CI, Ca 5 J N CI, Ca	Fi PI Sr Cm PI Vr Fi PI-Wa Vr	
- 166 166 166		4	1	40 J VN No 25 J VN No	No St Vr No PI R	
1100 17 45	167.4': grades to strong	96 78		5 V T Ca, H 55 J VN Ca 25 J VN Cl. Fe 15 V T Fe, H 75 J VN Fe 15 V T Fe, Ca, H	Pa-CmPI-St Sp PI Sr Sp-Su PI Sr Cm PI Sp PI Sr/R	
-168 R4 R4		6		20 V T Fe, Ca, H 30 J VN Cl, Fe 90 J VN Fe, H 25 J VN Ca, Cl 15 V T Ca, Cl	Cm Ir Vr Vr Cm Pi Fi Pl Sr Fi Fi Fi Fi Fi Fi Fi F	
	INFILLING TYPE INFILLING SHAPE	4		70 J VN No	No PI R	orpr:/oz.
DISCONTINUITY TYPE APERATURE F - Fault Tight (T) 0" B	AMOUNT SHAFE	ded (SIk) Visual evidence of polishing	remely Wid	TINUITY SPACING de (EW) >6ft	WEATHERING Fresh (W1)	STRENGTH Extremely Weak (R0)
Fz - Fracture Zone S - Shear Sz - Shear Zone Very Narrow (Vn) -0.05" C - C - Shear Zone V - Vein Narrow (N) 0.05-0.1" E - C - C - C - C - C - C - C - C - C -	1- Clay My - Myloris Stained (Su) Spotty (Sp) PI - Planer Principle Py - Pyrite Partial Filled (Pa) St - Stepped St - Ste	s) Surface appears and feels smooth Good File and Can be felt and can be felt some ridges evident, surface feels abrasive Extre	remely Wilder (W) derate (M) se (C) y Close (V) remely Clo	2ft-6ft 8in-2ft 2.4in-8in (C) 0.75in-2.4in	Fresh (W1) Slightly (W2) Moderately (W3) Highly (W4) Completely (W5) Residuum (W6)	Extremely Weak (RU) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

			egg Drilling Inc.	1 110 4 44				COF	RE L	OG	GT 2-14
Location: Cupertino, CA Northing: -3274 / Easting: -85		Orill Rig: CME 075 Orill Bit Type/Size:									18 of 27
		* * * * * * * * * * * * * * * * * * * *	RC/JVP	<u>J</u>		To	tal D	epth: 2	62.0 fee	et	
		Prepared By: SR				Gro	ound	water D	Data: ´	169.89	9 ft bgs, 07/20/2018
Azimuth: / Inclination: -90		Checked By: CR	RL	T			Disc	ontinuity	Data		
Elevation, ft MSL Depth, ft Drill Time (min) Run No./Box No. Weathering Index Strength Index	Descri	ription	Recovery	RQD %	Fractures per ft.	Dip	Туре	Width Type of Infilling	Di Di	Surface Shape Roughness	Comments
	> METABASALT/GREEN	STONE, continued.				15 30	J,	/N No, CI /N No, Ca	Sp No-Sp	PI Sr PI Sr	
-172 17 46 W1 R3	<pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre><</pre>				6	45 40 20 20 10 15 25 20 75 20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/N Ca, Cl N Ca, H /N Ca /N Ca, No /N Ca, No /N Ca, Cl /N Ca /N Ca, Cl NN Ca, Cl NN Ca, Cl	Fi/Cm Pa Su-No Sp-Pa Sp-Su Fi No	PI Sr	
- 17 46 W1 R3	<pre></pre>		98	42	3	40 50 30 40 0-20	J '	/N Ca, Ch /N Ca, Ch /N Cl /N Cl /N Cl /N Cl, Ca	Fi Pa Sp	PI Sr PI Sr PI Sr PI Sr PI Sr	
1092	>				'	10		/N Cl, Ca		PI Sr	
-176 -	176.4'-178.4': shear z calcite, chlorite, clay	zone, weak zones of	f	-	2	15 5 70 70 80	J N BZ J N	/N CI, Ca /N CI CI, Ca CI, Ca CA, CI /N Ca /N Ca /N CA /N CI /N CA	Sp Pa Sp	I,Wa Sr PI Sr Cu R-Vr PI Sr Ir Vr Cu Sr	
-178 - 20 47 W1 R3	176.4'-178.4': shear z calcite, chlorite, clay		104	98.74	1	10	J,	/N CI, Ca	Fi Fi/Cm(PI Sr	
1088	2				3	0-20 15 65 70 20	J	/N CI, Ca /N CI, Ca /N CI, Ca /N CI /N CI	Sp Sp Sp-Su	Cu Sr Wa R	
DISCONTINUITY TYPE APERATURE	INFILLING TYPE INF	FILLING SHAPE	ROUGHNESS		DISCO	DNTINU	ITY SP	ACING	WE	ATHER	ING STRENGTH
F - Fault J - Joint (Discontinuity) F2 - Fracture Zone S - Shear V - Vein Very Narrow (Vn) - <0.5 Narrow (N)	Ch - Chlorite	(NO) (A) (Su) (Sp) (Sp) (Sp) (Sp) (Sp) (Sp) (Sp) (Sp	dickensided (Sik) Visual evidence and straitons surface appears smooth liightly Rough (87) Aspertites are di and can beful and can be fuough (R) Aspertites are di and can beful and can beful and can beful and can beful and can beful and can beful and can beful and can beful and can be full and can be	and feels Wistinguishable learly visable, dent, surface	extremely Vide (W) Moderate (Close (C) Very Close Extremely	M) (VC)		>6ft 2ft-6ft 8in-2ft 2.4in-8in .75in-2.4in <0.75in	Moderat Highly (Complet	(W2) ely (W3) W4) :ely (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

		t: 5/1				5/30	/18	Drilling			Orilling Inc.					(:0	RF	: 1	\mathbf{C}	G	GT 2-14
_		Cup)E4					Drilling Meta mond Impr			_		•						9 of 27
		-3274 Elevati				eet Al	MSL	Logged	• •	SRC/JV		egnated /	nus	_	Fota	ıl De		262.				· · · ·
		levation				eet Al			ed By: S		<u>-</u>			_							9.89	ft bgs, 07/20/2018
Azin	nuth:	/ Incl	inatio	on: -	90			Checke	ed By: C	CRL												
占			<u>o</u>													Disco	ntinuit	ty Data	a		\exists	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	scription			Recovery %	80 0 4 0 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Fractures per ft.	Drawing	Dip	Type		Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
						>>>>	METABASALT/GREE	ENSTONE	, continue	d.												
- 1086	182 -	- 26	48		R2-R3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					98	84	1		60 II 65 II 15 40 40 II 25	MB VI VI MB	I CI I No I Ca I Ci,Sn		Sp Su No		l 1	
						>`>`> >`>`>							3									
1084 -	184 -					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							3		80 15 75 30 30	1 AI 1 AI 1 AI 1 AI	I No I Ca I CI I CI I CI		No No Fi Sp-Pa Sp Fi	PI PI PI PI PI	Sr R Sr R-Vr Sr Sr	
1082 – 				·W1	R2- R3	> > > > > > > > > > > > > > > > > > >							5				I Fe		Sp	lr	Vr	
-	186 -					>							2		60 20	J VI	I Ca I Fe,Ca I CI,Ca, CI,Ca	Fe.	Fi Sp,Pa Fi Fi	PI PI	S R S Sr	
-		- 16	49		R2		BRECCIA, grayish-gr METABASALT/GREE fine-grained, fresh, m moderately hard, son	ENSTONE loderately	, very strong,		100	98	1		15	J VI	I Ca,Fe		Fi	PI	Sr	
1078 -	188 -	-			R3	^			I				4		70 0 45	А Н А Н Л М	Fe,Ca Fe,Ca Ca	ı,Cl	Pa Sp-Pa Sp Pa-Fi Fi	PI Cu	Sr Sr Sr Sr	
F - Fault		ITY TYP			ATUR		INFILLING TIFE	AMOUNT	SHAPE	Slickenside	ROUGHNES	e of polishing		SCONTII							HERIN	
J - Joint Fz - Frac S - Shea Sz - She V - Vein Fo - Foli B - Bedd MB - Me	(Disconti cture Zone r ar Zone	,		Narrow ow (N) n (O)	0.1	0.05" C C 5-0.1" E F I-0.5" G	- Clay My - Mylonite St a - Calcite No - None Sp h - Chlorite Py - Pyrite Pa	ean (No) ained (Su) botty (Sp) ritial Filled (Pa) lled (Fi) emented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S)	and striations Surface appea smooth igh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	distinguishable t clearly visable, vident, surface	Wide (V Modera Close (Very Cl	ite (M)		0.	>6 2ft-6 8in-2 2.4in-8 '5in-2.4 <0.75	oft SI oft Me Sin Hi sin Co	esh (ightly odera ighly omple esidu	(W2) tely ((W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

		t: 5/15				5/30	/18	Drilling			Drilling Inc.					_		ORI	= 1	_)G	GT 2-14
_		Cup				051					Drilling Metl amond Impr											20 of 27
		-3274 levati				feet A	MSI	Logged		RC/J\		egnated /	пQз	_	Tota	al D	ent	th: 262				
		levation				feet A			ed By: S		··										9 89	9 ft bgs, 07/20/2018
Azin	nuth:	/ Incl	natio	on: -	90				d By: C													
			о.											1	1	Disc	ont	inuity Da	ıta		Н	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	Des	scription			Recovery %	RQD % 8 0 8 8	Fractures per ft.	Drawing	Dip	Туре	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
						>>>>	METABASALT/GREE	NSTONE	, continued	d.					30 25	J	VN C	CI CI,Ca	Sp/Si Pa	u Pl Pl	Sr Sr	
- 1076 - - -	192 -	25	50	W1	R3	<pre></pre>	191.0'-192.5': calcit to .25" wide	te veining	up to ~10%	%, up	100	557	1		25 0 25 80 15) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VN (CI,Ca Ca, CI Ca,CI Ca Ca Ca,CI CI,Ca	Fi Pa Fi	PI PI PI-Ir PI PI PI	Sr R Sr	
1074 -	194 -				R0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	193.9' - 195.0': Met weathers to clayey light olive green, loo moist.			SC), e,			8		20 10 10 10 40 60	J J J MBZ	VN (0 VN (0 VN (0	Ca,CI CI,Ca CI,Ca CI,Ca Ca,CI CI	Pa Pa Pa Pa Pa Fi	PI PI PI-Cu PI	R Sr Sr Sr-R R	
 1072 - 					R1)							2		15	BZ J		Ca,Cl Ca,Cl,Sn	Fi Fi		R	
-	196 -	20	51		R2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					100	64	>10		15 40 40 40	J	VN 0	Ca Ca	Fi Fi Fi	PI PI	Sr R Sr	
1 1070 - 				W1		((() () () () () () () () ()							0		15	1	VN		Fi Fi-Pa	PI	R	
-	198 -				R3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							0			МВ						
1068 -	-	5	52			\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					100	100	0									
		TY TYP	E 4	PER	ATUR	E	INFILLING TYPE	NFILLING AMOUNT	SHAPE		ROUGHNES	s	DI	SCONTI	NUIT	TY SP	ACI	ING	W	/EAT	HERI	ING STRENGTH
Fz - Frac S - Shea Sz - She V - Vein Fo - Foli B - Bedd MB - Me	(Discontin ture Zone r ar Zone			Narrow ow (N)	0.05	0.05" C C 5-0.1" E F- 1-0.5" G	I - Clay My - Mylonite Sta a - Calcite No - None Spr h - Chlorite Py - Pyrite Par p - Epidote Oz - Quartz Fill	ean (No) nined (Su) otty (Sp) rtial Filled (Pa) ed (Fi) mented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S	smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	distinguishable tt clearly visable, evident, surface	Wide (\ Modera Close (Very C	ate (M)		. (2. 2.75i	2ft-6ft 8in-2ft 4in-8in n-2.4in	Fresh Slightl Moder Highly Compl Residu	y (W2 ately (W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R Strong (R4) Very Strong (R5) Extremely Strong (R6

		t: 5/1				5/30	/18	Drilling Co.: Gregg Drilling Inc.						CORE LOG GT 2-14							
Location: Cupertino, CA								Drill Rig: CME 075X / Drilling Method: HSA/WLC Drill Bit Type/Size: Diamond Impregnated / HQ3						Sheet No. 21 of 27							
Northing: -3274 / Easting: -851 Surface Elevation: 1267 feet AMSL								Logged By: SRC/JVP						Total Depth: 262.0 feet							
Bottom Elevation: 1005 feet AMSL								Prepared By: SRC						Groundwater Data: 169.89 ft bgs, 07/20/2018							
Azimuth: / Inclination: -90								Checked By: CRL											I,		
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	scription		Recovery	8 6 4 8 % RQD	Fractures per ft.	Drawing	Type		Type of Infilling	ata Amount of Infilling	Surface Shape	Roughness	Comments	
- 1064 - -	202 -	23	53	W1	R3-R2-R2-R2-R3-R3-R3-R3-R3-R3-R3-R3-R3-R3-R3-R3-R3-		METABASALT/GREE			94	75	2 4 5 5	20 20	0 J 0 J 5 J 5 J 0 J 8z 5 J	VN VN VN N VN N/O	Ca,Cl Ca,Cl Cl Cl	Pa Pa/Fi Fi Fi Fi Fi Fi Fi	PI PI	R St/IR St R St R St R		
1062 -	- 206			X	R1- R2	>`>`> >`>`> >`> >`>	205.7': grades to m	noderately str	rong			9	1	MB 0 J 0 J 82	VN VN	Ca,Cl Ca,Cl	Sp Sp Sp/Pa Sp/Pa		Sr Sr/R Sr/R Sr/R		
1060 -		16	54	W1	- Do	\`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				104	** 58	3		WE	VN	CI,Ca Ca,CI	Su	PI/W	Sr R		
1058 -	208 -	-			R3	<pre></pre>						4	2 0- 4 3 1 7 2 3	0 J 0 J 10 V 0 J 0 J 5 J 0 J 0 J	VN VN VN VN VN VN	Ca/H1 Ca/Cl Ca,Cl Cl Cl,Ca Cl,Ca Cl,Ca	Sp/Su Fi Su Fi/Cm Sp Sp Pa Sp/Su Su Fi	PI W Ir IPI PI	Sr Sr R R R R Sr/R Sr/R		
				NFILLING AMOUNT	SHAPE	ROUGHNES	ss	DIS	CONTIN	UITY	SPAC	CING	w	EAT	HERIN	G STRENGTH					
F - Fault J - Joint (Discontinuity) Tight (T) 0" Bi - Biotitie Mn - Manganese Cl - Clay My - Mylonite Stal S - Shear Zone Very Narrow (Vn) < 0.05" C. Ciclie No - None Spar S - Shear Zone Narrow (N) = 0.85-11" E - Feidder CP - Clearty Feidder Par				i - Biotitie Mn - Manganese Cl I - Clay My - Mylonite Sta a - Calcite No - None h - Chlorite Py - Pyrite Pa - Epidote Qz - Quartz Filon Oxide Sd - Sand Cl y - Gypsum Si - Silt - Healed Un - Unknown	ean (No) sined (Su) otty (Sp) rtial Filled (Pa) led (Fi) mented (Cm)	Planer Sli Stepped Ro	Silickensided (Silk) Visual evidence of polishing and striations Surace appears and feels smooth (S) Surface appears and feels smooth (S) Silightly Rough (S) Silightly Rough (R) According to the Company of the Compan			V) ite (M) C) ose (VC)	2ft-6ft Sli 8in-2ft Mc 2.4in-8in Hig /C) 0.75in-2.4in Co			Fresh (Slightly Modera Highly Comple Residu	y (W2 ately ((W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)				

