

MH engineering Co.

16075 Vineyard Blvd. Morgan Hill, CA 95037 (408) 779-7381 (408) 226-5712 Fax

> Preliminary Storm Water Control Plan Hicks Land, LLC (APN 575-11-009 & 024) 216131 Hicks Road, Los Gatos MHE 217091 June 21, 2022

Attachments:

- Clean Water Questionnaire
- Drainage Map (11x17)
- Storm water management plan (24x36)
- Hydrology (Peak Management)

MH engineering Co.

Project Description:

This 23.95-acre parcel is located along the southwest side of Hicks Road. Guadalupe reservoir is located downhill on the opposite side of this County maintained road. A small parcel of land (0.21ac) was recently purchased from Santa Clara Valley Water to create a legal access into the property. Site lays in the northeasterly direction with average slopes in the range of 35%. Hicks Road intercepts majority of the existing runoff from this parcel with culvert conveyance into natural swales into the reservoir.

Applicant has proposed to demolish two existing structures and build a primary residence with a detached ADU. Existing oil & screen driveway and turn-around fronting existing house will be re-graded to meet CalFire & Central Fire standards.

Low Impact Site Design Measures, Source Control Measures & Stormwater Treatment Measures: Project lies within San Francisco Bay Regional Water Quality Control Board, Region2

Project has provided Stormwater Management Plan Checklist and applicable calculations per the Stormwater Management Guidance Manual for Low Impact Development and Post-Construction Requirements. Project shall meet the applicable requirements of the Stormwater Management Guidance Manual for Low Impact Development and Post-Construction Requirements:

Site Design Measures

Following design measures are incorporated into the site layout:

- site layout is conformed along natural landforms
- grading has been optimized
- hardscape is minimized within the scope of project
- structures have been clustered

Source Control Measures:

- roof runoff will discharge on splash-blocks and directed onto vegetated areas
- runoff from walkways and other private hardscape is generally directed onto vegetated areas

• portion of the driveway below fire truck turn-around will convey runoff into vegetated swale lined with loose rocks for filtration of storm water

Stormwater Treatment Measures:

Roof and yard drainage from proposed buildings will sheet flow through landscaped areas to provide storm water pre-treatment before conveying into proposed SCMs (Rain-tanks). Pre-treated water in both rain-tanks will be retained at 100% with zero release for all storm events.

Hydrology (Peak Management):

This parcel is tributary to Guadalupe Reservoir. All collection from the developed portion of the site shall route through proposed SCMs (rain-tank and vegetated detention basin) for water quality treatment and peak management to Pre-Project levels.

Routing model has been setup using SCS method. Hydrographs for post-project events are routed through the BMP storage. Model includes a storage structure and outflow structure. Outflow structure is setup with fixed diameter orifice at fixed elevation. Storage volumes are entered into the file at incremental elevations. A stage/storage rating curve for each BMP is presented at the beginning of each routing.

During the routing, a post project hydrograph of certain rainfall event flows through the SCM, stores the difference of post versus pre project volume and releases at controlled discharge. Orifice size is fine-tuned to keep the release peak discharges at or below pre-project levels.

A typical routing hydrograph graph indicates time increment along the x-axis and inflow runoff along the y-axis. Blue hatched area on the graph between two superimposed curves shows the total volume stored during the full routing. Peak of the outflow hydrograph in red color indicates peak discharge from the BMP with time to peak hour information.

SCM Layout Details and System Functionality:

Both SCMs are proposed on private property to be owned and maintained by homeowners.

SCM#1 underground Rain-Tank 'A' consists of 72 double stacked units (1.34x2.25'wide x1.44' high). This treatment/peak management SCM is located under the turn-around area fronting garages. Total storage volume proposed= 751cf

SCM#2 underground Rain-Tank 'B' is identical to Tank 'A' consisting of 72 double stacked units (1.34x2.25'wide x1.44' high). This treatment/peak management SCM is located under the natural terrain west of the main house. A portion of the treated roof and yard capture will be conveyed into this tank. Total storage volume proposed= 751cf

DMA (A2-Post) Routing into Tank 'A':

Half of the main house roof drainage and ADU will be conveyed into SCM#1 (Rain-Tank 'A'). Fire truck turnaround and upper portion of driveway will percolate through the permeable pavers, but any excess water will be captured with the proposed catch basin along the driveway at the easterly curb return and piped back into the tank. Per hydrology study routing results, there will full retention of all storm events with zero release out of the SCM. Proposed 8" Ø drainpipe is for an emergency overflow into the 12" culvert. Full storage volume in this tank will infiltrate into the native soils under 48 hours using the lowest percolation rate of 3.24in/hr provided by the soils engineer, which is further reduced by factor of safety 2.

