

LEGEND

IMPERVIOUS AREA

PERVIOUS AREA

AREA TAKEOFF

PERVIOUS AREA: 667SF IMPERVIOUS AREA: 1,320SF TOTAL AREA: 1,987SF

| SANDIS | STANDIS | STANDIS | SCALE: 1"=20" | DRAWING NO: 1 |

POST DEVELOPMENT IMPERVIOUS AREA EXHIBIT

PATRICIA DIAZ **GRONWALL LANE** LOS ALTOS

2

CALIFORNIA OF 2 SHEETS

Drainage Summary Table - Gronwall Lane									
Drainaga Araa	TOTAL AREA		IMPERVIOUS AREA		PERVIOUS AREA				
Drainage Area	sq. ft.	Ac.	sq. ft.	Ac.	sq. ft.	Ac.			
Pre Development	1,987	0.05	0	0.00	1,987	0.05			
Post Development	1,987	0.05	1,320	0.03	667	0.02			

CALCULATION OF WEIGHTED "C", Cw

The following equation is used to compute the weighted "c":

$$C_w = \frac{C_a A_a + C_b A_b + C_l A_l}{A_T}$$

C_w = Weighted runoff coefficient for drainage area A

C_i = Impervious Area Runoff Coefficient (c varies, see below)

C_p = Pervious Area Runoff coefficient (c varies, see below)

 A_i = Impervious Drainage Area (acres) A_p = Pervious Drainage Area (acres)

A_T = Total Drainage Area (acres)

Site Pre-Development Weighted "0	C"		
Pervious Area =	0.05 ac	c = 0.30	
Impervious Area =	0.00 ac	c = 0.90	
Total Area =	0.05 ac		
C _{w(pre)} = 0.30			

Site Post-Development Weighted	'C"		
Landscape Area =	0.02 ac	c = 0.30	
Impervious Area =	0.03 ac	c = 0.90	
Total Area =	0.05 ac		
$C_{w(post)} = 0.70$			

CALCULATION OF RAINFALL INTENSITY, i

i = Intensity (in/hr) based on Santa Clara County's IDF Curve

TC = Time of Concentration (minutes), assumed to be 10 mins

Calculation of 10-Year Rainfall Intensity

 TC_{pre} = 10.00 minutes TC_{post} = 10.00 minutes $i_{10year(pre)}$ 1.70 in/hr $i_{10year(post)}$ 1.70 in/hr

CALCULATION OF 10-YEAR PEAK FLOW

Use the Rational Equation for Peak Flow Calcuation:

$$Q = C_w * i * A_t$$

Q = Peak Flow (cfs) for drainage area "A"

Cw = Weighted runoff coefficient for drainage area A

i = Intensity (in/hr) for the given design frequency and storm duration per Santa

Clara County Design Criteria IDF Curves.

 A_T = Total Drainage Area (acres)

10-Year Pre-Development Rainfall Peak Flow

 $C_{w} = 0.30$

i = 1.7 in/hr $A_T = 0.05 \text{ acres}$

 $Q_{pre-10year} = 0.3 * 1.7 * 0.05$ 0.02 cfs

10-Year Post-Development Rainfall Peak Flow

 $C_{w} = 0.70$

i = 1.7 in/hr $A_T = 0.05 \text{ acres}$

 $Q_{post-10year} = 0.7 * 1.7 * 0.05$ 0.05 cfs

Figure B-5: IDF for M.A.P. of 20 Inches

8/14/2007 B-6