-		t: 5/15				5/30	/18	Drilling			Drilling Inc.		A/I O			C	ORI	ΕL	_C)G	GT 2-14
		-327				351					Orilling Meth amond Impr			_							22 of 27
		levati		12	267 f	feet Al		Logged	Ву:	SRC/J\					Γota	l De	oth: 262	2.0 fe	et		
		levation Incl				eet Al	MSL	Prepare						(Grou	ındw	ater Da	ta:	169	9.89	ft bgs, 07/20/2018
	iutri.	/ IIICI		JII	90			Checke	и Бу.	CKL						Discor	nținuity Da	nta	_	╧	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery %	80 08 RQD	Fractures per ft.	Drawing	Dip	lype Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
						>>>>	METABASALT/GREE	ENSTONE	, continu	ied.					30	J VN	Cl,Ca	Pa	W/PI	R-Vr	
- 1056 – - -	212 -				R3	`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							2		50	1B 1B V T		F Su	PI PI	Sr Vr	
1054 -	214 -	25	55	W1		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					98	86	6		45 N	V T V T 1B J VN		Fi Fi Sp	PI	Sr-R Sr-R R-Vr	
1052 -				×	R2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	214.4' - 214.7': she	eared weak	c zone				2			BZ J VN	Ca,Cl	Pa	PI	Sr	
-	216 -					^	216.3-216.7': claye	ey zone					3		40	J VN J T J T	CI	Pa/Fi Fi Fi	PI PI PI PI/W	R-Vr	
1050 -		- 20	56	W1	R2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					100	70	2			SZ T		Fi	PI		
1048 -	218 -					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	218.2-220.0': clay a	zone					1		85	JT	ici	FI	PI PI PI		
						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							5		10	J T BZ	CI	Fi	PI		
DISCO	NTINUI	TY TYP	E A	APER/	ATUR	E	INFILLING TYPE	INFILLING AMOUNT	SHAPE		ROUGHNES	S	DIS	CONTI	NUIT	/ SPA	CING	w	EAT	HERI	NG STRENGTH
F - Fault J - Joint Fz - Frac S - Shear Sz - Shear V - Vein Fo - Folia B - Bedd MB - Med Bz - Brok	ture Zone or Zone otion ong Joint orbanical B		- 1	Narrow ow (N) n (O)	0.1	0.05" Ci Ci 5-0.1" Ep Fe 1-0.5" Gi	I - Biotitie Mn - Manganese Cleay My - Mylonite Sta - Calcite No - None Sp - Chlorite Py - Pyrite Pai - Enidote Oz - Quartz	ean (No) ained (Su) ootty (Sp) rrtial Filled (Pa) lled (Fi)	Wa - Wavy Pi - Planer St - Stepped Ir - Irregular	Smooth (S)	smooth ugh (Sr) Asperities are and can be fel Asperities are some ridges e feels abrasive	rs and feels distinguishable clearly visable, vident, surface	Wide (V Modera Close (Very Cl	ite (M)			2ft-6ft 8in-2ft 2.4in-8in 5in-2.4in	Fresh (Slightly Modera Highly Comple Residu	y (W2 ately ((W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

		t: 5/15				: 5/30	/18	Drilling			Orilling Inc.	1.110.4.4	4// 0				C	ORE	ΞL	_C)G	GT 2-14
		-3274				351					Drilling Meth Imond Impr											23 of 27
		Elevati				feet Al	MSL	Logged		SRC/J\		<u> </u>		_	Tot	al D	ep	th: 262	.0 fe	et		
—		levation				feet Al	MSL	Prepare							Gro	ounc	lwa	ter Data	a:	169	9.89	ft bgs, 07/20/2018
Azin	nuth:	/ Incl	inatio	on: -	90	1	<u> </u>	Checke	d By:	CRL						Disc	cont	inuity Dat	ta		_	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery	86 6 8 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	Fractures per ft.	Drawing	Dip		Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
						> > >	METABASALT/GRE fine-grained, fresh, v		, very						30	J	VN (CL	Su	PI	R	
1046 -	222 -	17	57	W1	R2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	221.4'-229.9': she				98	89	6		30 55 0 0 60 15 30 30 25 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VN VN VN VN VN VN VN VN VN VN VN VN VN V	н са н са са	Sp Sp Sp Sp Pa Sp Pa Cm Su	PI PI PI PI PI PI PI PI	Sr Sr R Sr Sr Sr Sr Sr	
						> > >							5		25 40	J	Vn Vn		Fi Fi	PI PI	Sr Sr	
1044 -	224 -	-				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							7		20 45 50 40 40	\ 1 1 1	Vn V	CI,Ca CI,Ca Ca,H CI Ca,H	Sp Sp Cm Su	PI PI PI PI	Sr Sr Sr R	
				\times	\times	> > > > >							Н		40	MB	\/- I	01.0-		DI	0-	
1042	226 -					>	225.6' - 225.8': sh	ear zone					6		40 20 30 60 25 35 35 60	1 1 1 18 1	Vn (Vn (Vn (Vn (Vn (Vn (Vn (Vn (Vn (Vn (CI,Ca CI,Ca CI,Ca CI,Ca CI,Ca CI,Ca	Sp Fi Pa Fi Sp Cm	PI PI PI PI PI PI	Sr Sr Sr R Sr Sr	
- 1040 -		16	58	W1	R2	L	227.4'-227.7': she				100	74	4		70 30 60 30	J J MB J	Vn (Ca CI,Ca CI,Ca CI,Ca	Fi Fi Sp	PI PI PI	Sr Sr Sr Sr	
-	228 -	-				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	228.6'-229.0': she						2		30 40 45	SZ J	Vn (CI,H	Sp	PI PI	Sr Sr	
1038 –						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					113	95	1		45 50 50	J J MB	Vn (CI,H	Sp Su Pa	PI PI	Sr R Sr	
1		ITY TYP	E A	APER/	ATUR	E	INFILLING TYPE	INFILLING AMOUNT	SHAPE		ROUGHNES		DIS	SCONT	INUI	TY SF	PAC	ING	W	EAT	HERI	NG STRENGTH
Fz - Frac S - Shea Sz - Shea V - Vein Fo - Folia	(Disconting ture Zone of the Z	,		Narrow ow (N) n (O)	0.1	0.05" C 5-0.1" E F-0.5" G	I - Clay My - Mylonite S a - Calcite No - None S h - Chlorite Py - Pyrite P	Clean (No) Stained (Su) Spotty (Sp) Partial Filled (Pa) Filled (Fi) Cemented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S)	some ridges e feels abrasive	distinguishable clearly visable, vident, surface	Wide (V Modera Close (Very Cl	ite (M))		2. 0.75i	2ft-6ft S 8in-2ft N 4in-8in H n-2.4in C	resh (dightly lodera lighly comple tesidu	y (W2 ately (W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

—		t: 5/15				5/30	/18	Drilling			Orilling Inc.		A/I O				C	ORE	ΞL	.C	G	GT 2-14
		-3274				351					Orilling Meth amond Impr			_								24 of 27
		levati				feet Al	MSL	Logged		RC/J\		<u> </u>			Tot	al D	ept	h: 262.	.0 fe	et		
		levation				eet Al	MSL		ed By: SI					_	Gro	ound	wa	ter Data	a:	169	9.89	ft bgs, 07/20/2018
Azın	nuth:	/ Incl	ınatı	on: -	90			Checke	ed By: C	KL						Disc	onti	inuity Dat	<u></u>		\perp	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	Des	scription			Recovery	8 6 6 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Fractures per ft.	Drawing	Dip		Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
				W1		>>>>	METABASALT/GREE	NSTONE	, continued	l.					30-0	sz						
1036 - 		20	59	W1 W2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	230.5' - 231.0': incr	rease in w	reathering				3		25 60 50	J	//N C T C T C	CI,H1	Fi Fi/Cm Fi/Cm	PI PI		
				W1		>`>`> >>>>					113	95	3		25	J	т	CI,H1	Fi/Cm	PI		
-	232 -	_		VVI) >									50 25		тс	CI,H1 CI,H1	Fi/Cm Pa		Sr-R	
1034 -				W2		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	232.7' - 233.3': incr shearing of rock. w	rease in w reak, and o	eathering a clayey.	and			>10		70	J Y	Vn C	CI	Sp	PI	R	
-		3	60			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					91	91	1		20	МВ Ј	тс	CI,H1	Fi/Cm	PI		
-	234 -				R2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										MB						
1032 - 		-				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							0		30	J MB	тс	CI,H1	Fi/Cm	PI		
1030 -	-236 -	8	61	W1		^					84	84	1		35	J	Vn C	CI	Su	Pl-St	Sr-R	
-	-238 -	-				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							1		20	J	Wn C	CI,H1	Fi/Cm	PI	Sr	
- 1028 - 		-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N P1	^	239.4': color chang	e to gray				34	>10		90		Vn C	ci Ci	Fi	Ir PI	R	
			_	W1	R1- R2	>`>`> >`>`> >`>`>						,	2									
		TY TYP	E /	APER	ATUR	E	INFILLING TYPE	NFILLING AMOUNT	SHAPE		ROUGHNES		DIS	CONT	INUI	TY SP	ACI	NG	w	EATI	HERI	NG STRENGTH
Fz - Frac S - Shea Sz - She V - Vein Fo - Foli B - Bedo MB - Me	(Discontine cture Zone or ar Zone		Narr	t (T) Narrow ow (N) n (O) e (W)	0.05	0.05" Ci Ci 5-0.1" Ep Fe 1-0.5" Gi	I - Clay My - Mylonite Sta a - Calcite No - None Spr h - Chlorite Py - Pyrite Par b - Epidote Qz - Quartz Filli	ean (No) ained (Su) otty (Sp) rital Filled (Pa) led (Fi) mented (Cm)	Wa - Wavy PI - Planer St - Stepped Ir - Irregular	Smooth (S)	some ridges e feels abrasive	distinguishable clearly visable, vident, surface	Wide (V Modera Close (Very Cl	te (M))	0	2.4 2.75iı	2ft-6ft Si 3in-2ft M 4in-8in H n-2.4in C	resh (lightly lodera ighly omple esidu	(W2) tely ((W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

		t: 5/1				5/30	/18	Drilling			Orilling In							C	∩RI	= I	_)(:	GT 2-14	
		Cup				054					Orilling M				_			U					25 of 27	
		-327 ² levati			_	eet Al	MSL	Logged		SRC/J\	amond Im /P	preg	nated /	пQз		Tot	al D	ep.	th: 262					
		levation				eet Al			ed By: S		•							_				9.89	9 ft bgs, 07/20/2018	
Azin	nuth:	/ Incl	nati	on: -	90			Checke	ed By: C	CRL														
٦			o.														Dis	cont	inuity Da	ata	1		-	
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De:	scription			Recovery		RQD %	Fractures per ft.	Drawing	Dip	Туре	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments	
						>>>>	METABASALT/GREE	NSTONE	, continue	d.			Ì			30	J	Vn	Ca,Cl	Pa	Cu/P	Vr		
- 1024 - -	- - 242 - - - -	27	62	W1	R1-R2		LIMESTONE, dark blufine-grained, fresh, ver laminated with chert/s 0.5mm to 3-4mm in w calcite veining up to 1	ery weak te- shale, thini vidth, defor 15%	o weak, thi)y laminate irmation fol	inly ed from Iding,	66		34	8 >10		30 30 10 20 10-20 50	J V J BZ	Vn) T) Vn)	Ca,CI Ca Ca,CI Ca,CI		Cu/P PI PI		hole collapse back to 242	
1022 -	- - 246 —	7	63	W1	R1-R2		METABASALT/GREE very fine-grained, fres BRECCIA, metabasal gouge matrix, very fin weak to weak.	sh, weak. It/greensto	one in clay	rey	85		85	0										
1020 -	-	24	64		R1- R2		LIMESTONE with che gray, fine-grained, fre xenoliths and pyrite.				100		44	5		70 20 30 10 15	J V J BZ V V J	T Vn VN Vn T	Ca Ca	Fi Fi Fi Fi	PI PI PI	Sr		
1018 –	248 - -			W1	R2		4" greenstone xend	olith			:100		74	7		20 15 30 30 45 45) 1 1 1	Vn Vn Vn	Ca Ca Ca Ca Ca,CI	Fi Fi Fi Pa	PI PI PI	Sr Sr Sr		
DISCO	ייו יואודוא	TY TVP	F .	APER/				NFILLING	SHAPE		ROUGHN	FSS		1 DIS	SCONT	Ni ir	TY SI	200	ING		VEAT	HED	RING STRENGTH	
F - Fault			Tigh		UK	0" B	i - Biotitie Mn - Manganese Cle	AMOUNT ean (No)	Wa - Wavy	Slickenside	ed (SIk) Visual evid	dence of p	olishing	Extrem	ely Wide				>6ft	Fresh	(W1))
Fz - Frac S - Shea Sz - Shei V - Vein Fo - Foli	ture Zone r ar Zone ation ing Joint chanical B		Very	Narrow ow (N) n (O)	0.05 0.1	0.05" C C 5-0.1" E F I-0.5" G	I - Clay My - Mylonite Sta a - Calcite No - None Sp h - Chlorite Py - Pyrite Pa	ained (Su) iotty (Sp) rtial Filled (Pa) led (Fi) mented (Cm)	PI - Planer St - Stepped Ir - Irregular	Smooth (S) Slightly Ro Rough (R) Very Rough	Surface a smooth ugh (Sr) Asperities and can b Asperities some ridg feels abra	opears and are distin e felt are clearl es eviden sive	guishable y visable, , surface	Wide (V Modera Close (Very Cl Extrem	V) te (M) C) ose (VC)		2. 0.75i	2ft-6ft 8in-2ft 4in-8in n-2.4in	Slight Moder Highly Comp Resid	lỳ (W: rately / (W4) letely	(W3) (W5)	Moderately Strong (F	R3)