Routing Summary DMA (A2-Post):

Event/Post Project Q /Routed Release/ SCM Storage Elev. 2yr/0.21/0.00/708.74 10yr/0.34/0.00/709.94 25yr/0.41/0.00/710.66 100yr/0.47/0.00/711.12

DMA (A3-Post) Routing into Tank 'B':

The westerly half of main house roof drainage and minor surrounding hardscape will be conveyed into SCM#2. Per hydrology study routing results, there will be full retention of all storm events with zero release. Full storage volume in this tank will infiltrate into the native soils under 48 hours using the lowest percolation rate of 3.24in/hr provided by the soils engineer, which is further reduced by factor of safety 2.

Routing Summary DMA (A3-Post):

Event/Post Project Q /Routed Release/ SCM Storage Elev. 2yr/0.18/0.00/703.08 10yr/0.29/0.00/704.19 25yr/0.36/0.00/704.84 100yr/0.41/0.00/705.31

Overall Site Mitigation Summary:

Project will fully mitigate the development by reducing post-project flows to at or below pre-project levels per summary below:

Pre-Project Peak Qs		Post Project Peak Qs	
Event	A1 Pre-Project Q	A1a + A1b + A2routed F	Release + A3 routed Release
2yr	3.38	2.96 + 0.32 + 0 + 0	= 3.28 ok
10yr	5.47	4.85 + 0.52 + 0 + 0	= 5.37 ok
25yr	6.66	5.97 + 0.64 + 0 + 0	= 6.61 ok
100yr	7.61	6.71 + 0.72 + 0 +0	= 7.43 ok

COUNTY OF SANTA CLARA Department of Planning and Development

County Government Center, East Wing 70 West Hedding Street, 7th Floor San Jose, California 95110

CLEAN WATER QUESTIONNAIRE

Which Projects Must Comply with Stormwater Requirements? (READ THIS FIRST)

All projects that create and/or replace 10,000 sq. ft. or more of impervious surface on the project site must fill out this worksheet and submit it with the development project application.

All restaurants, auto service facilities, retail gasoline outlets, and uncovered parking lot projects (stand-alone or part of another development project, including the top uncovered portion of parking structures) that create and/or replace 5,000 sq. ft. or more of impervious surface on the project site must also fill out this worksheet.

Interior remodeling projects, routine maintenance or repair projects such as re-roofing and re-paving, and single family homes that are not part of a larger plan of development are **NOT** required to complete this worksheet.

What is an Impervious Surface?

An impervious surface is a surface covering or pavement that prevents the land's natural ability to absorb and infiltrate rainfall/stormwater. Impervious surfaces include, but are not limited to rooftops, walkways, paved patios, driveways, parking lots, storage areas, impervious concrete and asphalt, and any other continuous watertight pavement or covering. Pervious pavement, underlain with pervious soil or pervious storage material (e.g., drain rock), that infiltrates rainfall at a rate equal to or greater than surrounding unpaved areas OR that stores and infiltrates the water quality design volume specified in Provision C.3.d of the Municipal Regional Stormwater Permit (MRP), is not considered an impervious surface.

For More Information

For more information regarding selection of Best Management Practices for stormwater pollution prevention or stormwater treatment contact the Development Services Office: (408) 299-5770

1. Project Information
Project Name: Hicks, LLC APN # 575-11-009 2024
Project Address: 21631 Hicks Road
Cross Streets:
Applicant/Developer Name: Hicks LLC Divyogi Patel
Project Phase(s): of Engineer: Harry Single, MH Engineering Co.
Project Type (Check all that apply): New Development Redevelopment
Residential Commercial Industrial Mixed Use Institutional
Restaurant Uncovered Parking Retail Gas Outlet Auto Service (SIC code)
Other (5013-5014, 5541, 7532-7534, 7536-7539)
Project Description: Denislish two old homes (one legal one illegal) and build 7,8205 f house and ADY