		t: 5/15				5/30)/18	Drilling			Orilling Inc.					\mathbf{C}	OR.	FI	_) <u>(</u>	GT 2-14
		Cup									Orilling Meth			_		C					26 of 27
		-3274 Ievati			_	eet A	MSI	Drill Bit Logged		ze: Dia SRC/J\	mond Impr	egnated	HQ3		otal	Dor	oth: 26			O . <i>i</i>	20 01 27
_		levation				eet A			ed By: S											a ac	9 ft bgs, 07/20/2018
—		/ Incl				-			d By: C						JIOU	iiuw	alei Da	ala.	10.	7.03	7 It bgs, 0772072010
									<u> </u>							iscor	tinuity D	ata			
Elevation, ft MSL	Depth, ft	Drill Time (min)	Run No./Box No.	Weathering Index	Strength Index	Graphic Log	De	escription			Recovery %	80 0 4 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fractures per ft.	Drawing	Dip	Width	Type of Infilling	Amount of Infilling	Surface Shape	Roughness	Comments
	_					Щ	LIMESTONE, continu	ued.				<u></u>			45 J	Vn	CI	Pa	PI	R	
- 1016 -	-						250.4'-250.7': brec gouge matrix	cciated zon	e with cla	y			4		45 J	Vn	CI	Pa	PI	R	
	-	16	65			H	<u>.</u>								45 V	H2	Ca				
	252 -				R2	E					100	74	0		30 J	Vn	Ca	Su	PI	s	
						H									15 V	Н2	Ca,Cl				
-	-					H	1								30 J	Vn	Ca	Su	PI	s	
1044						H							3		30]	Vn	Ca	Su	PI	s	
1014 - 				W1		H									30 J	Vn	Ca	Su	PI		
-	-					F									ME						
						974	BRECCIA, metabasa	alt/greensto	one in clay	еу			5	30)-60 J	Vn	Ca	Su	PI-St	S-R	
-	254 –						gouge matrix, very fir weak to weak.	ne-grained,	, fresh, vei	ry											
- 1012 -	-				R1- R0								0		30 J	Vn	CI	Fi	PI	R	
-	-												3		50 J	Vn Vn	Fe,CI CI	Fi Fi	PI PI	Sr R	
-	256 -	10	66									40			40 J	Vn	CI	Pa	PI-Cu	Sr	
- 1010 -	-	19	66								32	18	>10								
-	258 –			$\left \right $	$\left \right $								>10								
-	-			$/ \setminus$	$/ \setminus$	**************************************	METABASALT/GREE fine-grained, fresh, w		, very				>10		60 J	Vn	CI	Su	PI	Sr	
1008 -	-		67	W1	R3	> > \ > > \ > > \ > > \ > > \ > > \					26	0	>10		В	Z					150 ft of core rod broken off in hole fished out on 5/25 sand locked with cuttings. Drillers unable to gain any more depth with drilling as hole continues to collapse sandlocking rods. Drilling creating cavity.
DISCO	NTINUI	TY TYP	E	APER/	ATURI	E	INFILLING TYPE	INFILLING AMOUNT	SHAPE		ROUGHNES		DIS	CONTIN	IUITY	SPA	CING	W	/EAT	HER	ING STRENGTH
Fz - Frac S - Shea Sz - She V - Vein Fo - Foli B - Bedo MB - Me	(Discontin ture Zone r ar Zone		- 1	Narrow ow (N) n (O)	0.1	0.05" 5-0.1" I-0.5"	Bi - Biotitie Mn - Manganese Cl Cl - Clay My - Mylonite St Ca - Calcite No - None Sp Ch - Chlorite Py - Pyrite Pa Eo - Epidote Qz - Quartz	lean (No) lained (Su) potty (Sp) artial Filled (Pa) lled (Fi) emented (Cm)	Wa - Wavy Pi - Planer St - Stepped Ir - Irregular	Smooth (S)	d (Sik) Visual evidence and striations Surface appear smooth ugh (Sr) Asperities are and can be fell Asperities are some ridges er feels abrasive (Vr) Near-vertical ric surface	s and feels distinguishable clearly visable, vident, surface	Wide (V Modera Close (Very Cl	ite (M)			>6ft 2ft-6ft 8in-2ft 2.4in-8in 5in-2.4in <0.75in	Fresh Slightl Moder Highly Compl Residu	y (W2 ately (W4) etely	(W3) (W5)	Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6)

Date Start: 5/15/18 End: 5/30/18 Drilling Co.: Gregg Drilling Inc. **CORE LOG GT 2-14** Drill Rig: CME 075X / Drilling Method: HSA/WLC Location: Cupertino, CA Sheet No. 27 of 27 Northing: -3274 / Easting: -851 Drill Bit Type/Size: Diamond Impregnated / HQ3 Total Depth: 262.0 feet Surface Elevation: 1267 feet AMSL Logged By: SRC/JVP 1005 feet AMSL SRC Bottom Elevation: Prepared By: Groundwater Data: 169.89 ft bgs, 07/20/2018 Azimuth: / Inclination: -90 Checked By: CRL Discontinuity Data Elevation, ft MSL I Time (min) Strength Index Amount of Infilling Run No./Box Weathering Index Graphic Log Surface Shape Description Comments Roughness Drawing RQD Recovery Width Type % ģ 20 40 60 80 40 80 80 > METABASALT/GREENSTONE, continued. 26 0 >10 1006 W1 R3 0 12 68 drilling terminated to hole collapse extreme difficulty in progressing hole to depth 262 BOTTOM OF HOLE AT 262 FT PIEZOMETER INSTALLED ON 06/12/18 INFILLING AMOUNT DISCONTINUITY TYPE INFILLING TYPE DISCONTINUITY SPACING STRENGTH **APERATURE** SHAPE ROUGHNESS WEATHERING F - Fault
J - Joint (Discontinuity)
Fz - Fracture Zone
S - Shear
Sz - Shear Zone
V - Vein
Fo - Foliation
B - Bedding Joint
MB - Mechanical Break
Ry - Broken Zone Visual evidence of polishing and striations Surface appears and feels smooth Asperities are distinguishable and can be felt Asperities are clearly visable, some ridges evident, surface feels abrasive Near-vertical ridges occur on surface Extremely Wide (EW) Wide (W) Moderate (M) Close (C) Very Close (VC) Extremely Close (Ex) Fresh (W1) Slightly (W2) Moderately (W3) Highly (W4) Completely (W5) Residuum (W6) Mn - Mangar My - Mylonit No - None Py - Pyrite Qz - Quartz Sd - Sand Si - Silt Un - Unknov Extremely Weak (R0) Very Weak (R1) Weak (R2) Moderately Strong (R3) Strong (R4) Very Strong (R5) Extremely Strong (R6) Clean (No)
Stained (Su)
Spotty (Sp)
Partial Filled (Pa)
Filled (Fi)
Cemented (Cm) >6ft 2ft-6ft 8in-2ft 2.4in-8in Very Narrow (Vn) <0.05" PI - Planer 0.05-0.1" Narrow (N) St - Stepped Rough (R) Open (O) 0.1-0.5" Ir - Irregular

Photograph ID: 1

Photo ID:

GT 2-14 15.3'-31.7'

Photo Location:

GT 2-14

Date Taken:

5/31/2018

Comments: Box 1 of 22

Photograph ID: 2

Photo ID:

GT 2-14 31.7'-55.0'

Photo Location:

GT 2-14

Date Taken:

5/31/2018

Comments:

Box 2 of 22

Project: **Lehigh Southwest Cement** Client: Lehigh Hanson Site Name: **Permanente Quarry Site Location:** Santa Clara County, CA Photograph ID: 3 Photo ID: GT 2-14 55.0'-72.3' LEHIGH PERMANENTE **Photo Location:** GT 2-14 Date Taken: 5/31/2018 Comments: Box 3 of 22 Photograph ID: 4 Photo ID: GT 2-14 72.3'-82.0' **Photo Location:** LEHIGHPERMANENTE 233001289 GT2-14 723'- 820' Box 40 F 22 GT 2-14 Date Taken: 5/31/2018 Comments: Box 4 of 22

Project: **Lehigh Southwest Cement** Client: Lehigh Hanson Site Name: **Permanente Quarry** Site Location: Santa Clara County, CA Photograph ID: 5 Photo ID: GT 2-14 82.0'-98.0' **Photo Location:** GT 2-14 Date Taken: 5/31/2018 Comments: Box 5 of 22 Photograph ID: 6 Photo ID: GT 2-14 98.0'-108.0' **Photo Location:** GT 2-14 Date Taken: 5/31/2018 Comments: Box 6 of 22

Project: **Lehigh Southwest Cement** Client: Lehigh Hanson Site Name: **Permanente Quarry** Site Location: Santa Clara County, CA Photograph ID: 7 Photo ID: GT 2-14 108.0'-118.3' **Photo Location:** GT 2-14 Date Taken: 5/31/2018 Comments: Box 7 of 22 Photograph ID: 8 Photo ID: GT 2-14 118.3'-135.0' **Photo Location:** GT 2-14 Date Taken: 5/31/2018 Comments: Box 8 of 22

Photograph ID: 9

Photo ID:

GT 2-14 135.0'-147.0'

Photo Location:

GT 2-14

Date Taken: 5/31/2018

Comments: Box 9 of 22

Photograph ID: 10

Photo ID:

GT 2-14 147.0'-155.0'

Photo Location:

GT 2-14

Date Taken:

5/31/2018

Comments:

Box 10 of 22

Photograph ID: 11

Photo ID:

GT 2-14 155.0'-163.7

Photo Location:

GT 2-14

Date Taken: 5/31/2018

Comments: Box 11 of 22

Photograph ID: 12

Photo ID:

GT 2-14 163.7'-172.2'

Photo Location:

GT 2-14

Date Taken: 5/31/2018

Comments:

Box 12 of 22

Photograph ID: 13

Photo ID:

GT 2-14 172.2'-180.0'

Photo Location:

GT 2-14

Date Taken: 5/31/2018

Comments: Box 13 of 22

Photograph ID: 14

Photo ID:

GT 2-14 180.0'-188.6'

Photo Location:

GT 2-14

Date Taken:

5/31/2018

Comments:

Box 14 of 22

Photograph ID: 15

Photo ID:

GT 2-14 188.6'-197.3'

Photo Location:

GT 2-14

Date Taken: 5/31/2018

Comments: Box 15 of 22

Photograph ID: 16

Photo ID:

GT 2-14 197.3'-205.6'

Photo Location:

GT 2-14

Date Taken:

5/31/2018

Comments:

Box 16 of 22

Photograph ID: 17

Photo ID:

GT 2-14 205.6'-214.7'

Photo Location:

GT 2-14

Date Taken: 5/31/2018

Comments: Box 17 of 22

Photograph ID: 18

Photo ID:

GT 2-14 214.7'-223.8'

Photo Location:

GT 2-14

Date Taken:

5/31/2018

Comments:

Box 18 of 22

Photograph ID: 19

Photo ID:

GT 2-14 223.8'-232.9'

Photo Location:

GT 2-14

Date Taken: 5/31/2018

Comments: Box 19 of 22

Photograph ID: 20

Photo ID:

GT 2-14 232.9'-244.4'

Photo Location:

GT 2-14

Date Taken:

5/31/2018

Comments:

Box 20 of 22

Photograph ID: 21

Photo ID:

GT 2-14 244.4'-253.6'

Photo Location:

GT 2-14

Date Taken: 5/31/2018

Comments: Box 21 of 22

Photograph ID: 22

Photo ID:

GT 2-14 253.6'-262.0'

Photo Location:

GT 2-14

Date Taken:

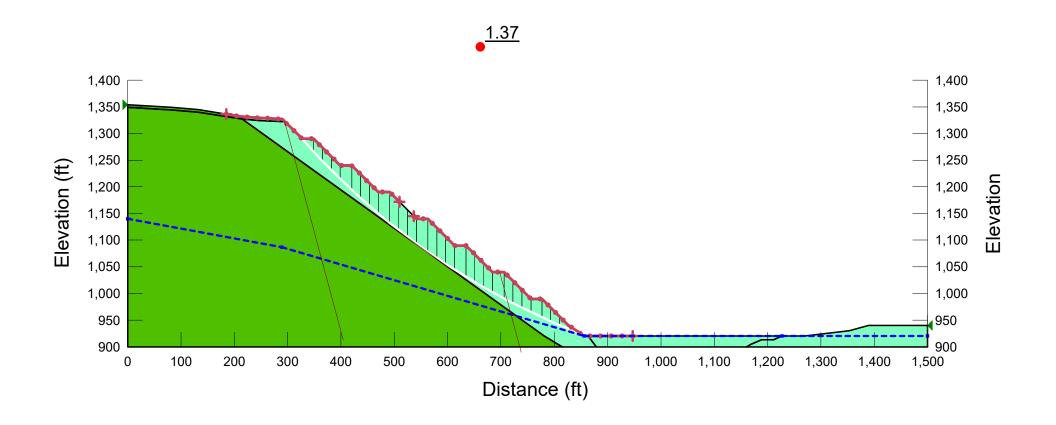
5/31/2018

Comments:

Box 22 of 22

ROCK PLANT RESERVE GEOTECHNICAL EVALUATION

APPENDIX BStability Evaluation



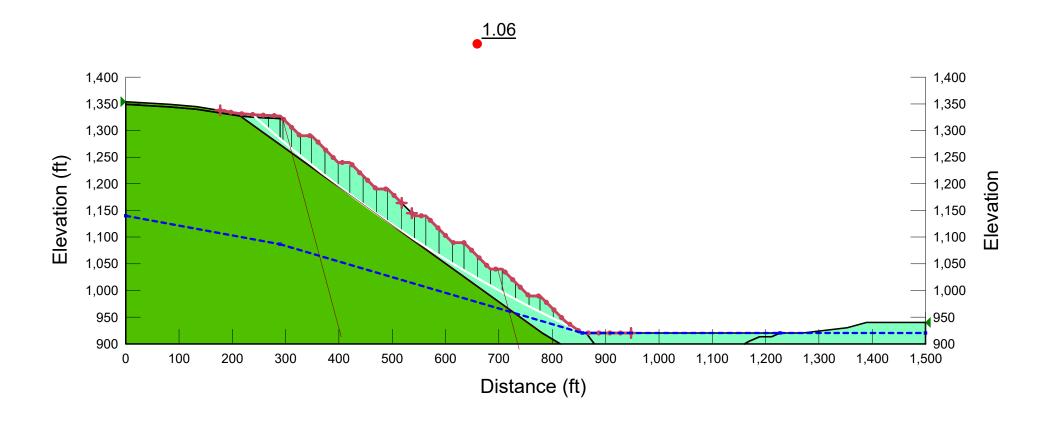
Title: Rock Plant Reserve - Section A

Name: 1. Static Method: Spencer

Factor of Safety: 1.37 Horz Seismic Coef.:

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	165	1,800	27	1

Title: Rock Plant Reserve - Section A

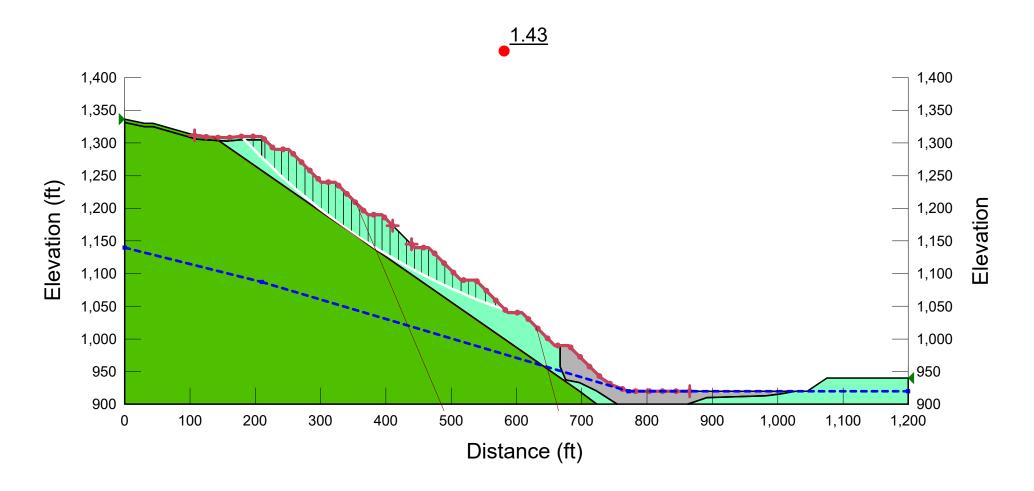

Name: 2. Pseudo-Static

Method: Spencer

Factor of Safety: 1.06

Horz Seismic Coef.: 0.15

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	165	1,800	27	1

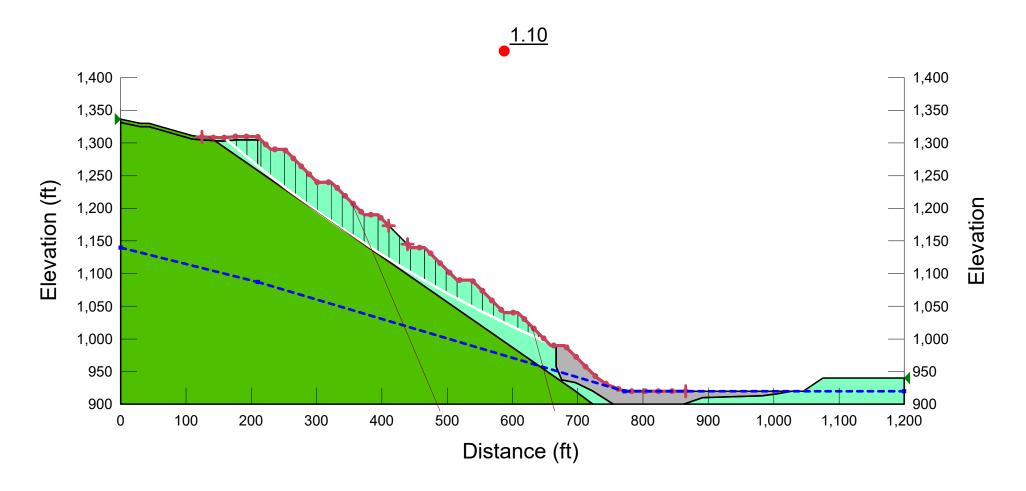


Title: Rock Plant Reserve - Section B

Name: 1. Static Method: Spencer

Factor of Safety: 1.43 Horz Seismic Coef.:

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	165	1,800	27	1
	Limestone Bedrock	165	12,500	30	1

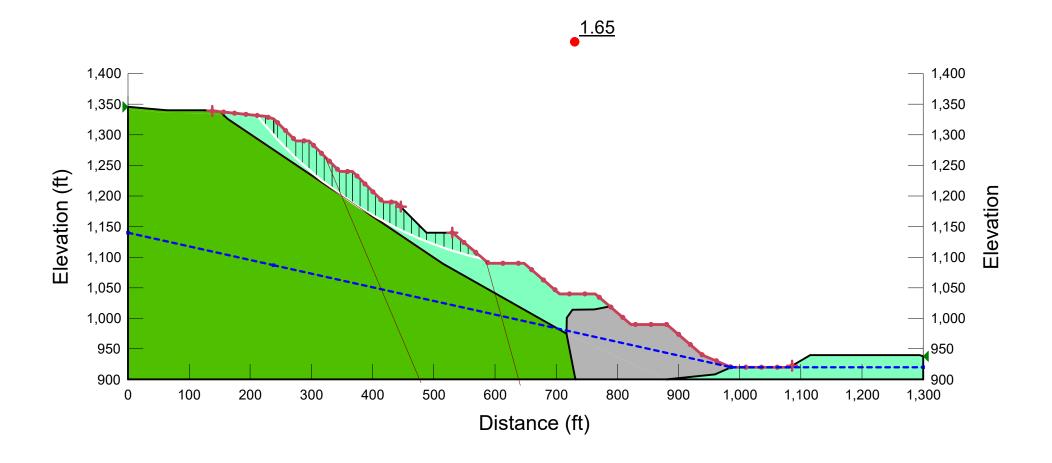

Title: Rock Plant Reserve - Section B

Name: 2. Pseudo-Static

Method: Spencer

Factor of Safety: 1.10 Horz Seismic Coef.: 0.15

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	165	1,800	27	1
	Limestone Bedrock	165	12,500	30	1



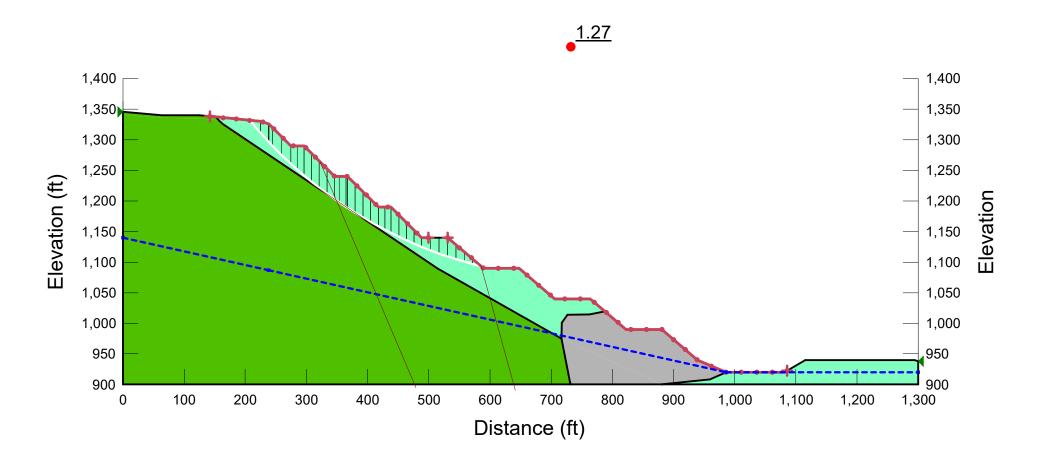
Title: Rock Plant Reserve - Section C

Name: 1. Static Method: Spencer

Factor of Safety: 1.65 Horz Seismic Coef.:

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	165	1,800	27	1
	Limestone Bedrock	165	12,500	30	1

Title: Rock Plant Reserve - Section C

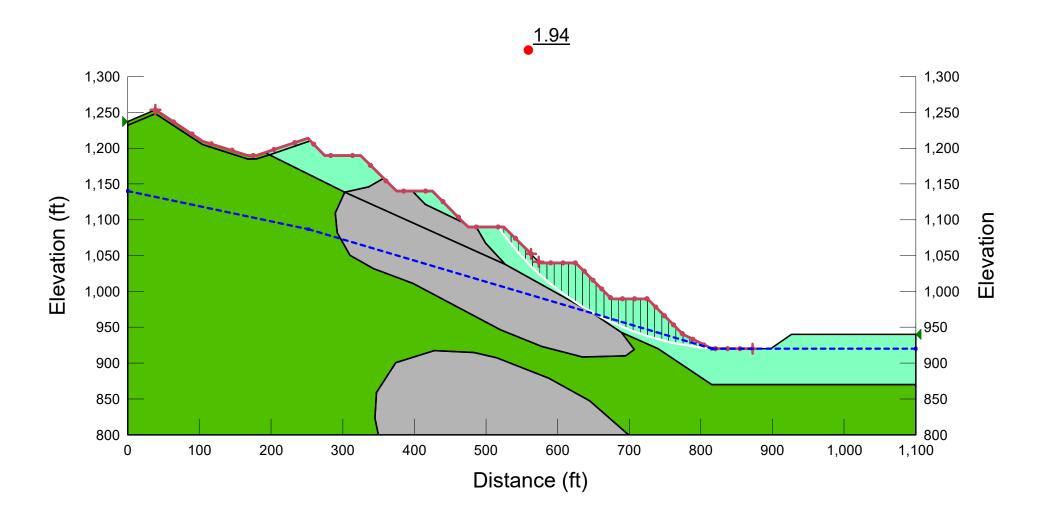

Name: 2. Pseudo-Static

Method: Spencer

Factor of Safety: 1.27

Horz Seismic Coef.: 0.15

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	165	1,800	27	1
	Limestone Bedrock	165	12,500	30	1



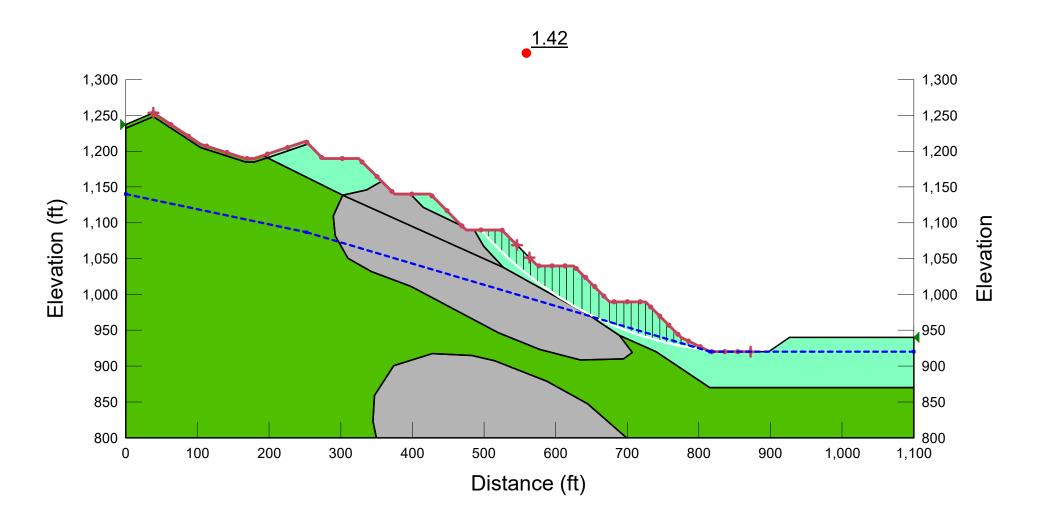
Title: Rock Plant Reserve - Section D

Name: 1. Static Method: Spencer

Factor of Safety: 1.94 Horz Seismic Coef.:

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometric Line
	Greenstone Bedrock	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	165	1,800	27	1
	Limestone Bedrock	165	12,500	30	1

Title: Rock Plant Reserve - Section D


Name: 2. Pseudo-Static

Method: Spencer

Factor of Safety: 1.42

Horz Seismic Coef.: 0.15

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Piezometrio Line
	Greenstone Bedrock	165	12,500	30	1
	Greenstone Bedrock (Mining Influenced Zone)	165	1,800	27	1
	Limestone Bedrock	165	12,500	30	1

APPENDIX C

Seismic Displacement Calculations

Rock Plant Reserve Seismic Displacement Analysis

Section	Yield Acceleration ky	Average Failure	Seismic Displacement (in) (Bray and Travasarou		
Section	(g)	Surface Height (ft)	Median	16% exceedence	84% exceedence
Section A	0.185	37	2	4	1
Section B	0.195	37	2	4	1
Section C	na	na	na	na	na
Section D	na	na	na	na	na

Note: Seismic displacement analyses were done for all models that have a FOS < 1.15 for Pseudo-static stability

Based on: Simplified Procedure for Estimating Earthquake Induced Deviatoric Slope Displacements

by Jonathan D. Bray and Thaleia Travasarou

Journal of Geotechnical and Geonvironmental Engineering, ASCE, V. 133(4), pp. 381-392, April 2007

MODEL INPUTS:ValueReferenceMoment Magnitude Mw7.1GolderPGA0.6gGolder

Non-ZeroStandard Deviation0.66Bray & Travasarou paperTs Coefficient1.5Bray & Travasarou paper

APPENDIX G-5 ROCK PLANT HAUL ROAD AND UTILITY ROAD GEOTECHNICAL EVALUATION

To: Talia Flagan From: Paul Kos

Lehigh Hanson Denver, Colorado Office

File: Lehigh Utility Road Geotech Review Date: May 21, 2019

Stantec PN 233001289

Utility Road Grading Plan and Geotechnical Analysis

BACKGROUND

Lehigh Hanson (Lehigh) improved an approximately 800-foot long portion of an existing utility road that climbs southerly from the Permanente aggregate plant and continues along a ridge toward the neighboring quarry site (**Figure 1**). The alignment has been in use for 50 plus years and does not represent an engineered design. This roadway began as a narrow, bulldozed exploration and utility access road. It was subsequently used as a maintenance road to access this portion of the property, and by Pacific Gas and Electric Company (PG&E) to access power lines in the area. The road was improved in 2018 to allow for off-site materials transport. Lehigh plans to grade the utility road to decrease slope gradients while continuing to allow access by site personnel for maintenance and exploration purposes, PG&E maintenance vehicles, and potentially emergency response vehicles. No further hauling is planned for the road.

Figure 1 Utility Road Location

May 21, 2019 Talia Flagan Page 2 of 8

Utility Road Grading Plan and Geotechnical Analysis

EXISTING CONDITIONS

The utility road was improved along its preexisting alignment. While the road contains steep slopes and grades, it is within typical mining industry standards for grading, slopes, and drainage controls. A key consideration of this road is that it is an internal road that cannot be accessed by the public. It must remain serviceable as it serves the primary access to the southern property and as an easement for PG&E utility lines. Roads such as this are typically constructed following existing site practices that have been proven to work at the site. Photographs of the improved road are included below. **Figure 2** shows the road cross-section and presents the range of excavation heights. **Figure 3** shows the fill profile. It should be noted that the slopes pictured have been revegetated since these photographs were taken.

Figure 2 Utility Road Cross-Section

Figure 3 Utility Road Fill Profile

The road is steep compared to typical public roads, with grades up to 20%. These grades are common for unpaved mine access roads which are not intended for public use. These grades are also consistent with the grades for retained roads in the currently approved Reclamation Plan Amendment for the Permanente Quarry. The road is sloped toward the hillside, which directs stormwater to the inside of the road. Water flows either to the aggregate plant at Permanente Quarry to the north or Stevens Creek Quarry to the south, where it enters one of the existing stormwater management systems.

The utility road was constructed by placing a key at the toe of the fill slope. The key included excavating material from the toe of the fill area and backfilling it with compacted fill. Water was added to the fill to achieve optimal moisture content, and it was compacted with a vibratory sheep's foot roller. Once the key was constructed, the utility road was improved by cutting material from the uphill slope and placing compacted fill on the downhill slope above the key. The fill slope was cleared and grubbed, but the surface soil was not removed, except where the key was placed. The cut slopes vary, but they are generally steep at approximately 1:1 (45°), with cut heights are up to 30 feet. The fill slopes are also steep at approximately 1.2:1 (39°), with fill slopes up to 50 feet high. Internal mine roads are often constructed with cut and fill slopes in this range, and any erosion that occurs is managed by the site maintenance crews. A safety berm was

May 21, 2019 Talia Flagan Page 3 of 8

Utility Road Grading Plan and Geotechnical Analysis

constructed on the outside edge of the utility road, consistent with Mine Safety and Health Administration (MSHA) requirements and standard safety practices, which improves the safety of maintenance or utility worker use. This configuration consisting of a berm on the outside and a ditch on the inside is a preferred design for site roads, because it limits the potential for discharges to the environment.

A Stantec Certified Engineering Geologist (CEG) inspected the utility road in May 2019 to evaluate the lithology along the road cut. The inspection confirmed the road was constructed primarily in the Santa Clara Formation; however, the southern section (including C-C') was constructed in Franciscan Limestone and Greenstone. The limestone is not present at the two areas where a geotechnical assessment is required (see below). **Figures 4** and **5** show the Santa Clara Formation at the road cut at cross-section B-B' and Greenstone at the road cut at cross-section C-C', respectively. **Drawing 1** includes the cross-section locations, and the cross-sections are included as **Drawing 2**.

Figure 4 Road Cut at Cross-Section B-B'

Figure 5 Road Cut at Cross-Section C-C'

SURVEY DATA

Lehigh provided Stantec with survey data from before and after the road improvements. The pre-construction survey was performed in April 2007, and the existing conditions survey was performed in September 2018. These surfaces were used to create the grading plan and to create the cross-sections used to analyze the slope stability. Stantec believes the April 2007 survey was impacted by dense vegetation in the vicinity of the utility road, and the survey appears to present the top of vegetation in several areas rather than the ground surface. To compensate for these differences in elevation, Stantec adjusted the original ground topography in the cross-sections based on known facts. These include the extents of cutting and filling from the road improvement – the 2007 topography and 2018 topography should match outside this area. Also, aerial photographs available from Google Earth were used to determine the distances from the original road, key road, and current road edges and centerlines to confirm extents of disturbances. The 2007 topography, while showing the top of vegetation, likely represents the original slope, and the surface was lowered to match the extents of disturbance.