Project Watershed/Receiving Water (creek, river or bay): Choose from list

2. Project Size

a. Total Site Area: 1416	acres	b. Total Site Ar (including clearing	ea Disturbed: g, grading, or excavat	1.01 ing)	acres
Site Totals	Total Existing (Pre-project) Area (ft ²)	Existing Area Retained ¹ (ft ²)	Existing Area Replaced ² (ft ²)	New Area Created ² (ft ²)	Total Post- Project Area (ft ²)
c. Total Impervious Area (IA)	11,492	¢.	1,492	20,950	20950
d. Total new and replaced impervious area		1			20 950 (0.48)
e. Total Pervious Area (PA) ³	23.83 au				13,6800
f. Total Area (IA+PA)	24.16ac.				47.00 00
g. Percent Replacement of IA in Redevelopment Projects: (Existing IA Replaced ÷ Existing Total IA) x 100% 100 %					

3. State Construction General Permit Applicability:

a. Is #2.b. equal to 1 acre or more?

- Yes, applicant must obtain coverage under the State Construction General Permit (see https://www.waterboards.ca.gov/water_issues/programs/stormwater/construction.html)
- No, applicant does not need coverage under the State Construction General Permit.

4. MRP Provision C.3 Applicability:

a. Is #2.d. equal to 10,000 sq. ft. or more, or 5,000 sq. ft. or more for restaurants, auto service facilities, retail gas outlets, and stand-alone uncovered parking?

Yes, C.3. source control, site design and treatment requirements apply

- No, C.3. source control and site design requirements may apply check with local agency
- b. For redevelopment projects, is #2.g. equal to 50% or more?

Yes, C.3. requirements (site design and source control, as appropriate, and stormwater treatment) apply to the entire site

No, C.3. requirements only apply to the impervious area created and/or replaced

- c. Does the project create and/or replace 5,000 sf or more of impervious surface parking?
 - Yes, C.3. requirements may apply to the entire site check with local agency

5. Hydromodification Management (HM) Applicability:

- a. Does the project create and/or replace one acre or more of impervious surface AND is the total post-project impervious area greater than the pre-project (existing) impervious area? ☐ Yes (continue)
 - \square No exempt from HM, go to page 3
- b. Is the project located in an area of HM applicability (green area) on the HM Applicability Map? (<u>www.scvurppp.org/hmp-map</u>)
 - Yes, the project must implement HM requirements
 - □ No, the project is exempt from HM requirements

^{1 &}quot;Retained" means to leave existing IA in place. An IA that goes through maintenance (e.g., pavement resurfacing/slurry seal/grind), but no change in grade is considered "retained".

² The "new" and "replaced" IA are based on the total area of the site and not specific locations on site. For example, impervious parking created over a pervious area is not "new" IA, if an equal amount of pervious area replaces IA somewhere else on the site. Constructed IA on a site that does not exceed the total pre-project IA will be considered "replaced" IA. A site will have "new"

IA only if the total post-project IA exceeds the total pre-project IA (total post-project IA - total pre-project IA = New IA).

6. Selection of Specific Stormwater Control Measures:

1						
Site Design Measures	Source Control Measures	Treatment Measures				
Minimize land disturbed (e.g., protect trees and soil)	Wash area/racks, drain to sanitary sewer ⁵	None (all impervious surface drains to self-				
Minimize impervious	Covered dumpster area,	retaining areas)				
surfaces (e.g., reduction in	drain to sanitary sewer ⁶	LID Treatment				
surface)	Sanitary sewer connection	Bioretention area				
Minimum-impact street or	or accessible cleanout for	Flow-through planter				
parking lot design (e.g., parking on top of or under	pool/spa/fountain ⁶	Tree Well Filter or Trench with bioretention soils				
buildings)	Beneficial landscaping	Rainwater harvest/use (e.g.,				
Cluster structures/ pavement	pesticides and fertilizers; promotes treatment)	cistern or rain barrel for designated use, sized for				
Disconnected downspouts	Outdoor material storage	Lafitration transh				
sidewalks, patios to	protection					
landscaped areas)	Covers, drains for loading	Subsurface Infiltration				
Pervious pavement	docks, maintenance bays,	System (e.g. vault or large				
Green roof	fueling areas	diameter conduit over drain				
Other self-treating ⁴ area	Maintenance (pavement	Other marker				
(e.g., landscaped areas)	cleaning, good	- Other Rain-Tanks				
Self-retaining ⁴ area	housekeeping)	Non-LID Treatment Methods				
Interceptor trees ³	Storm drain labeling	Proprietary high flow rate				
Rainwater harvesting and	Other	tree box filter ⁷				
use (e.g., rain barrel, cistern for designated use) ⁵		Proprietary high flow media				
		proprietary media) ⁷				
23,83 ac. or sq. ft. (circle		Vegetated filter strip ⁸				
one)		Extended detention basin ⁸				
Protected riparian and	1	Vegetated swale ⁸				
wetland areas/buffers	J	Other				
(Setback from top of bank: ft.)						
Flow Duration Controls for Hydromodification Management (HM)						
Detention basin vault	Sound tank or Bioretention with out	tlet Other				
· · · · · · · · · · · · · · · · · · ·						
⁴ See SCVURPPP C3 Handbook for def	initions. https://scvurppp.org/2016/06/20/c-3-stc	rmwater-handbook-june-2016/				
^o Optional site design measure; does not ⁶ Subject to sanitary sewer authority requ	have to be sized to comply with Provision C	2.3.d treatment requirements.				
⁷ These treatment measures are only allowed if the project qualifies as a "Special Project".						