May 21, 2019 Talia Flagan Page 4 of 8

Utility Road Grading Plan and Geotechnical Analysis

PROPOSED GRADING

Stantec recommends grading the road to reduce fill slope gradients to comply with local rules and regulations. City and County grading regulations require slope gradients be 2h:1v, or the design be certified by a Certified Engineering Geologist. The grading design is based on a minimum 20-foot road width, which includes sufficient space for one-way travel, a ditch, and a berm. Road widths for retained roads, in the currently approved Reclamation Plan Amendment for the Permanente Quarry, vary and are as narrow as 12 feet. Wherever practical, the road will be wider than 20 feet to provide turn-off locations. The grading plan has an overall road gradient of approximately 12%, with short sections that exceed 20% gradient. These grades are consistent with the original utility road and other roads that will be retained during reclamation per the currently approved Reclamation Plan Amendment for the Permanente Quarry.

The road can be graded to 2h:1v slopes the entire length of the road, except for two areas as shown on **Drawing 1**. Both sections where steeper slopes are required are approximately 100 feet long. The grading for both areas includes narrowing the road width to 16 feet and increasing the slope gradient to the necessary slope that does not increase the disturbance area beyond the existing area. Narrowing the road to 16 feet allows the slope gradient to be decreased closer to the 2h:1v target, while maintaining sufficient road width for the potential traffic. The northern section requires a maximum gradient of 1.70h:1v, and the southern section requires a maximum gradient of 1.76h:1v. These gradients follow the pre-construction topography; therefore, the entire length of road will be graded to 2h:1v slopes or to pre-construction topography. This grading requires excavating and hauling away approximately 9,000 cubic yards of material. The material will be placed on the Permanente Quarry property in accordance with the current Reclamation Plan.

Cross-sections of the proposed utility road through a typical 2h:1v slope and the two areas requiring slope gradients steeper than 2h:1v are included as **Drawing 2**. These figures present the original topography based on the 2007 pre-improvement survey, current topography based on the September 2018 survey, and the design topography.

SLOPE STABILITY DISCUSSION

Lehigh is required to submit slope stability calculations pursuant to California Code of Regulations, Title 14, § 3704(f). This regulation applies to final cut slopes and requires a slope stability factor of safety suitable with the proposed end land use. As discussed above, the utility road will be retained following mine reclamation for internal site access, PG&E access, and emergency vehicle use. The road will not be open for public use.

SLOPE STABILITY EVALUATION

Stantec performed a geotechnical evaluation of the slope stability for the two sections where fill slopes must be steeper than 2h:1v. Stantec evaluated both the cut and fill slopes. The slope stability analyses were modeled using the software Slope-W® 2018 R2 version 9.1 by GeoStudio, released in 2018. The software used limit equilibrium on slices of potential failure surface to calculate factor of safety (FoS). The models are evaluated under static and pseudo-static conditions, with horizontal ground acceleration, using the Spencer method. The minimum acceptable factors of safety for the analyses are 1.3 for static conditions, and 1.0 for pseudo-static conditions based on mining industry standards. For the pseudo-static model conditions, a horizontal seismic coefficient of 0.15 times the force of gravity (g) was applied to the static condition models to

May 21, 2019 Talia Flagan Page 5 of 8

Utility Road Grading Plan and Geotechnical Analysis

be consistent with previous studies (Golder 2011) and to follow recommendations for earthquakes with magnitudes up to 8-1/4 (Seed 1982).

Site-specific geotechnical information on the backfill materials is available for the overburden fill, bedrock, and native soils. Strength parameters for the material have been established in previous geotechnical analyses of the Lehigh property and are based on laboratory testing, back-calculation, and published values for material properties (Golder 2011). These strength parameters are listed in **Table 1** below.

The fill material rock strength is consistent with the material strength parameters used for waste rock fill slope assessments at the Lehigh property (Golder 2011). Stantec feels the shear strength values are representative of the materials used for the fill, albeit conservative due to no consideration for cohesion, considering the existing fill slopes were placed at a gradient of approximately 39 degrees.

There is a thin layer of residual soil between the bedrock and fill material, and Stantec used material strength parameters for soils that are based on laboratory testing results and published strength values for Sandy Clay/Clayey Sand/Clayey Gravel/Silty Sand material. The laboratory results included values for cohesion; however, the stability analysis assumed a cohesionless material to be conservative. These strength values are representative of native soils above the Santa Clara Formation and have previously been used for slope assessments at the Lehigh property (Golder 2011).

The Santa Clara Formation is present in the road cut at cross-sections A-A' and B-B' and occurs as both fine-and coarse-grained materials. The fine-grained material at cross-section A-A' is primarily a medium to high plasticity clay with gravel, sand, and some silt. The coarse-grained material at cross-section B-B' is a well-graded gravel with clay and sand, with fine to coarse, rounded to sub-rounded gravels. Strength values for the Santa Clara Formation are provide by California Geological Survey for the Cupertino 7.5-minute Quadrangle (CGS 2002). Values for both "favorable bedding conditions" (coarse-grained) and "adverse bedding conditions" (fine -grained) were used in the stability analysis considering both are present in the project area. The unit weight for the Santa Clara Formation was assumed to be the same as the Greenstone and Limestone bedrock.

Weathered Greenstone and Limestone are present along the road cut at cross-section C-C'. Site specific geotechnical information is available for the Greenstone and Limestone rock types, and strength parameters for the material have been established in previous geotechnical analyses (Golder 2011 and Stantec 2019). These strength parameters are based on laboratory testing, back-calculation, rock mass rating (RMR) calculations, and back-analysis of landslide areas. The strength parameters, from RMR classification, were provided to estimate Mohr-Coulomb strength parameters. RocLab (1.0) free software from Roc Science were used to do the calculation. The calculations were based "General" application for failure envelope range. The disturbance factor of D = 0 was used.

May 21, 2019 Talia Flagan Page 6 of 8

Utility Road Grading Plan and Geotechnical Analysis

Table 1 Shear Strength Values

Material	Unit Weight (pcf)	Friction Angle (degrees)	Cohesion (psf)
Soil	120	30	200
Fill	125	35	0
Santa Clara (favorable bedding conditions)	165	33	550
Santa Clara (adverse bedding conditions)	165	24	820
Greenstone	165	23	1,400
Limestone	165	30	12,500

Stantec modeled the slope stability factors of safety for static and pseudo-static conditions using Slope/W 2012 (Version 8.14) software. Slope/W performs a two-dimensional, limit-equilibrium analysis to calculate the factor of safety. The pseudo-static analysis used a seismic coefficient of 0.15, which is consistent with previous analyses at the Lehigh property (Golder 2011).

The slope stability results identify the minimum factors of safety for each analysis, and these results are summarized in **Table 2** below and the model reports are included in **Attachment 1**. The results indicate that the cut and fill slopes are stable (FOS>1.0) during both the static and pseudo-static conditions. There is no infrastructure or any sort of facility below the road that can be impacted by potential slope movements. Stantec recognizes that the location of the pre-construction topography is approximate, and a sensitivity analysis was performed to assess the fill slope stability if the entire road bench is fill material. This sensitivity demonstrates that the slope is stable in this unlikely scenario. Stantec also recognizes that the strength of the Santa Clara Formation may not be uniform along the road cut, and a sensitivity analysis was performed using published strengths for fine-grained sections of the formation with "adverse bedding conditions" (CGS 2002). The sensitivity also demonstrates that the slope is stable if there is fine-grained Santa Clara Formation present; see **Attachment 1**.

Table 2 Slope Stability Results

Section	Slope	Static FOS	Pseudo-Static FOS
A-A'	Cut Slope (coarse-grained)	1.88	1.46
	Cut Slope (fine-grained)	1.87	1.41
	Fill Slope	2.06	1.52
B-B'	Cut Slope (coarse-grained)	1.87	1.45
	Cut Slope (fine-grained)	1.88	1.45
	Fill Slope	1.93	1.52
C-C'	Cut Slope	2.86	2.44
	Fill Slope	2.67	1.94

May 21, 2019 Talia Flagan Page 7 of 8

Utility Road Grading Plan and Geotechnical Analysis

Recommendations for Future Actions

Stantec recommends several actions to improve the functionality of the road and minimize erosion and maintenance requirements. Foremost, the slopes should continue to be seeded to establish vegetation, which will reduce erosion. Similar to what was completed in 2018, the seeding should occur before each rainy season, as necessary.

Stantec also recommends maintaining the road and repairing any areas where erosion may occur.

Closure

This report has been prepared for Lehigh Hanson to provide a geotechnical evaluation of proposed grading activities to further improve to the existing utility road based on site observations and provided data. As mutual protection to Lehigh, the public, and Stantec, this memorandum and its figures are submitted for exclusive use by Lehigh Hanson. We specifically disclaim any responsibility for losses or damages incurred through the use of our work for a purpose other than as described in this memorandum. Our memorandum and recommendations should not be reproduced, except in whole, without our express written permission.

Stantec Consulting Services Inc.

Paul Kos, P.E.

Senior Geological Engineer

(720) 889-6122

Paul.Kos@stantec.com

Jennifer Van Pelt, CEG, PG

Engineering Geologist

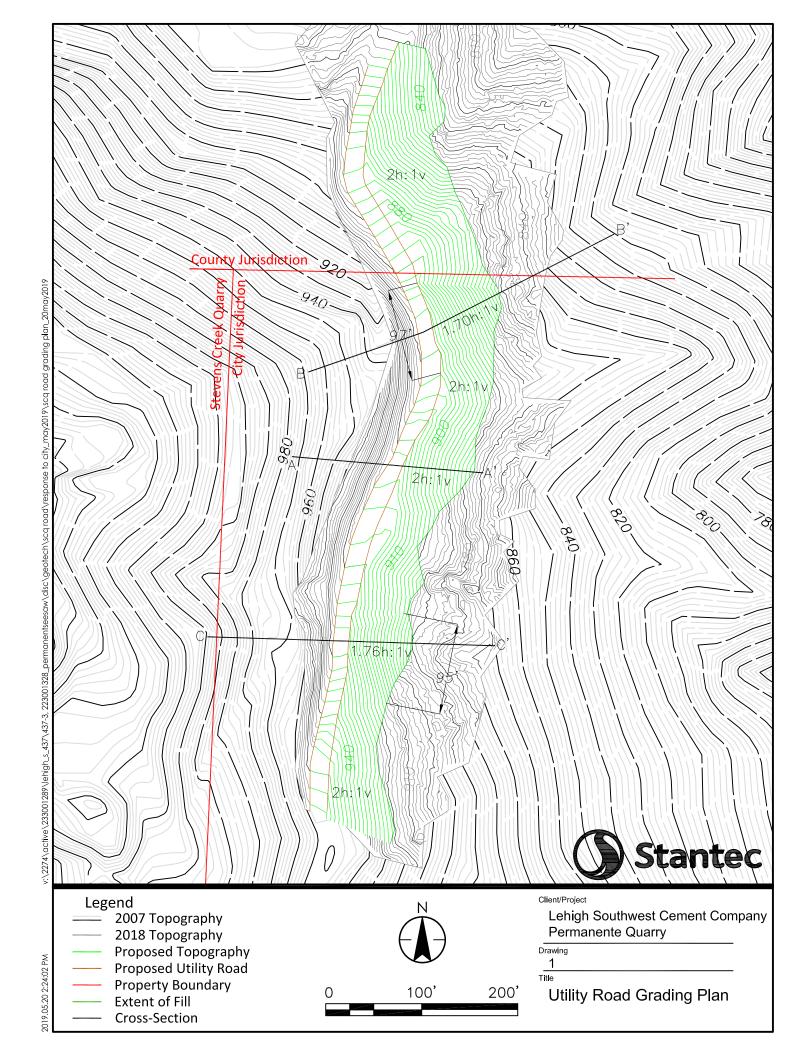
(925) 627-4565

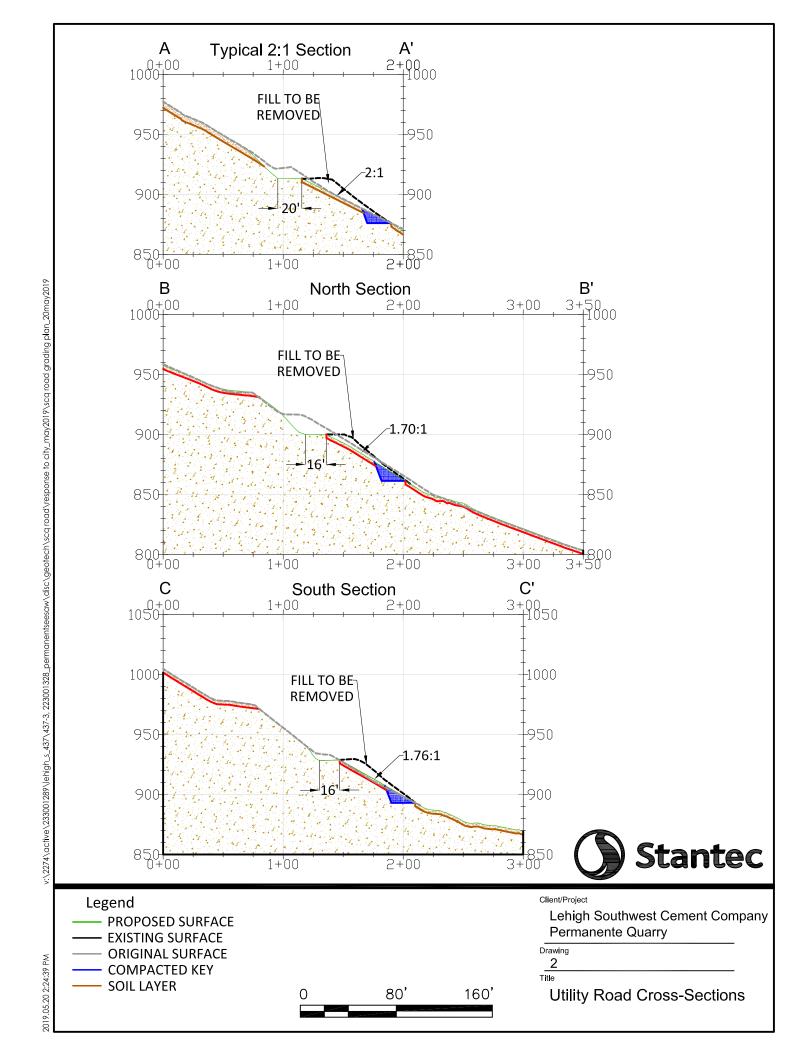
ENGINEERING

JENNIFER

Jennifer.VanPelt@stantec.com

May 21, 2019 Talia Flagan Page 8 of 8


Utility Road Grading Plan and Geotechnical Analysis


Attachments:

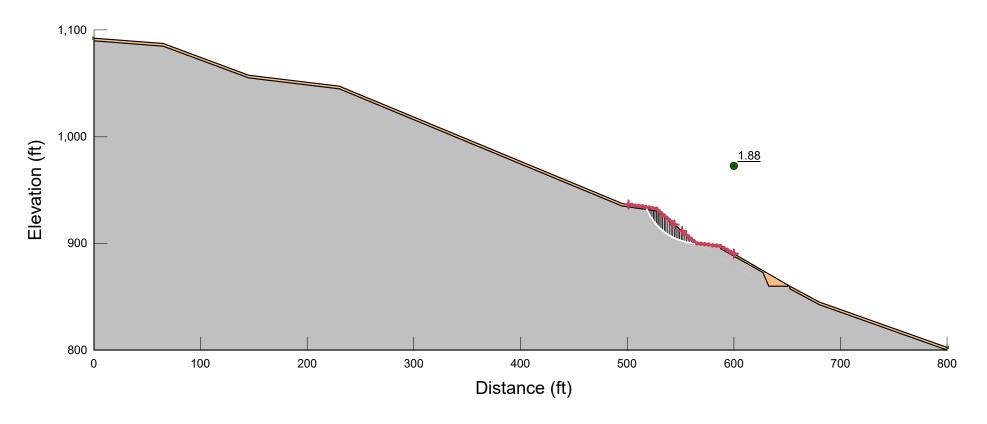
Drawing 1 Utility Road Grading Plan Drawing 2 Utility Road Cross-Sections Slope Stability Analysis Results

References:

- CGS, 2002. Seismic Hazard Zone Report for the Cupertino 7.5-Minute Quadrangle, Santa Clara County, California. Seismic Hazard Zone Report 068. Department of Conservation, California Geological Survey. 2002.
- Golder, 2011. Geotechnical Evaluations and Design Recommendations (Revised), Permanente Quarry Reclamation Plan Update, Santa Clara County, California, Revision 1.1_12-7-11. November 2011.
- Seed, H. B., 1979. "Considerations in the Earthquake-Resistant Design of Earth and Rockfill Dams," Geotechnique, vol. 29, No. 3, pp. 215-263.
- Stantec, 2019. North Highwall Reserve Geotechnical Evaluation, Permanente Quarry. Prepared for Lehigh Southwest Cement. April 5, 2019.