⁸ These treatment measures are only allowed as part of a multi-step treatment process (i.e., for pretreatment).

_

7. Stormwater Treatment Measure (STM) Sizing for Projects with Treatment Requirements

Stormwater Treatment Measure (STM)	Hydraulic Sizing Criteria Used*
	Choose from list

*Key: 1a: Volume – WEF Method

1b: Volume - CASQA BMP Handbook Method

2a: Flow – Factored Flood Flow Method

2b: Flow - CASQA BMP Handbook Method

2c: Flow - Uniform Intensity Method

3: Combination Flow and Volume Design Basis

8. Alternative Certification: Was the treatment system sizing and design reviewed by a qualified thirdparty professional that is not a member of the project team or agency staff?

Yes No Name of Third-party Reviewer____

9. Operation & Maintenance Information

A. Property Owner's Name

B. Responsible Party for Stormwater Treatment/Hydromodification Control O&M:

- a. Name:
- b. Address:
- c. Phone/E-mail:

DEPT. OF PLANNING AND DEVELOPMENT, LDE STAFF USE ONLY

Questionnaire reviewed:	
LDE:	
Date	
Project Watershed	
Monterey Bay	
Project Category (check one): Regulated project Regulated + HMP project Exempt	
O&M Responsibility Mechanism	
O&M Agreement	
Other mechanism that assigns responsibility (describe below):	
Send copy of final form to Clean Water Program - CleanwaterSCC@cep.sccgov.org	

ASSOCIATED TERRA CONSULTANTS, Inc.

ENGINEERING GEOLOGY GEOTECHNICAL HYDROGEOLOGY SEPTIC TESTING & DESIGN

June 17, 2022 File No: 260411 L2

Hicks LLC 3 Oakhurst Place Santa Rosa, CA 95409

Subject: VERIFICATION OF INFILTRATOR TESTING RESULTS APN: 575-11-009; 21631 Hicks Road Santa Clara County, California

Dear Hicks LLC:

This letter verifies infiltrator testing results conducted at the subject property, on November 19, 2021, for proposed infiltrator trenches. These tests were set up and conducted in accordance with the County standards, including the pre-soak procedure. *Associated Terra Consultants, Inc.* personnel personally observed the site and conducted all the testing.

We tested two percolation holes at the requested depth of six feet deep. The average yielded result is 18.5 MPI (mins/inch).

We are pleased to have been of service to you at this time. Please do not hesitate to call us if you have any questions regarding this project, or if we can be of any other service. Thank you.

Very truly yours, ASSOCIATED TERRA CONSULTANTS, Inc.

1725 Dell Avenue, Campbell, California 95008 (408) 866-1067 Email: Office@aterracon.com

Project Impervious Area Table				
me (APN)	Hicks Land LLC (575-11-024			
n Submittal Date	12/1/2021			
cation	216131 Hicks Road			
ase	N/A			
be and Description	Residential			
ct Area	24.16ac			
Impervious Area				
1, walks & deck 1591,	20,950sf			
,948)				
Project Impervious Area	11,492sf			
aced Impervious Area	11,492sf			
Project Impervious Area	20,950sf			
ious Area	20,950sf			

MH engineering Co.

16075 Vineyard Blvd. Morgan Hill, CA 95037 (408) 779-7381 (408) 226-5712 Fax

> Hicks, LLC Hydrology Study (Peak Management)

Accas, time of concentration & hundit loeff 6. The = 0.0078 5 = Ageks Rd. ditch Pre, A=6.26ac+ 10+ 0.0078/1923 0.385 natural(0:30 +0.15+0.15+0.15)=0.75; Cpre.(composit) = <u>6(0.75)+0.26/0.90</u>) A 1 a-lost h= 5. 22 ac.; C= 0.75, Tc 2/3min = 0.76 t Headwall@ Turn troound > Alb-lost A= 0.5 dae; Te=13min to roadaide ditch C= 0.11(0.90)+0.43(0.75) Hoks Load C= 0.11(0.90)+0.43(0.75) 0.54 =0.78 > A2-post to Rain-tank A': Area = 0.3[ac; Tc = 13min C = (0.08) 0.75 + 0.23(0.90) = 0.880.31 A3- Post to Rain-tank TS; Area = 0. 30ac, Te = 15min C = 0.16(0.75) + 0.14(0.90) = 0.82

Eco Rain-tank Volume Calc, Volume = (9x8)2x4.41 = 635 ft³ Tauk A' Volume to/ voids Rock volume @ Drain (22.25+ 10.72) 4.39 ×14 Totalvol. =757 & finished brade R1M714 TA 8 porter INV.711.30 3.5 1001/10 Tep711.30 TU T X Rain-Tan 142 units *2 1' 4:39 : Bottom 70691 10V.707.66 6°0°r V 12 thry , Unit size Capacity ON. 50/0 = 6465 171.34 120670 > 2:25-22.25+12.72 7 - B volume Tank Wrated Rim 708,80 NG708.20 38 00000 2.89 +4 - uni INV. 702.06 2 bottom 701.3 - 751 ft ? calc. Tark A above Nolume = 75 9 (see

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 1

A1-Pre

Hydrograph type	= Mod. Rational	Peak discharge	= 3.378 cfs
Storm frequency	= 2 yrs	Time to peak	= 15 min
Time interval	= 1 min	Hyd. volume	= 6,080 cuft
Drainage area	= 6.260 ac	Runoff coeff.	= 0.76*
Intensity	= 0.710 in/hr	Tc by User	= 15.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 1

A1-Pre

Hydrograph type	= Mod. Rational	Peak discharge	= 5.471 cfs
Storm frequency	= 10 yrs	Time to peak	= 15 min
Time interval	= 1 min	Hyd. volume	= 9,848 cuft
Drainage area	= 6.260 ac	Runoff coeff.	= 0.76*
Intensity	= 1.150 in/hr	Tc by User	= 15.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 1

A1-Pre

Hydrograph type	= Mod. Rational	Peak discharge	= 6.661 cfs
Storm frequency	= 25 yrs	Time to peak	= 15 min
Time interval	= 1 min	Hyd. volume	= 11,989 cuft
Drainage area	= 6.260 ac	Runoff coeff.	= 0.76*
Intensity	= 1.400 in/hr	Tc by User	= 15.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 1

A1-Pre

Hydrograph type	= Mod. Rational	Peak discharge	= 7.612 cfs
Storm frequency	= 100 yrs	Time to peak	= 15 min
Time interval	= 1 min	Hyd. volume	= 13,702 cuft
Drainage area	= 6.260 ac	Runoff coeff.	= 0.76*
Intensity	= 1.600 in/hr	Tc by User	= 15.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 12 / 7 / 2021

Hyd. No. 6

Hydrograph type	= Mod. Rational	Peak discharge	= 2.964 cfs
Storm frequency	= 2 yrs	Time to peak	= 13 min
Time interval	= 1 min	Hyd. volume	= 4,624 cuft
Drainage area	= 5.220 ac	Runoff coeff.	= 0.75
Intensity	= 0.757 in/hr	Tc by User	= 13.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 12 / 7 / 2021

Hyd. No. 6

Hydrograph type	= Mod. Rational	Peak discharge	= 4.852 cfs
Storm frequency	= 10 yrs	Time to peak	= 13 min
Time interval	= 1 min	Hyd. volume	= 7,569 cuft
Drainage area	= 5.220 ac	Runoff coeff.	= 0.75
Intensity	= 1.239 in/hr	Tc by User	= 13.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 12 / 7 / 2021