May 21, 2019

Utility Road Grading Plan and Geotechnical Analysis

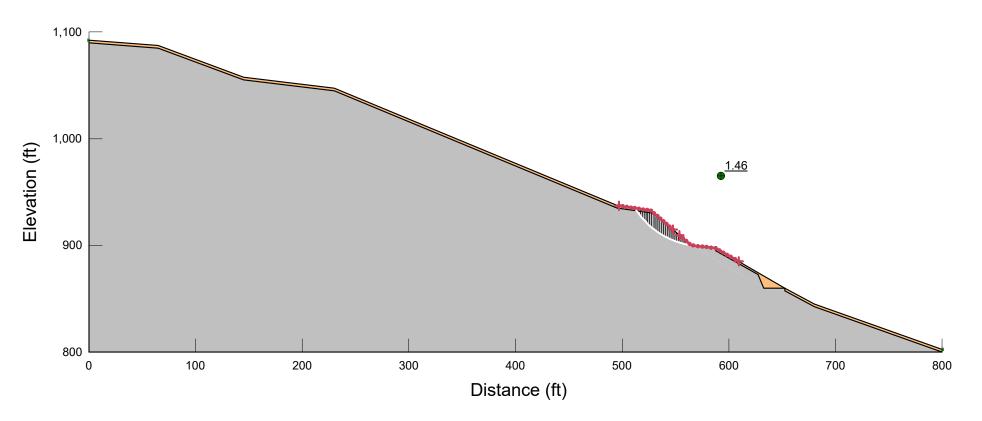

Attachment 1 Slope Stability Analysis Results

Date: 05/20/2019

File Name: 233001328 SCQ Road Section A (20190516).gsz

Parent: 1. Cut Slope (Local) Name: 1a. Static Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

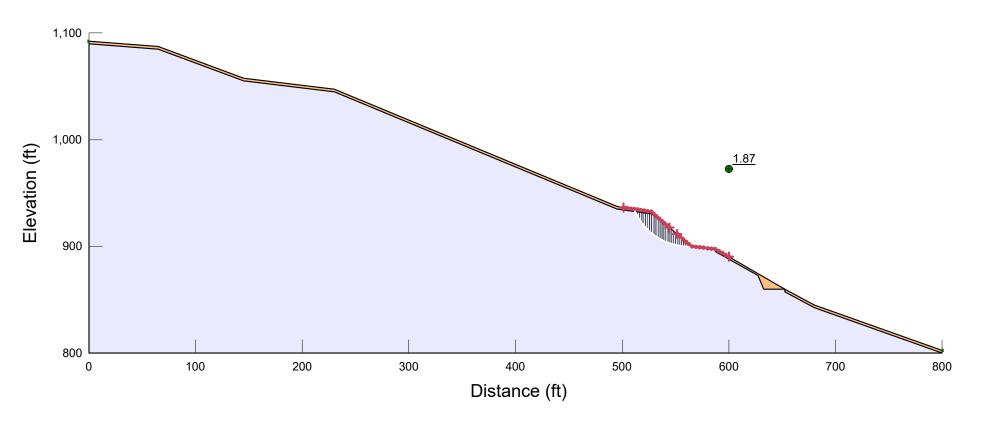


Date: 05/20/2019

File Name: 233001328 SCQ Road Section A (20190516).gsz

Parent: 1. Cut Slope (Local) Name: 1b. Pseudostatic Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

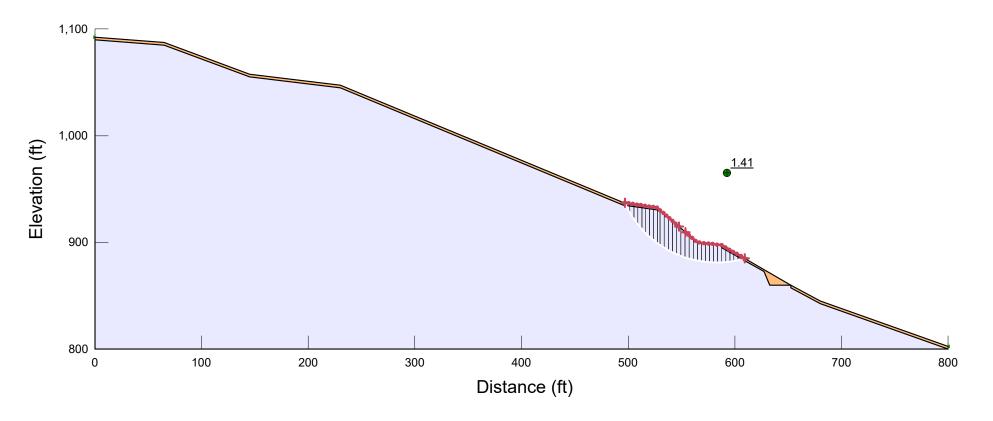


Date: 05/20/2019

File Name: 233001328 SCQ Road Section A (20190516).gsz

Parent: 1. Cut Slope (Local) Name: 1c. Static Analysis (Sensitivity)

			Weight (pcf)	Cohesion' (psf)	(,
R	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara Sensitivity)	Mohr-Coulomb	165	820	24



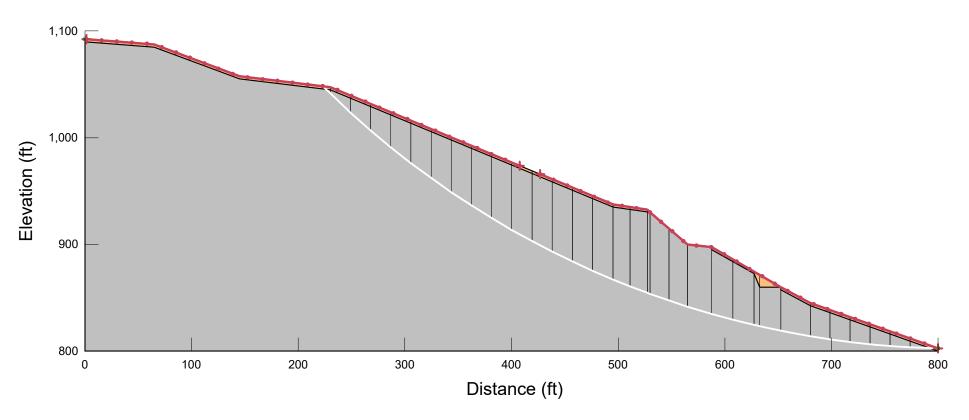
Date: 05/20/2019

File Name: 233001328 SCQ Road Section A (20190516).gsz

Parent: 1. Cut Slope (Local) Name: 1d. Pseudostatic Analysis (Sensitivity)

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara (Sensitivity)	Mohr-Coulomb	165	820	24

Date: 05/20/2019


File Name: 233001328 SCQ Road Section A (20190516).gsz

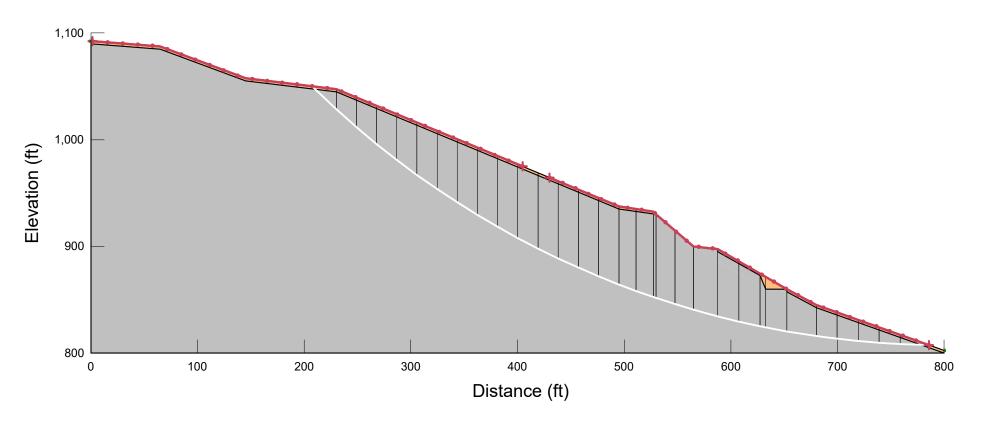
Parent: 2. Cut Slope (Global) Name: 2a. Static Analysis

Factor of Safety: 1.78

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

<u>1.78</u>

Date: 05/20/2019

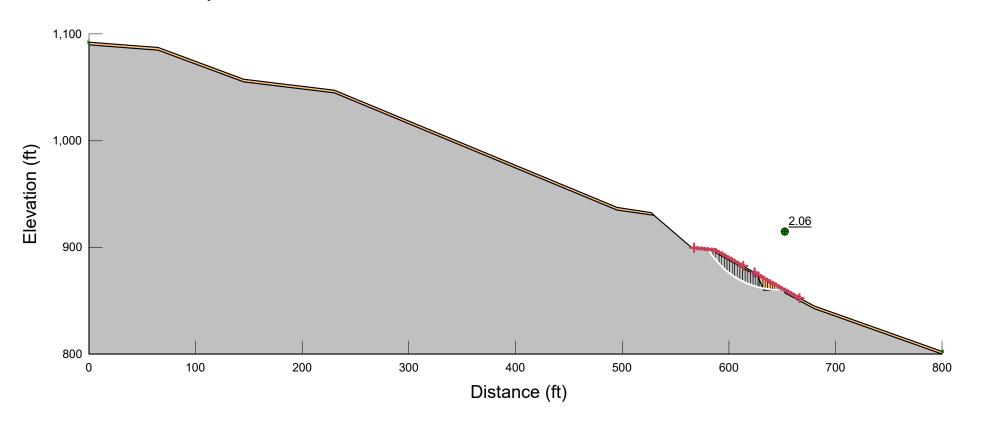

File Name: 233001328 SCQ Road Section A (20190516).gsz

Parent: 2. Cut Slope (Global) Name: 2b. Pseudostatic Analysis

Factor of Safety: 1.26

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

1.26

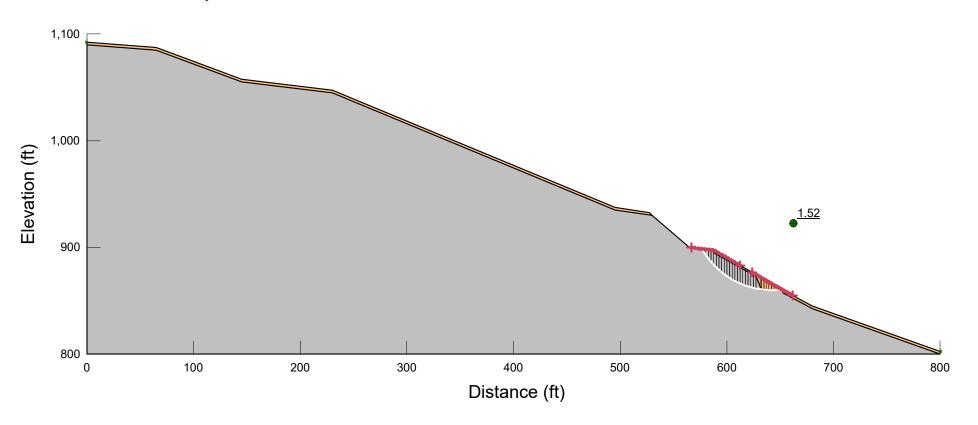


Title: Stevens Creek Road (Section A) Date: 05/20/2019

File Name: 233001328 SCQ Road Section A (20190516).gsz

Parent: 3. Fill Slope Name: 3a. Static Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

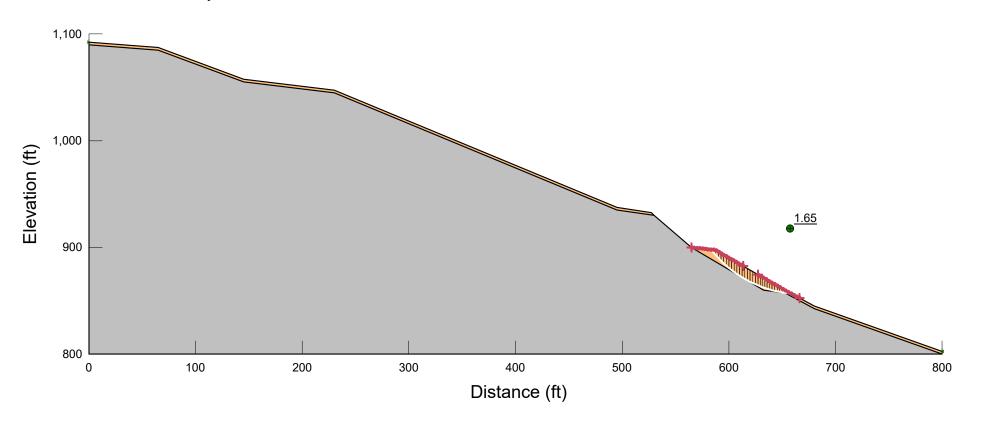


Date: 05/20/2019

File Name: 233001328 SCQ Road Section A (20190516).gsz

Parent: 3. Fill Slope Name: 3b. Pseudostatic Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

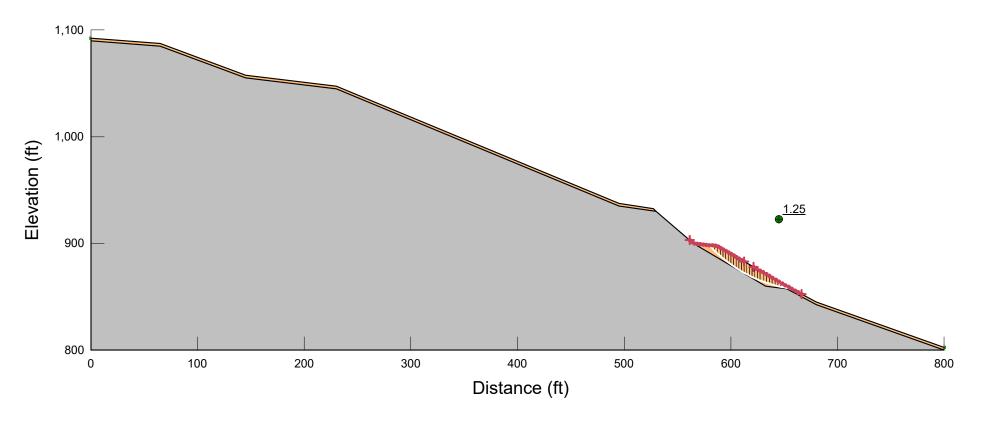


Date: 05/20/2019

File Name: 233001328 SCQ Road Section A (20190516).gsz

Parent: 4. Fill Slope (Sensitivity) Name: 4a. Static Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