Hyd. No. 6

Hydrograph type	= Mod. Rational	Peak discharge	= 5.974 cfs
Storm frequency	= 25 yrs	Time to peak	= 13 min
Time interval	= 1 min	Hyd. volume	= 9,319 cuft
Drainage area	= 5.220 ac	Runoff coeff.	= 0.75
Intensity	= 1.526 in/hr	Tc by User	= 13.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 12 / 7 / 2021

Hyd. No. 6

Hydrograph type	= Mod. Rational	Peak discharge	= 6.705 cfs
Storm frequency	= 100 yrs	Time to peak	= 13 min
Time interval	= 1 min	Hyd. volume	= 10,460 cuft
Drainage area	= 5.220 ac	Runoff coeff.	= 0.75
Intensity	= 1.713 in/hr	Tc by User	= 13.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 7

Hydrograph type	= Mod. Rational	Peak discharge	= 0.319 cfs
Storm frequency	= 2 yrs	Time to peak	= 13 min
Time interval	= 1 min	Hyd. volume	= 497 cuft
Drainage area	= 0.540 ac	Runoff coeff.	= 0.78
Intensity	= 0.757 in/hr	Tc by User	= 13.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 7

Hydrograph type	= Mod. Rational	Peak discharge	= 0.522 cfs
Storm frequency	= 10 yrs	Time to peak	= 13 min
Time interval	= 1 min	Hyd. volume	= 814 cuft
Drainage area	= 0.540 ac	Runoff coeff.	= 0.78
Intensity	= 1.239 in/hr	Tc by User	= 13.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 7

Hydrograph type	= Mod. Rational	Peak discharge	= 0.643 cfs
Storm frequency	= 25 yrs	Time to peak	= 13 min
Time interval	= 1 min	Hyd. volume	= 1,003 cuft
Drainage area	= 0.540 ac	Runoff coeff.	= 0.78
Intensity	= 1.526 in/hr	Tc by User	= 13.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 7

Hydrograph type	= Mod. Rational	Peak discharge	= 0.721 cfs
Storm frequency	= 100 yrs	Time to peak	= 13 min
Time interval	= 1 min	Hyd. volume	= 1,125 cuft
Drainage area	= 0.540 ac	Runoff coeff.	= 0.78
Intensity	= 1.713 in/hr	Tc by User	= 13.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 2

A2-Post Routing

Hydrograph type	= Mod. Rational	Peak discharge	= 0.207 cfs
Storm frequency	= 2 yrs	Time to peak	= 13 min
Time interval	= 1 min	Hyd. volume	= 322 cuft
Drainage area	= 0.310 ac	Runoff coeff.	= 0.88*
Intensity	= 0.757 in/hr	Tc by User	= 13.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 2

A2-Post Routing

Hydrograph type	= Mod. Rational	Peak discharge	= 0.338 cfs
Storm frequency	= 10 yrs	Time to peak	= 13 min
Time interval	= 1 min	Hyd. volume	= 527 cuft
Drainage area	= 0.310 ac	Runoff coeff.	= 0.88*
Intensity	= 1.239 in/hr	Tc by User	= 13.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 2

A2-Post Routing

Hydrograph type	= Mod. Rational	Peak discharge	= 0.416 cfs
Storm frequency	= 25 yrs	Time to peak	= 13 min
Time interval	= 1 min	Hyd. volume	= 649 cuft
Drainage area	= 0.310 ac	Runoff coeff.	= 0.88*
Intensity	= 1.526 in/hr	Tc by User	= 13.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 2

A2-Post Routing

Hydrograph type	= Mod. Rational	Peak discharge	= 0.467 cfs
Storm frequency	= 100 yrs	Time to peak	= 13 min
Time interval	= 1 min	Hyd. volume	= 729 cuft
Drainage area	= 0.310 ac	Runoff coeff.	= 0.88*
Intensity	= 1.713 in/hr	Tc by User	= 13.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 3

Eco Rain-Tank 'A'

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 2 - A2-Post Routing	Max. Elevation	= 708.74 ft
Reservoir name	= Eco Rain-Tank	Max. Storage	= 322 cuft

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Pond No. 1 - Eco Rain-Tank

Pond Data

Pond storage is based on user-defined values.

Stage / Storage Table

Stage (ft) Elevation (ft)		Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	706.91	n/a	0	0	
1.00	707.86	n/a	171	171	
2.00	708.86	n/a	171	342	
3.00	709.86	n/a	171	513	
4.00	710.86	n/a	171	684	
4.39	711.30	n/a	67	751	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 4.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 4.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 2.60	3.33	3.33	3.33
Invert El. (ft)	= 711.30	0.00	0.00	0.00	Weir Type	= Broad	Broad		
Length (ft)	= 13.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 4.61	0.00	0.00	n/a	•				
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00	,		

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 3

Eco Rain-Tank 'A'

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 10 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 2 - A2-Post Routing	Max. Elevation	= 709.94 ft
Reservoir name	= Eco Rain-Tank	Max. Storage	= 527 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 3

Eco Rain-Tank 'A'

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 25 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 2 - A2-Post Routing	Max. Elevation	= 710.66 ft
Reservoir name	= Eco Rain-Tank	Max. Storage	= 649 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 3

Eco Rain-Tank 'A'

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 100 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 2 - A2-Post Routing	Max. Elevation	= 711.12 ft
Reservoir name	= Eco Rain-Tank	Max. Storage	= 729 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 4

A3 Post Routing

Hydrograph type	= Mod. Rational	Peak discharge	= 0.180 cfs
Storm frequency	= 2 yrs	Time to peak	= 14 min
Time interval	= 1 min	Hyd. volume	= 303 cuft
Drainage area	= 0.300 ac	Runoff coeff.	= 0.82*
Intensity	= 0.732 in/hr	Tc by User	= 14.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 4

A3 Post Routing

Hydrograph type	= Mod. Rational	Peak discharge	= 0.293 cfs
Storm frequency	= 10 yrs	Time to peak	= 14 min
Time interval	= 1 min	Hyd. volume	= 493 cuft
Drainage area	= 0.300 ac	Runoff coeff.	= 0.82*
Intensity	= 1.192 in/hr	Tc by User	= 14.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 4

A3 Post Routing

Hydrograph type	= Mod. Rational	Peak discharge	= 0.359 cfs
Storm frequency	= 25 yrs	Time to peak	= 14 min
Time interval	= 1 min	Hyd. volume	= 603 cuft
Drainage area	= 0.300 ac	Runoff coeff.	= 0.82*
Intensity	= 1.460 in/hr	Tc by User	= 14.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 4

A3 Post Routing

Hydrograph type	= Mod. Rational	Peak discharge	= 0.407 cfs
Storm frequency	= 100 yrs	Time to peak	= 14 min
Time interval	= 1 min	Hyd. volume	= 683 cuft
Drainage area	= 0.300 ac	Runoff coeff.	= 0.82*
Intensity	= 1.653 in/hr	Tc by User	= 14.00 min
IDF Curve	= SCC-25in.IDF	Storm duration	= 2.0 x Tc
Target Q	=n/a	Est. Req'd Storage	=n/a

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Hyd. No. 5

Eco Rain-tank 'B'

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 4 - A3 Post Routing	Max. Elevation	= 703.08 ft
Reservoir name	= Eco Rain-tank 'B'	Max. Storage	= 303 cuft

Storage Indication method used.

Tuesday, 06 / 21 / 2022

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Pond No. 2 - Eco Rain-tank 'B'

Pond Data

Pond storage is based on user-defined values.

Stage / Storage Table

Stage (ft) Elevation (ft)		Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	701.31	n/a	0	0	
1.00	702.31	n/a	171	171	
2.00	703.31	n/a	171	342	
3.00	704.31	n/a	171	513	
4.00	705.31	n/a	171	684	
4.39	705.70	n/a	71	755	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 708.20	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 2.60	3.33	3.33	3.33
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Broad			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a	-				
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area))	
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 5

Eco Rain-tank 'B'

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 10 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 4 - A3 Post Routing	Max. Elevation	= 704.19 ft
Reservoir name	= Eco Rain-tank 'B'	Max. Storage	= 493 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Tuesday, 06 / 21 / 2022

Hyd. No. 5

Eco Rain-tank 'B'

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 25 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 4 - A3 Post Routing	Max. Elevation	= 704.84 ft
Reservoir name	= Eco Rain-tank 'B'	Max. Storage	= 603 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020.4

Hyd. No. 5

Eco Rain-tank 'B'

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 100 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 4 - A3 Post Routing	Max. Elevation	= 705.31 ft
Reservoir name	= Eco Rain-tank 'B'	Max. Storage	= 683 cuft

Storage Indication method used.

Tuesday, 06 / 21 / 2022