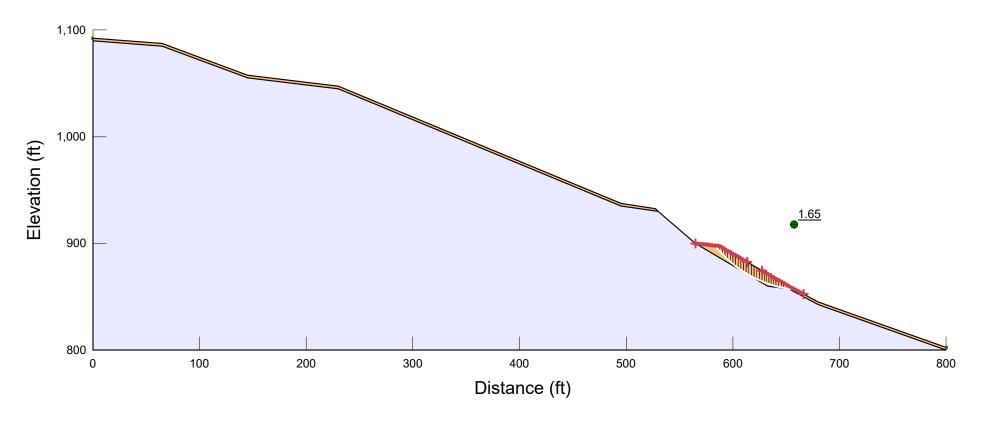


Date: 05/20/2019

File Name: 233001328 SCQ Road Section A (20190516).gsz

Parent: 4. Fill Slope (Sensitivity) Name: 4b. Pseudostatic Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

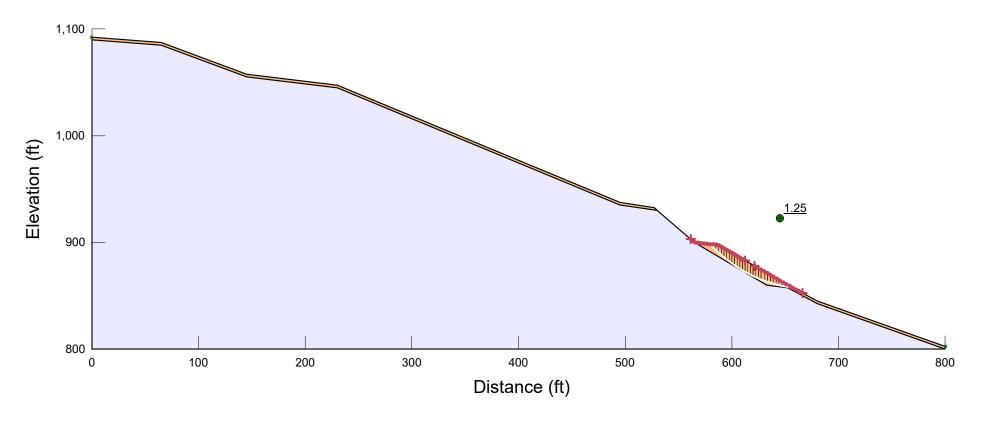


Date: 05/20/2019

File Name: 233001328 SCQ Road Section A (20190516).gsz

Parent: 5. Santa Clara (Sensitivity) Name: 5a. Static Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara (Sensitivity)	Mohr-Coulomb	165	820	24

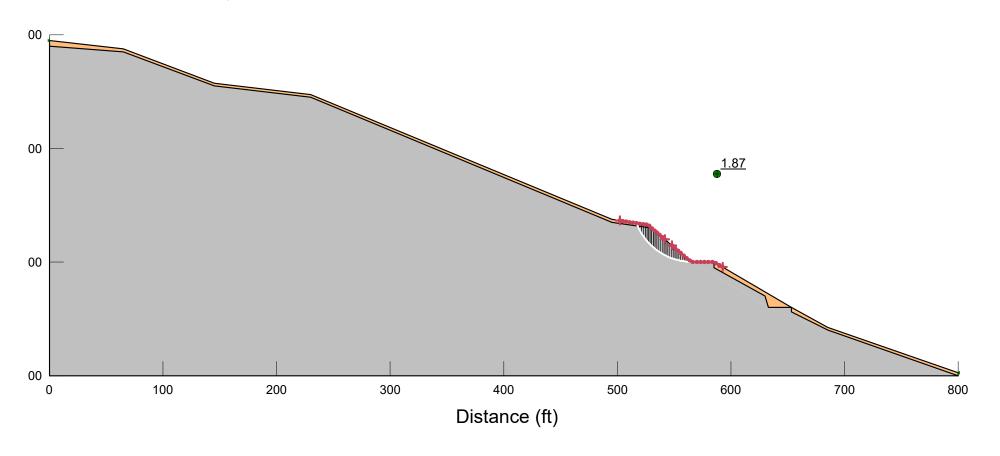


Date: 05/20/2019

File Name: 233001328 SCQ Road Section A (20190516).gsz

Parent: 5. Santa Clara (Sensitivity) Name: 5b. Pseudostatic Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara (Sensitivity)	Mohr-Coulomb	165	820	24

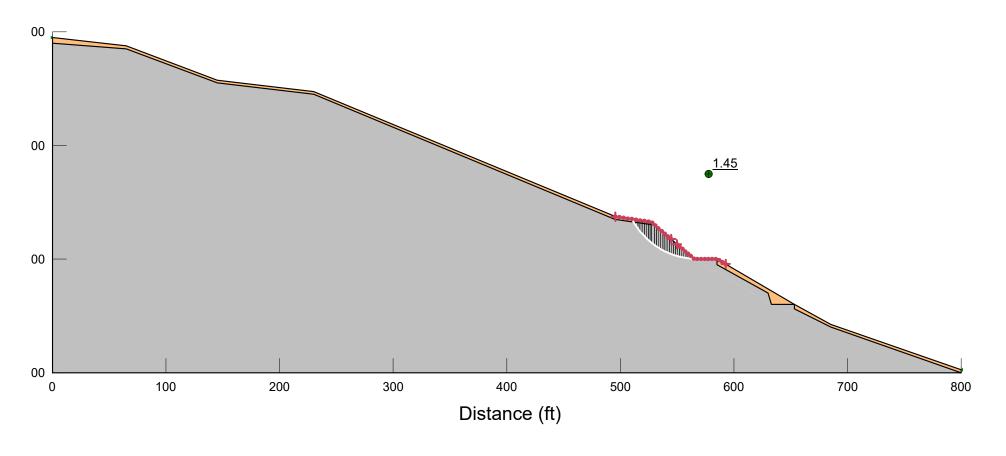


Date: 05/16/2019

File Name: 233001328 SCQ Road Section B (20190516).gsz

Parent: 1. Cut Slope (Local) Name: 1a. Static Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

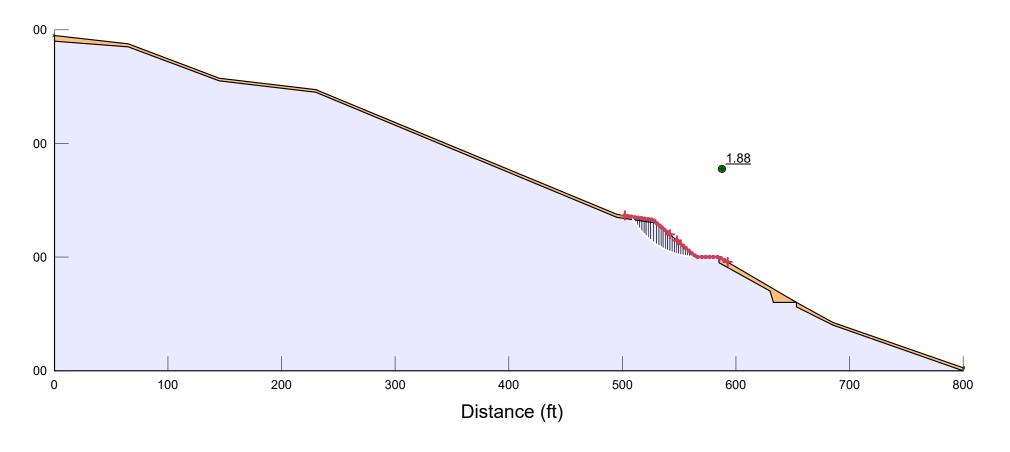

Date: 05/16/2019

File Name: 233001328 SCQ Road Section B (20190516).gsz

Parent: 1. Cut Slope (Local)

Name: 1b. Pseudostatic Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

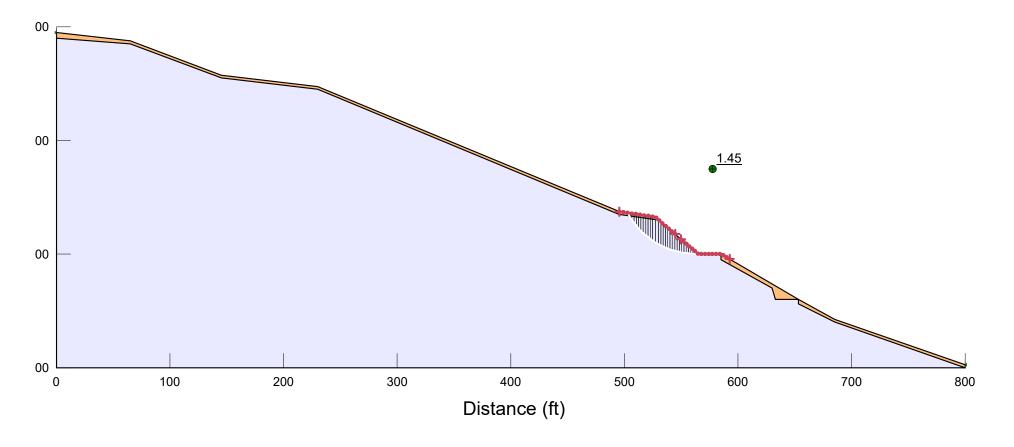

Date: 05/20/2019

File Name: 233001328 SCQ Road Section B (20190516).gsz

Parent: 1. Cut Slope (Local)

Name: 1c. Static Analysis (Sensitivity)

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara (Sensitivity)	Mohr-Coulomb	165	820	24

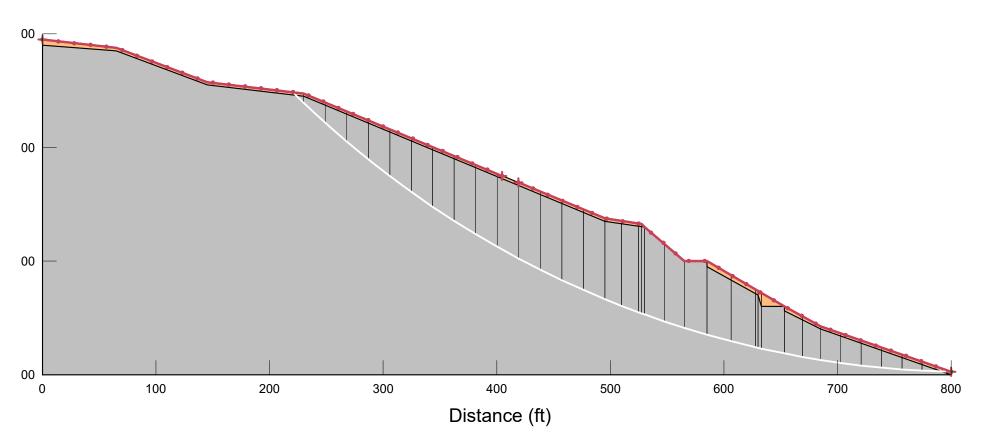

Date: 05/20/2019

File Name: 233001328 SCQ Road Section B (20190516).gsz

Parent: 1. Cut Slope (Local)

Name: 1d. Pseudostatic Analysis (Sensitivity)

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara (Sensitivity)	Mohr-Coulomb	165	820	24

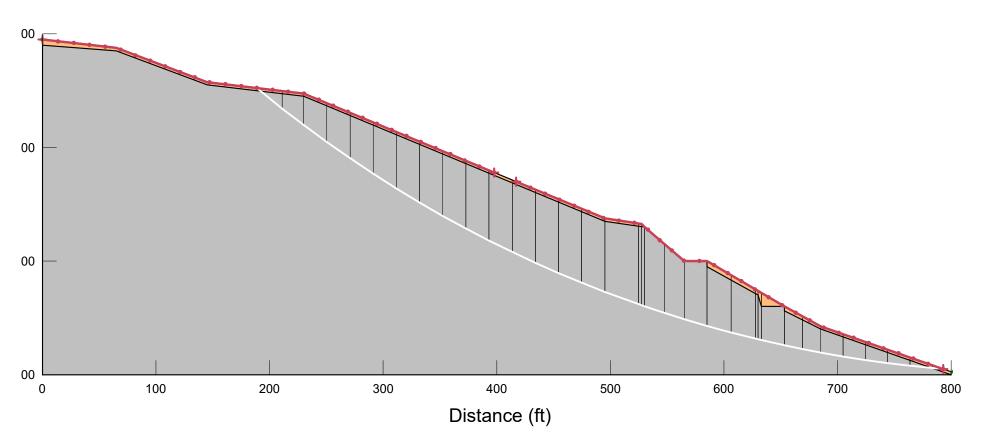

Date: 05/16/2019

File Name: 233001328 SCQ Road Section B (20190516).gsz

Parent: 2. Cut Slope (Global) Name: 2a. Static Analysis

1.78

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33


Date: 05/16/2019

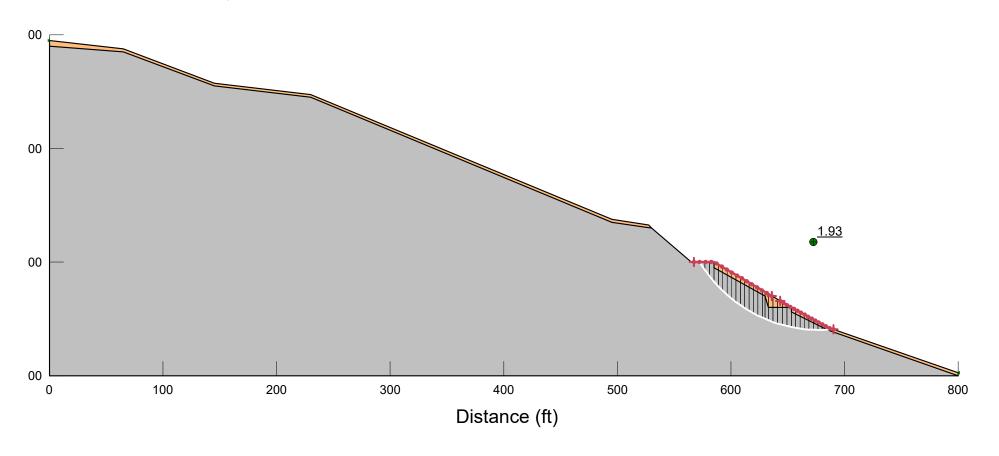
File Name: 233001328 SCQ Road Section B (20190516).gsz

Parent: 2. Cut Slope (Global) Name: 2b. Pseudostatic Analysis

Factor of Safety: 1.26

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

1.26

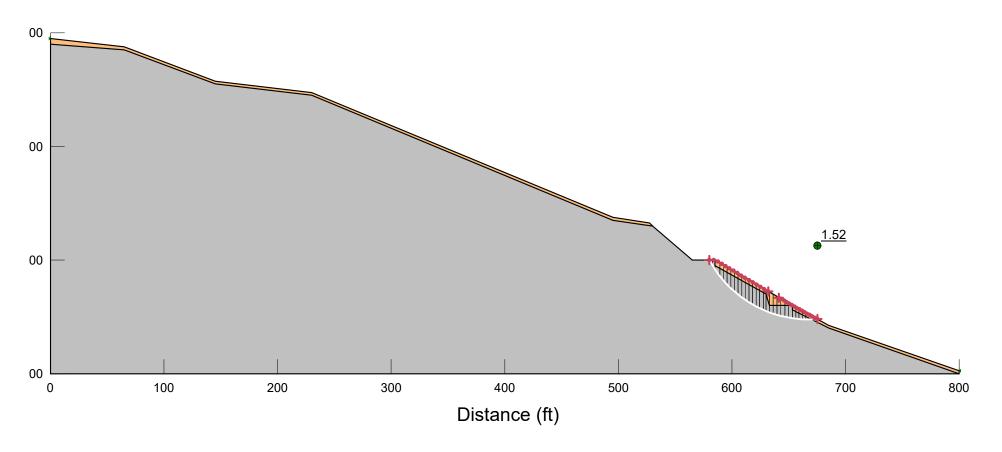

Date: 05/16/2019

File Name: 233001328 SCQ Road Section B (20190516).gsz

Parent: 3. Fill Slope

Name: 3a. Static Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

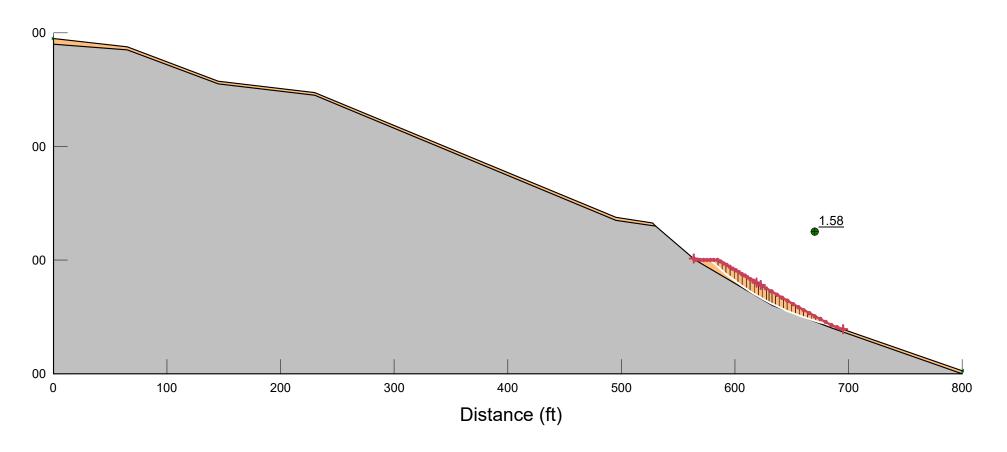

Date: 05/16/2019

File Name: 233001328 SCQ Road Section B (20190516).gsz

Parent: 3. Fill Slope

Name: 3b. Pseudostatic Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

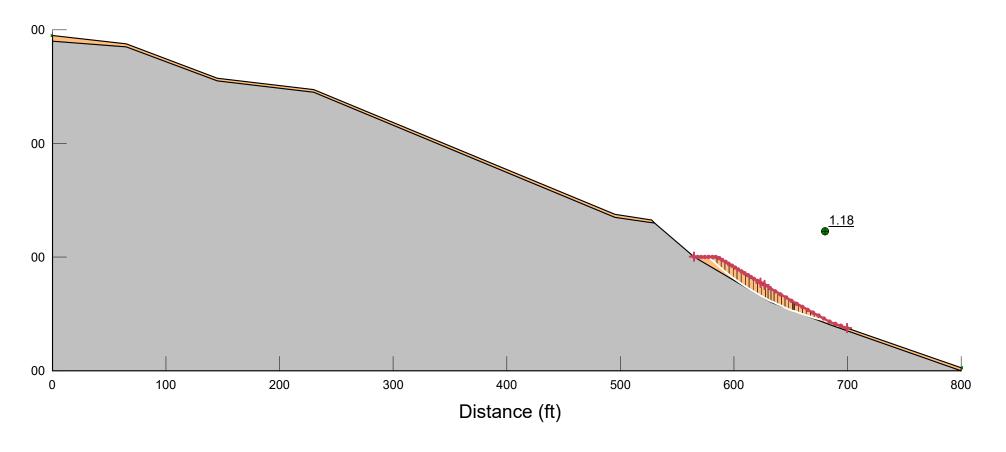

Date: 05/16/2019

File Name: 233001328 SCQ Road Section B (20190516).gsz

Parent: 4. Fill Slope (Sensitivity)

Name: 4a. Static Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

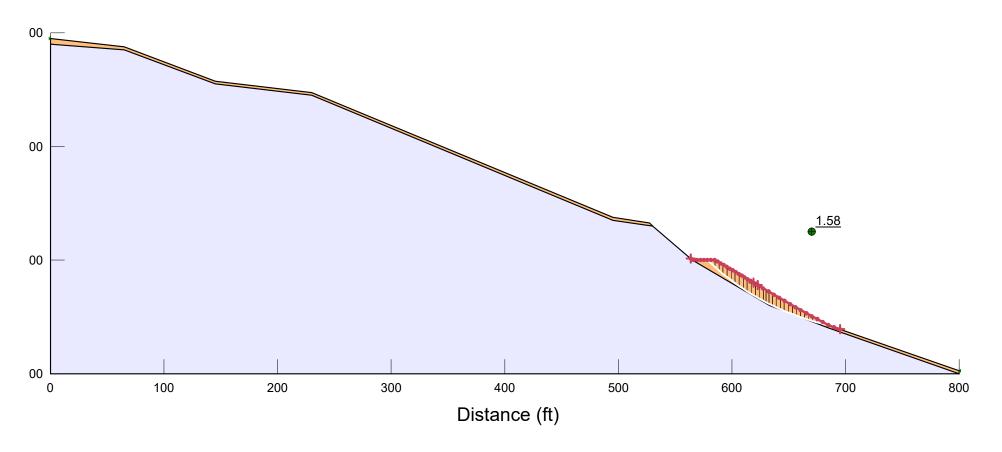


Date: 05/16/2019

File Name: 233001328 SCQ Road Section B (20190516).gsz

Parent: 4. Fill Slope (Sensitivity) Name: 4b. Pseudostatic Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara	Mohr-Coulomb	165	550	33

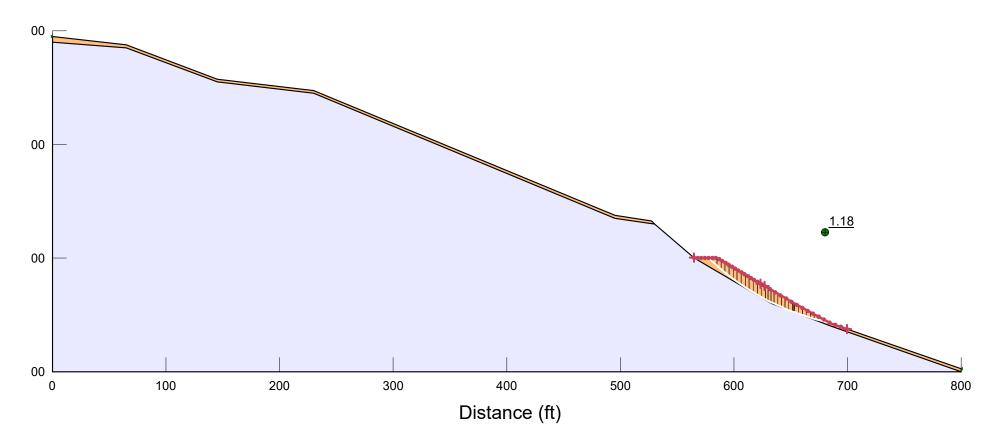

Date: 05/20/2019

File Name: 233001328 SCQ Road Section B (20190516).gsz

Parent: 5. Santa Clara (Sensitivity)

Name: 5a. Static Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara (Sensitivity)	Mohr-Coulomb	165	820	24



Date: 05/20/2019

File Name: 233001328 SCQ Road Section B (20190516).gsz

Parent: 5. Santa Clara (Sensitivity) Name: 5b. Pseudostatic Analysis

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Residual Soil	Mohr-Coulomb	120	200	30
	Santa Clara (Sensitivity)	Mohr-Coulomb	165	820	24

Date: 05/21/2019

File Name: 233001328 SCQ Road Section C (20190521).gsz

Parent: 1. Cut Slope (Local) Name: 1a. Static Analysis

Factor of Safety: 2.86

Elevation (ft)	1,100				2.86		
	800						
	(100	200	300	400	500	600
				Distance (ft)		

Color Name

Unit Weight

(pcf)

Model

Residual Soil Mohr-Coulomb 120

Cohesion' Phi' (°)

200

23

Date: 05/21/2019

File Name: 233001328 SCQ Road Section C (20190521).gsz

Parent: 1. Cut Slope (Local) Name: 1b. Pseudostatic Analysis

Factor of Safety: 2.44

Elevation (ft)	1,100				2.44		
	800						
	(100	200	300	400	500	600
				Distance ((ft)		

Color Name

Unit Weight

(pcf)

Model

Residual Soil Mohr-Coulomb 120

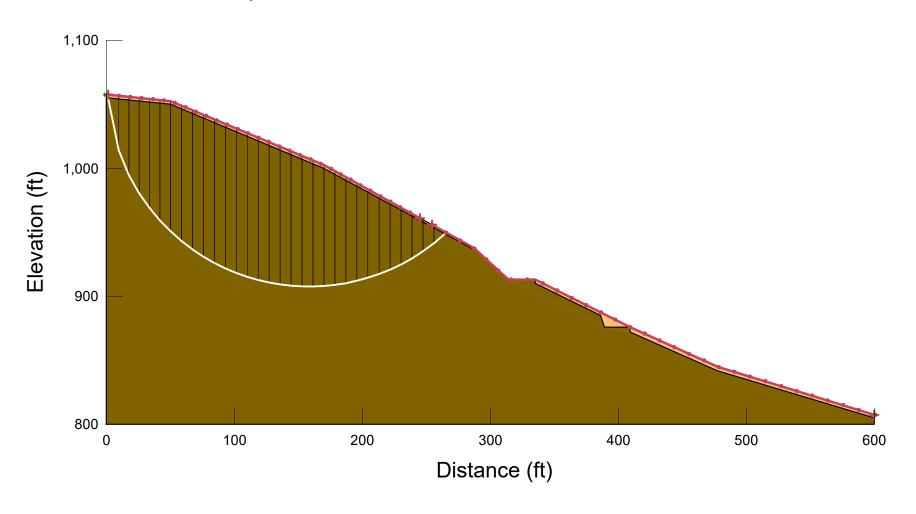
Mohr-Coulomb 165

Cohesion' Phi' (°)

200

23

Date: 05/21/2019


File Name: 233001328 SCQ Road Section C (20190521).gsz

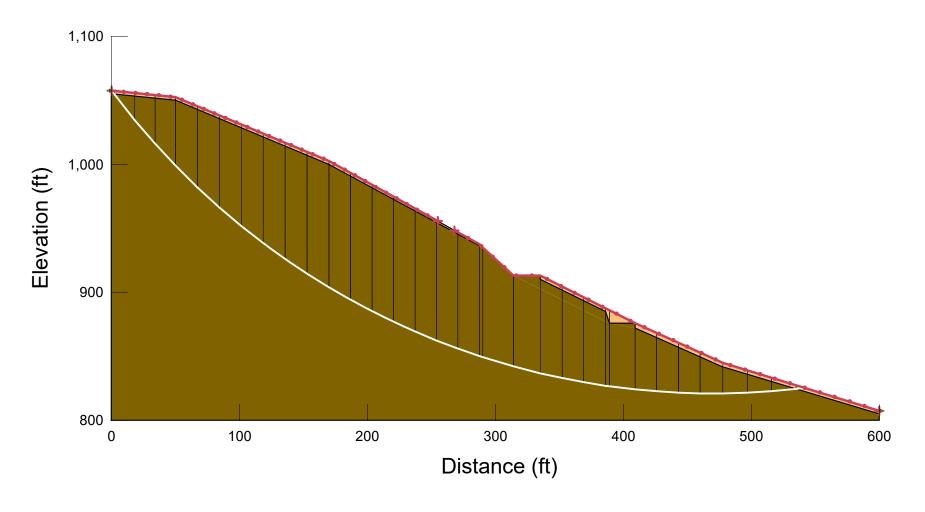
Parent: 2. Cut Slope (Global) Name: 2a. Static Analysis

Factor of Safety: 1.28

Co	olor	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
		Greenstone	Mohr-Coulomb	165	1,400	23
		Residual Soil	Mohr-Coulomb	120	200	30

1.28

Date: 05/21/2019


File Name: 233001328 SCQ Road Section C (20190521).gsz

Parent: 2. Cut Slope (Global) Name: 2b. Pseudostatic Analysis

Factor of Safety: 1.02

Color Name		Model Unit Weight (pcf)		Cohesion' (psf)	Phi' (°)
	Greenstone	Mohr-Coulomb	165	1,400	23
	Residual Soil	Mohr-Coulomb	120	200	30

1.02

Date: 05/21/2019

File Name: 233001328 SCQ Road Section C (20190521).gsz

Parent: 3. Fill Slope

Name: 3a. Static Analysis

Factor of Safety: 2.67

	1,100						
Elevation (ft)	1,000 900				2.67		
	800	100			400	500	
	C	100	200	300 Distance (ft)	400	500	600

Color Name

Unit Weight

(pcf)

Model

Residual Soil Mohr-Coulomb 120

Cohesion' Phi' (°)

1,400

200

23

Date: 05/21/2019

File Name: 233001328 SCQ Road Section C (20190521).gsz

Parent: 3. Fill Slope

Name: 3b. Pseudostatic Analysis

Factor of Safety: 1.94

1,100				1.94		
800						
(100	200	300	400	500	600
			Distance (ft)			

Color Name

Unit Weight

(pcf)

Model

Residual Soil Mohr-Coulomb 120

Cohesion' Phi' (°)

200

23

Date: 05/21/2019

File Name: 233001328 SCQ Road Section C (20190521).gsz

Parent: 4. Fill Slope (Sensitivity)

Name: 4a. Static Analysis

Factor of Safety: 1.90

Elevation (ft)	1,100					1.90	
	800						
	(100	200	300	400	500	600
				Distance	e (ft)		

Color Name

Unit Weight

(pcf)

Model

Residual Soil Mohr-Coulomb 120

Cohesion' Phi' (°)

200

23

Date: 05/21/2019

File Name: 233001328 SCQ Road Section C (20190521).gsz

Parent: 4. Fill Slope (Sensitivity) Name: 4b. Pseudostatic Analysis

Factor of Safety: 1.38

Elevation (ft)	1,100				1.	38	
	800						
	(100	200	300	400	500	600
				Distance	(ft)		

Color Name

Unit Weight

(pcf)

Model

Residual Soil Mohr-Coulomb 120

Mohr-Coulomb 165

Cohesion' Phi' (°)

200

23